1
|
Hu B, Zhang Z, Chen S, Xu Q, Li J. A metric for quantitative evaluation of glioma margin changes in magnetic resonance imaging. Acta Radiol 2024; 65:645-653. [PMID: 38449078 DOI: 10.1177/02841851241229597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Gliomas differ from meningiomas in their margins, most of which are not separated from the surrounding tissue by a distinct interface. PURPOSE To characterize the margins of gliomas quantitatively based on the margin sharpness coefficient (MSC) is significant for clinical judgment and invasive analysis of gliomas. MATERIAL AND METHODS The data for this study used magnetic resonance image (MRI) data from 67 local patients and 15 open patients to quantify the intensity of changes in the glioma margins of the brain using MSC. The accuracy of MSC was assessed by consistency analysis and Bland-Altman test analysis, as well as invasive correlations using receiver operating characteristic (ROC) and Spearman correlation coefficients for subjects. RESULTS In grading the tumors, the mean MSC values were significantly lower for high-grade gliomas (HGG) than for low-grade gliomas (LGG). The concordance correlation between the measured gradient and the actual gradient was high (HGG: 0.981; LGG: 0.993), and the Bland-Altman mean difference at the 95% confidence interval (HGG: -0.576; LGG: 0.254) and the limits of concordance (HGG: 5.580; LGG: 5.436) indicated no statistical difference. The correlation between MSC and invasion based on the margins of gliomas showed an AUC of 0.903 and 0.911 for HGG and LGG, respectively. The mean Spearman correlation coefficient of the MSC versus the actual distance of invasion was -0.631 in gliomas. CONCLUSION The relatively low MSC on the blurred margins and irregular shape of gliomas may help in benign-malignant differentiation and invasion prediction of gliomas and has potential application for clinical judgment.
Collapse
Affiliation(s)
- Binwu Hu
- School of Electronics & Information Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Suting Chen
- School of Electronics & Information Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Jianrui Li
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| |
Collapse
|
2
|
Huang L, Lin W, Xie D, Yu Y, Cao H, Liao G, Wu S, Yao L, Wang Z, Wang M, Wang S, Wang G, Zhang D, Yao S, He Z, Cho WCS, Chen D, Zhang Z, Li W, Qiao G, Chan LWC, Zhou H. Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study. Eur Radiol 2022; 32:1983-1996. [PMID: 34654966 PMCID: PMC8831242 DOI: 10.1007/s00330-021-08268-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To develop and validate a preoperative CT-based nomogram combined with radiomic and clinical-radiological signatures to distinguish preinvasive lesions from pulmonary invasive lesions. METHODS This was a retrospective, diagnostic study conducted from August 1, 2018, to May 1, 2020, at three centers. Patients with a solitary pulmonary nodule were enrolled in the GDPH center and were divided into two groups (7:3) randomly: development (n = 149) and internal validation (n = 54). The SYSMH center and the ZSLC Center formed an external validation cohort of 170 patients. The least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression analysis were used to feature signatures and transform them into models. RESULTS The study comprised 373 individuals from three independent centers (female: 225/373, 60.3%; median [IQR] age, 57.0 [48.0-65.0] years). The AUCs for the combined radiomic signature selected from the nodular area and the perinodular area were 0.93, 0.91, and 0.90 in the three cohorts. The nomogram combining the clinical and combined radiomic signatures could accurately predict interstitial invasion in patients with a solitary pulmonary nodule (AUC, 0.94, 0.90, 0.92) in the three cohorts, respectively. The radiomic nomogram outperformed any clinical or radiomic signature in terms of clinical predictive abilities, according to a decision curve analysis and the Akaike information criteria. CONCLUSIONS This study demonstrated that a nomogram constructed by identified clinical-radiological signatures and combined radiomic signatures has the potential to precisely predict pathology invasiveness. KEY POINTS • The radiomic signature from the perinodular area has the potential to predict pathology invasiveness of the solitary pulmonary nodule. • The new radiomic nomogram was useful in clinical decision-making associated with personalized surgical intervention and therapeutic regimen selection in patients with early-stage non-small-cell lung cancer.
Collapse
Affiliation(s)
- Luyu Huang
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Weihuan Lin
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Daipeng Xie
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- AI & Digital Media Concentration Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Hanbo Cao
- Department of Radiology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Guoqing Liao
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Shaowei Wu
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Lintong Yao
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Zhaoyu Wang
- Department of Pathology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Mei Wang
- Department of Radiology, Department of PET Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Siyun Wang
- Department of Radiology, Department of PET Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangyi Wang
- Department of Radiology, Department of PET Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongkun Zhang
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zifan He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhengjie Zhang
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China
| | - Wanshan Li
- Clinical Medicine, Zhongshan School of Medicine, Yat-Sen University, Guangzhou, China
| | - Guibin Qiao
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China.
| | - Lawrence Wing-Chi Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Haiyu Zhou
- Division of Thoracic Surgery, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Shantou University Medical College, Guangzhou, China.
| |
Collapse
|
3
|
Ferreira-Junior JR, Koenigkam-Santos M, Magalhães Tenório AP, Faleiros MC, Garcia Cipriano FE, Fabro AT, Näppi J, Yoshida H, de Azevedo-Marques PM. CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms. Int J Comput Assist Radiol Surg 2019; 15:163-172. [PMID: 31722085 DOI: 10.1007/s11548-019-02093-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE As some of the most important factors for treatment decision of lung cancer (which is the deadliest neoplasm) are staging and histology, this work aimed to associate quantitative contrast-enhanced computed tomography (CT) features from malignant lung tumors with distant and nodal metastases (according to clinical TNM staging) and histopathology (according to biopsy and surgical resection) using radiomics assessment. METHODS A local cohort of 85 patients were retrospectively (2010-2017) analyzed after approval by the institutional research review board. CT images acquired with the same protocol were semiautomatically segmented by a volumetric segmentation method. Tumors were characterized by quantitative CT features of shape, first-order, second-order, and higher-order textures. Statistical and machine learning analyses assessed the features individually and combined with clinical data. RESULTS Univariate and multivariate analyses identified 40, 2003, and 45 quantitative features associated with distant metastasis, nodal metastasis, and histopathology (adenocarcinoma and squamous cell carcinoma), respectively. A machine learning model yielded the highest areas under the receiver operating characteristic curves of 0.92, 0.84, and 0.88 to predict the same previous patterns. CONCLUSION Several radiomic features (including wavelet energies, information measures of correlation and maximum probability from co-occurrence matrix, busyness from neighborhood intensity-difference matrix, directionalities from Tamura's texture, and fractal dimension estimation) significantly associated with distant metastasis, nodal metastasis, and histology were discovered in this work, presenting great potential as imaging biomarkers for pathological diagnosis and target therapy decision.
Collapse
Affiliation(s)
- José Raniery Ferreira-Junior
- São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil.
- Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Marcel Koenigkam-Santos
- Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Matheus Calil Faleiros
- São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | - Alexandre Todorovic Fabro
- Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Janne Näppi
- Massachusetts General Hospital, Harvard Medical School, 25 New Chardon St, Boston, MA, 02114, USA
| | - Hiroyuki Yoshida
- Massachusetts General Hospital, Harvard Medical School, 25 New Chardon St, Boston, MA, 02114, USA
| | | |
Collapse
|
4
|
Yang J, Yin J. Discrimination between breast invasive ductal carcinomas and benign lesions by optimizing quantitative parameters derived from dynamic contrast-enhanced MRI using a semi-automatic method. Int J Clin Oncol 2019; 24:815-824. [PMID: 30810889 DOI: 10.1007/s10147-019-01421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND To propose a semi-automatic method for distinguishing invasive ductal carcinomas from benign lesions on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS 142 cases were included. In the conventional method, the region of interest for a breast lesion was drawn manually and the corresponding mean time-signal intensity curve (TIC) was qualitatively categorized. Only one quantitative parameter was obtained: the maximum slope of increase (MSI). By contrast, the proposed method extracted the suspicious breast lesion semi-automatically. Besides MSI, more quantitative parameters reflecting perfusion information were derived from the mean TIC and lesion region, including the signal intensity slope (SIslope), initial percentage of enhancement, percentage of peak enhancement, early signal enhancement ratio, and second enhancement percentage. The mean TIC was categorized quantitatively according to the value of SIslope. Regression models were established. The diagnostic performance differed between the new and conventional methods according to the Wilcoxon rank-sum test and receiver operating characteristic analysis. RESULTS According to the TIC categorization results, the accuracies of the traditional and the new method were 59.16% and 76.05%, respectively (P < 0.05). The accuracy was 63.35% for MSI, which was derived from the manual method. For the semi-automatic method, the accuracies were 81.0% and 78.9% for the lesion region and the corresponding mean TIC regression models, respectively. CONCLUSIONS The results demonstrate that our proposed semi-automatic method is beneficial for discriminating breast IDCs and benign lesions based on DCE-MRI, and this method should be considered as a supplementary tool for subjective diagnosis by clinical radiologists.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Equipment, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Ferreira JR, Oliveira MC, de Azevedo-Marques PM. Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture. J Digit Imaging 2018; 31:451-463. [PMID: 29047033 PMCID: PMC6113151 DOI: 10.1007/s10278-017-0029-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world, and one of its manifestations occurs with the appearance of pulmonary nodules. The classification of pulmonary nodules may be a complex task to specialists due to temporal, subjective, and qualitative aspects. Therefore, it is important to integrate computational tools to the early pulmonary nodule classification process, since they have the potential to characterize objectively and quantitatively the lesions. In this context, the goal of this work is to perform the classification of pulmonary nodules based on image features of texture and margin sharpness. Computed tomography scans were obtained from a publicly available image database. Texture attributes were extracted from a co-occurrence matrix obtained from the nodule volume. Margin sharpness attributes were extracted from perpendicular lines drawn over the borders on all nodule slices. Feature selection was performed by different algorithms. Classification was performed by several machine learning classifiers and assessed by the area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy. Highest classification performance was obtained by a random forest algorithm with all 48 extracted features. However, a decision tree using only two selected features obtained statistically equivalent performance on sensitivity and specificity.
Collapse
Affiliation(s)
- José Raniery Ferreira
- Center of Imaging Sciences and Medical Physics, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Marcelo Costa Oliveira
- Institute of Computing, Federal University of Alagoas, Av. Lourival Melo Mota, Cidade Universitária, Maceió, Alagoas, 57072-900, Brazil
| | - Paulo Mazzoncini de Azevedo-Marques
- Center of Imaging Sciences and Medical Physics, Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
6
|
Gallego-Ortiz C, Martel AL. Using quantitative features extracted from T2-weighted MRI to improve breast MRI computer-aided diagnosis (CAD). PLoS One 2017; 12:e0187501. [PMID: 29112948 PMCID: PMC5675400 DOI: 10.1371/journal.pone.0187501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/21/2017] [Indexed: 01/19/2023] Open
Abstract
Computer-aided diagnosis (CAD) has been proposed for breast MRI as a tool to standardize evaluation, to automate time-consuming analysis, and to aid the diagnostic decision process by radiologists. T2w MRI findings are diagnostically complementary to T1w DCE-MRI findings in the breast and prior research showed that measuring the T2w intensity of a lesion relative to a tissue of reference improves diagnostic accuracy. The diagnostic value of this information in CAD has not been yet quantified. This study proposes an automatic method of assessing relative T2w lesion intensity without the need to select a reference region. We also evaluate the effect of adding this feature to other T2w and T1w image features in the predictive performance of a breast lesion classifier for differential diagnosis of benign and malignant lesions. An automated feature of relative T2w lesion intensity was developed using a quantitative regression model. The diagnostic performance of the proposed feature in addition to T2w texture was compared to the performance of a conventional breast MRI CAD system based on T1w DCE-MRI features alone. The added contribution of T2w features to more conventional T1w-based features was investigated using classification rules extracted from the lesion classifier. After institutional review board approval that waived informed consent, we identified 627 breast lesions (245 malignant, 382 benign) diagnosed after undergoing breast MRI at our institution between 2007 and 2014. An increase in diagnostic performance in terms of area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was observed with the additional T2w features and the proposed quantitative feature of relative T2w lesion intensity. AUC increased from 0.80 to 0.83 and this difference was statistically significant (adjusted p-value = 0.020).
Collapse
Affiliation(s)
- Cristina Gallego-Ortiz
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- * E-mail:
| | - Anne L. Martel
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval. Int J Comput Assist Radiol Surg 2016; 12:509-517. [DOI: 10.1007/s11548-016-1471-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
|
8
|
Ferreira de Lucena DJ, Ferreira Junior JR, Machado AP, Oliveira MC. Automatic weighing attribute to retrieve similar lung cancer nodules. BMC Med Inform Decis Mak 2016; 16 Suppl 2:79. [PMID: 27460071 PMCID: PMC4965736 DOI: 10.1186/s12911-016-0313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is a disease characterized as an uncontrolled growth of abnormal cells that invades neighboring tissues and destroys them. Lung cancer is the primary cause of cancer-related deaths in the world, and it diagnosis is a complex task for specialists and it presents some big challenges as medical image interpretation process, pulmonary nodule detection and classification. In order to aid specialists in the early diagnosis of lung cancer, computer assistance must be integrated in the imaging interpretation and pulmonary nodule classification processes. Methods of Content-Based Image Retrieval (CBIR) have been described as one promising technique to computer-aided diagnosis and is expected to aid radiologists on image interpretation with a second opinion. However, CBIR presents some limitations: image feature extraction process and appropriate similarity measure. The efficiency of CBIR systems depends on calculating image features that may be relevant to the case similarity analysis. When specialists classify a nodule, they are supported by information from exams, images, etc. But each information has more or less weight over decision making about nodule malignancy. Thus, finding a way to measure the weight allows improvement of image retrieval process through the assignment of higher weights to that attributes that best characterize the nodules. METHODS In this context, the aim of this work is to present a method to automatically calculate attribute weights based on local learning to reflect the interpretation on image retrieval process. The process consists of two stages that are performed sequentially and cyclically: Evaluation Stage and Training Stage. At each iteration the weights are adjusted according to retrieved nodules. After some iterations, it is possible reach a set of attribute weights that optimize the recovery of similar nodes. RESULTS The results achieved by updated weights were promising because was possible increase precision by 10% to 6% on average to retrieve of benign and malignant nodules, respectively, with recall of 25% compared with tests without weights associated to attributes in similarity metric. The best result, we reaching values over 100% of precision average until thirtieth lung cancer nodule retrieved. CONCLUSIONS Based on the results, WED applied to the three vectors used attributes (3D TA, 3D MSA and InV), with weights adjusted by the process, always achieved better results than those found with ED. With the weights, the Precision was increased on average by 17.3% compared with using ED.
Collapse
Affiliation(s)
- David Jones Ferreira de Lucena
- Laboratory of Telemedicine and Medical Informatics - HUPAA/UFAL/EBSERH, Computing Institute - Federal University of Alagoas -, Maceio, Brazil.
| | - José Raniery Ferreira Junior
- Laboratory of Telemedicine and Medical Informatics - HUPAA/UFAL/EBSERH, Computing Institute - Federal University of Alagoas -, Maceio, Brazil
| | - Aydano Pamponet Machado
- Laboratory of Telemedicine and Medical Informatics - HUPAA/UFAL/EBSERH, Computing Institute - Federal University of Alagoas -, Maceio, Brazil
| | - Marcelo Costa Oliveira
- Laboratory of Telemedicine and Medical Informatics - HUPAA/UFAL/EBSERH, Computing Institute - Federal University of Alagoas -, Maceio, Brazil
| |
Collapse
|
9
|
Gallego-Ortiz C, Martel AL. Improving the Accuracy of Computer-aided Diagnosis for Breast MR Imaging by Differentiating between Mass and Nonmass Lesions. Radiology 2015; 278:679-88. [PMID: 26383229 DOI: 10.1148/radiol.2015150241] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine suitable features and optimal classifier design for a computer-aided diagnosis (CAD) system to differentiate among mass and nonmass enhancements during dynamic contrast material-enhanced magnetic resonance (MR) imaging of the breast. MATERIALS AND METHODS Two hundred eighty histologically proved mass lesions and 129 histologically proved nonmass lesions from MR imaging studies were retrospectively collected. The institutional research ethics board approved this study and waived informed consent. Breast Imaging Reporting and Data System classification of mass and nonmass enhancement was obtained from radiologic reports. Image data from dynamic contrast-enhanced MR imaging were extracted and analyzed by using feature selection techniques and binary, multiclass, and cascade classifiers. Performance was assessed by measuring the area under the receiver operating characteristics curve (AUC), sensitivity, and specificity. Bootstrap cross validation was used to predict the best classifier for the classification task of mass and nonmass benign and malignant breast lesions. RESULTS A total of 176 features were extracted. Feature relevance ranking indicated unequal importance of kinetic, texture, and morphologic features for mass and nonmass lesions. The best classifier performance was a two-stage cascade classifier (mass vs nonmass followed by malignant vs benign classification) (AUC, 0.91; 95% confidence interval (CI): 0.88, 0.94) compared with one-shot classifier (ie, all benign vs malignant classification) (AUC, 0.89; 95% CI: 0.85, 0.92). The AUC was 2% higher for cascade (median percent difference obtained by using paired bootstrapped samples) and was significant (P = .0027). Our proposed two-stage cascade classifier decreases the overall misclassification rate by 12%, with 72 of 409 missed diagnoses with cascade versus 82 of 409 missed diagnoses with one-shot classifier. CONCLUSION Separately optimizing feature selection and training classifiers for mass and nonmass lesions improves the accuracy of CAD for breast MR imaging. By cascading classifiers, we achieved a significant improvement in performance with respect to the use of a one-shot classifier. Our cascaded classifier may provide an advantage for screening women at high risk for breast cancer, in whom the ability to diagnose cancers at an early stage is of primary importance.
Collapse
Affiliation(s)
- Cristina Gallego-Ortiz
- From the Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave, M6-623e, Toronto, ON, Canada M4N 3M5; and Department of Imaging Research, Sunnybrook Research Institute, Toronto, Ont, Canada
| | - Anne L Martel
- From the Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave, M6-623e, Toronto, ON, Canada M4N 3M5; and Department of Imaging Research, Sunnybrook Research Institute, Toronto, Ont, Canada
| |
Collapse
|
10
|
Levman J, Warner E, Causer P, Martel A. Semi-automatic region-of-interest segmentation based computer-aided diagnosis of mass lesions from dynamic contrast-enhanced magnetic resonance imaging based breast cancer screening. J Digit Imaging 2015; 27:670-8. [PMID: 25091735 DOI: 10.1007/s10278-014-9723-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Cancer screening with magnetic resonance imaging (MRI) is currently recommended for very high risk women. The high variability in the diagnostic accuracy of radiologists analyzing screening MRI examinations of the breast is due, at least in part, to the large amounts of data acquired. This has motivated substantial research towards the development of computer-aided diagnosis (CAD) systems for breast MRI which can assist in the diagnostic process by acting as a second reader of the examinations. This retrospective study was performed on 184 benign and 49 malignant lesions detected in a prospective MRI screening study of high risk women at Sunnybrook Health Sciences Centre. A method for performing semi-automatic lesion segmentation based on a supervised learning formulation was compared with the enhancement threshold based segmentation method in the context of a computer-aided diagnostic system. The results demonstrate that the proposed method can assist in providing increased separation between malignant and radiologically suspicious benign lesions. Separation between malignant and benign lesions based on margin measures improved from a receiver operating characteristic (ROC) curve area of 0.63 to 0.73 when the proposed segmentation method was compared with the enhancement threshold, representing a statistically significant improvement. Separation between malignant and benign lesions based on dynamic measures improved from a ROC curve area of 0.75 to 0.79 when the proposed segmentation method was compared to the enhancement threshold, also representing a statistically significant improvement. The proposed method has potential as a component of a computer-aided diagnostic system.
Collapse
Affiliation(s)
- Jacob Levman
- Institute of Biomedical Engineering, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK,
| | | | | | | |
Collapse
|
11
|
Levman JED, Warner E, Causer P, Martel AL. A vector machine formulation with application to the computer-aided diagnosis of breast cancer from DCE-MRI screening examinations. J Digit Imaging 2014; 27:145-51. [PMID: 23836079 DOI: 10.1007/s10278-013-9621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
This study investigates the use of a proposed vector machine formulation with application to dynamic contrast-enhanced magnetic resonance imaging examinations in the context of the computer-aided diagnosis of breast cancer. This paper describes a method for generating feature measurements that characterize a lesion's vascular heterogeneity as well as a supervised learning formulation that represents an improvement over the conventional support vector machine in this application. Spatially varying signal-intensity measures were extracted from the examinations using principal components analysis and the machine learning technique known as the support vector machine (SVM) was used to classify the results. An alternative vector machine formulation was found to improve on the results produced by the established SVM in randomized bootstrap validation trials, yielding a receiver-operating characteristic curve area of 0.82 which represents a statistically significant improvement over the SVM technique in this application.
Collapse
Affiliation(s)
- Jacob E D Levman
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, Oxfordshire, OX1 3PJ, UK,
| | | | | | | |
Collapse
|
12
|
Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI. Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 2014; 273:365-72. [PMID: 25028781 DOI: 10.1148/radiol.14132641] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To investigate associations between breast cancer molecular subtype and semiautomatically extracted magnetic resonance (MR) imaging features. MATERIALS AND METHODS Imaging and genomic data from the Cancer Genome Atlas and the Cancer Imaging Archive for 48 patients with breast cancer from four institutions in the United States were used in this institutional review board approval-exempt study. Computer vision algorithms were applied to extract 23 imaging features from lesions indicated by a breast radiologist on MR images. Morphologic, textural, and dynamic features were extracted. Molecular subtype was determined on the basis of genomic analysis. Associations between the imaging features and molecular subtype were evaluated by using logistic regression and likelihood ratio tests. The analysis controlled for the age of the patients, their menopausal status, and the orientation of the MR images (sagittal vs axial). RESULTS There is an association (P = .0015) between the luminal B subtype and a dynamic contrast material-enhancement feature that quantifies the relationship between lesion enhancement and background parenchymal enhancement. Cancers with a higher ratio of lesion enhancement rate to background parenchymal enhancement rate are more likely to be luminal B subtype. CONCLUSION The luminal B subtype of breast cancer is associated with MR imaging features that relate the enhancement dynamics of the tumor and the background parenchyma.
Collapse
Affiliation(s)
- Maciej A Mazurowski
- From the Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Box 3808, Durham, NC 27710 (M.A.M., J.Z., L.J.G., S.C.Y.); and Department of Biomedical Engineering, Duke University, Pratt School of Engineering, Durham, NC (J.I.S.)
| | | | | | | | | |
Collapse
|
13
|
Su X, Cheng K, Wang C, Xing L, Wu H, Cheng Z. Image-guided resection of malignant gliomas using fluorescent nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:219-32. [PMID: 23378052 DOI: 10.1002/wnan.1212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intraoperative fluorescence imaging especially near-infrared fluorescence (NIRF) imaging has the potential to revolutionize neurosurgery by providing high sensitivity and real-time image guidance to surgeons for defining gliomas margins. Fluorescence probes including targeted nanoprobes are expected to improve the specificity and selectivity for intraoperative fluorescence or NIRF tumor imaging. The main focus of this article is to provide a brief overview of intraoperative fluorescence imaging systems and probes including fluorescein sodium, 5-aminolevulinic acid, dye-containing nanoparticles, and targeted NIRF nanoprobes for their applications in image-guided resection of malignant gliomas. Moreover, photoacoustic imaging is a promising molecular imaging modality, and its potential applications for brain tumor imaging are also briefly discussed.
Collapse
Affiliation(s)
- Xinhui Su
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Stanford Cancer Center, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Xu J, Napel S, Greenspan H, Beaulieu CF, Agrawal N, Rubin D. Quantifying the margin sharpness of lesions on radiological images for content-based image retrieval. Med Phys 2012; 39:5405-18. [PMID: 22957608 DOI: 10.1118/1.4739507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop a method to quantify the margin sharpness of lesions on CT and to evaluate it in simulations and CT scans of liver and lung lesions. METHODS The authors computed two attributes of margin sharpness: the intensity difference between a lesion and its surroundings, and the sharpness of the intensity transition across the lesion boundary. These two attributes were extracted from sigmoid curves fitted along lines automatically drawn orthogonal to the lesion margin. The authors then represented the margin characteristics for each lesion by a feature vector containing histograms of these parameters. The authors created 100 simulated CT scans of lesions over a range of intensity difference and margin sharpness, and used the concordance correlation between the known parameter and the corresponding computed feature as a measure of performance. The authors also evaluated their method in 79 liver lesions (44 patients: 23 M, 21 F, mean age 61) and 58 lung nodules (57 patients: 24 M, 33 F, mean age 66). The methodology presented takes into consideration the boundary of the liver and lung during feature extraction in clinical images to ensure that the margin feature do not get contaminated by anatomy other than the normal organ surrounding the lesions. For evaluation in these clinical images, the authors created subjective independent reference standards for pairwise margin sharpness similarity in the liver and lung cohorts, and compared rank orderings of similarity used using our sharpness feature to that expected from the reference standards using mean normalized discounted cumulative gain (NDCG) over all query images. In addition, the authors compared their proposed feature with two existing techniques for lesion margin characterization using the simulated and clinical datasets. The authors also evaluated the robustness of their features against variations in delineation of the lesion margin by simulating five types of deformations of the lesion margin. Equivalence across deformations was assessed using Schuirmann's paired two one-sided tests. RESULTS In simulated images, the concordance correlation between measured gradient and actual gradient was 0.994. The mean (s.d.) and standard deviation NDCG score for the retrieval of K images, K = 5, 10, and 15, were 84% (8%), 85% (7%), and 85% (7%) for CT images containing liver lesions, and 82% (7%), 84% (6%), and 85% (4%) for CT images containing lung nodules, respectively. The authors' proposed method outperformed the two existing margin characterization methods in average NDCG scores over all K, by 1.5% and 3% in datasets containing liver lesion, and 4.5% and 5% in datasets containing lung nodules. Equivalence testing showed that the authors' feature is more robust across all margin deformations (p < 0.05) than the two existing methods for margin sharpness characterization in both simulated and clinical datasets. CONCLUSIONS The authors have described a new image feature to quantify the margin sharpness of lesions. It has strong correlation with known margin sharpness in simulated images and in clinical CT images containing liver lesions and lung nodules. This image feature has excellent performance for retrieving images with similar margin characteristics, suggesting potential utility, in conjunction with other lesion features, for content-based image retrieval applications.
Collapse
Affiliation(s)
- Jiajing Xu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|