1
|
Wijma AG, Driessens H, Jeneson JAL, Janssen-Heijnen MLG, Willems TP, Klaase JM, Bongers BC. Cardiac and intramuscular adaptations following short-term exercise prehabilitation in unfit patients scheduled to undergo hepatic or pancreatic surgery: study protocol of a multinuclear MRI study. BMJ Open Gastroenterol 2023; 10:e001243. [PMID: 37996121 PMCID: PMC10668156 DOI: 10.1136/bmjgast-2023-001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Short-term exercise prehabilitation programmes have demonstrated promising results in improving aerobic capacity of unfit patients prior to major abdominal surgery. However, little is known about the cardiac and skeletal muscle adaptations explaining the improvement in aerobic capacity following short-term exercise prehabilitation. METHODS AND ANALYSIS In this single-centre study with a pretest-post-test design, 12 unfit patients with a preoperative oxygen uptake (VO2) at the ventilatory anaerobic threshold ≤13 mL/kg/min and/or VO2 at peak exercise ≤18 mL/kg/min, who are scheduled to undergo hepatopancreatobiliary surgery at the University Medical Center Groningen (UMCG), the Netherlands, will be recruited. As part of standard care, unfit patients are advised to participate in a home-based exercise prehabilitation programme, comprising high-intensity interval training and functional exercises three times per week, combined with nutritional support, during a 4-week period. Pre-intervention and post-intervention, patients will complete a cardiopulmonary exercise test. Next to this, study participants will perform additional in-vivo exercise cardiac magnetic resonance (MR) imaging and phosphorus 31-MR spectroscopy of the quadriceps femoris muscle before and after the intervention to assess the effect on respectively cardiac and skeletal muscle function. ETHICS AND DISSEMINATION This study was approved in May 2023 by the Medical Research Ethics Committee of the UMCG (registration number NL83611.042.23, March 2023) and is registered in the ClinicalTrials.gov register. Results of this study will be submitted for presentation at (inter)national congresses and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05772819.
Collapse
Affiliation(s)
- Allard G Wijma
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Heleen Driessens
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeroen A L Jeneson
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, The Netherlands
- Department of Epidemiology, School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Tineke P Willems
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost M Klaase
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart C Bongers
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
White GE, West SL, Sabiston C, Rhind SG, Nathan PC, Caterini JE, Jones H, Rayner T, Weiss R, Wells GD. Peripheral Skeletal Muscle Impairment in Children After Treatment for Leukemia and Lymphoma. J Pediatr Hematol Oncol 2022; 44:432-437. [PMID: 35091514 DOI: 10.1097/mph.0000000000002397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Exercise intolerance is a common adverse effect of childhood cancer, contributing to impaired health and well-being. While reduced aerobic fitness has been attributed to central cardiovascular deficiencies, the involvement of peripheral musculature has not been investigated. We studied peripheral muscle function in children following cancer treatment using noninvasive phosphorus-31 magnetic resonance spectroscopy. Ten acute lymphoblastic leukemia (ALL) and 1 lymphoma patient 8 to 18 years of age who completed treatment 6 to 36 months prior and 11 healthy controls participated in the study. Phosphorus-31 magnetic resonance spectroscopy was used to characterize muscle bioenergetics at rest and following an in-magnet knee-extension exercise. Exercise capacity was evaluated using a submaximal graded treadmill test. Both analysis of variance and Cohen d were used as statistical methods to determine the statistical significance and magnitude of differences, respectively, on these parameters between the patient and control groups. The patients treated for ALL and lymphoma exhibited lower anaerobic function ( P =0.14, d =0.72), slower metabolic recovery ( P =0.08, d =0.93), and lower mechanical muscle power ( d =1.09) during exercise compared with healthy controls. Patients demonstrated lower estimated VO 2peak (41.61±5.97 vs. 47.71±9.99 mL/min/kg, P =0.11, d =0.76), lower minutes of physical activity (58.3±35.3 vs. 114.8±79.3 min, P =0.12, d =0.99) and higher minutes of inactivity (107.3±74.0 vs. 43.5±48.3 min, d =1.04, P <0.05). Children treated for ALL and lymphoma exhibit altered peripheral skeletal muscle metabolism during exercise. Both deconditioning and direct effects of chemotherapy likely contribute to exercise intolerance in this population.
Collapse
Affiliation(s)
- Gillian E White
- Division of Hematology/Oncology, The Hospital for Sick Children
- Department of Kinesiology and Physical Education, University of Toronto
| | - Sarah L West
- Division of Hematology/Oncology, The Hospital for Sick Children
- Department Biology & Trent/Fleming School of Nursing, Trent University, Peterborough
| | | | - Shawn G Rhind
- Department of Kinesiology and Physical Education, University of Toronto
- Defense Research and Development Canada, Toronto Research Centre
| | - Paul C Nathan
- Division of Hematology/Oncology, The Hospital for Sick Children
| | - Jessica E Caterini
- Translational Medicine Program, SickKids Research Institute, Toronto
- Queen's Medical School, Kingston, ON, Canada
| | - Heather Jones
- Division of Hematology/Oncology, The Hospital for Sick Children
| | - Tammy Rayner
- Division of Hematology/Oncology, The Hospital for Sick Children
| | - Ruth Weiss
- Division of Hematology/Oncology, The Hospital for Sick Children
| | - Greg D Wells
- Division of Hematology/Oncology, The Hospital for Sick Children
| |
Collapse
|
3
|
Barroso de Queiroz Davoli G, Bartels B, Mattiello-Sverzut AC, Takken T. Cardiopulmonary exercise testing in neuromuscular disease: a systematic review. Expert Rev Cardiovasc Ther 2021; 19:975-991. [PMID: 34826261 DOI: 10.1080/14779072.2021.2009802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cardiopulmonary exercise testing (CPET) is increasingly used to determine aerobic fitness in health and disability conditions. Patients with neuromuscular diseases (NMDs) often present with symptoms of cardiac and/or skeletal muscle dysfunction and fatigue that might impede the ability to deliver maximal cardiopulmonary effort. Although an increasing number of studies report on NMDs' physical fitness, the applicability of CPET remains largely unknown. AREAS COVERED This systematic review synthesized evidence about the quality and feasibility of CPET in NMDs and patient's aerobic fitness. The review followed the PRISMA guidelines (PROSPERO number CRD42020211068). Between September and October 2020 one independent reviewer searched the PubMed/MEDLINE, EMBASE, SCOPUS, and Web of Science databases. Excluding reviews and protocol description articles without baseline data, all study designs using CPET to assess adult or pediatric patients with NMDs were included. The methodological quality was assessed according to the American Thoracic Society/American College of Chest Physicians (ATS/ACCP) recommendations. EXPERT OPINION CPET is feasible for ambulatory patients with NMDs when their functional level and the exercise modality are taken into account. However, there is still a vast potential for standardizing and designing disease-specific CPET protocols for patients with NMDs. Moreover, future studies are urged to follow the ATS/ACCP recommendations.
Collapse
Affiliation(s)
| | - Bart Bartels
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Tim Takken
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Habets LE, Bartels B, Asselman FL, Hooijmans MT, van den Berg S, Nederveen AJ, van der Pol WL, Jeneson JAL. Magnetic resonance reveals mitochondrial dysfunction and muscle remodelling in spinal muscular atrophy. Brain 2021; 145:1422-1435. [PMID: 34788410 PMCID: PMC9128825 DOI: 10.1093/brain/awab411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
Genetic therapy has changed the prognosis of hereditary proximal spinal muscular atrophy, although treatment efficacy has been variable. There is a clear need for deeper understanding of underlying causes of muscle weakness and exercise intolerance in patients with this disease to further optimize treatment strategies. Animal models suggest that in addition to motor neuron and associated musculature degeneration, intrinsic abnormalities of muscle itself including mitochondrial dysfunction contribute to the disease aetiology. To test this hypothesis in patients, we conducted the first in vivo clinical investigation of muscle bioenergetics. We recruited 15 patients and 15 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. MRI and 31P magnetic resonance spectroscopy, the modality of choice to interrogate muscle energetics and phenotypic fibre-type makeup, was performed of the proximal arm musculature in combination with fatiguing arm-cycling exercise and blood lactate testing. We derived bioenergetic parameter estimates including: blood lactate, intramuscular pH and inorganic phosphate accumulation during exercise, and muscle dynamic recovery constants. A linear correlation was used to test for associations between muscle morphological and bioenergetic parameters and clinico-functional measures of muscle weakness. MRI showed significant atrophy of triceps but not biceps muscles in patients. Maximal voluntary contraction force normalized to muscle cross-sectional area for both arm muscles was 1.4-fold lower in patients than in controls, indicating altered intrinsic muscle properties other than atrophy contributed to muscle weakness in this cohort. In vivo31P magnetic resonance spectroscopy identified white-to-red remodelling of residual proximal arm musculature in patients on the basis of altered intramuscular inorganic phosphate accumulation during arm-cycling in red versus white and intermediate myofibres. Blood lactate rise during arm-cycling was blunted in patients and correlated with muscle weakness and phenotypic muscle makeup. Post-exercise metabolic recovery was slower in residual intramuscular white myofibres in patients demonstrating mitochondrial ATP synthetic dysfunction in this particular fibre type. This study provides the first in vivo evidence in patients that degeneration of motor neurons and associated musculature causing atrophy and muscle weakness in 5q spinal muscular atrophy type 3 and 4 is aggravated by disproportionate depletion of myofibres that contract fastest and strongest. Our finding of decreased mitochondrial ATP synthetic function selectively in residual white myofibres provides both a possible clue to understanding the apparent vulnerability of this particular fibre type in 5q spinal muscular atrophy types 3 and 4 as well as a new biomarker and target for therapy.
Collapse
Affiliation(s)
- Laura E Habets
- Centre for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Centre Utrecht, P.O. Box 85090 3508 AB Utrecht, The Netherlands
| | - Bart Bartels
- Centre for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Centre Utrecht, P.O. Box 85090 3508 AB Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- UMC Utrecht Brain Centre, Department of Neurology and Neurosurgery, University Medical Centre Utrecht Brain Center, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Melissa T Hooijmans
- Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centre, location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Sandra van den Berg
- Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centre, location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centre, location AMC, 1105 AZ Amsterdam, The Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Centre, Department of Neurology and Neurosurgery, University Medical Centre Utrecht Brain Center, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Jeroen A L Jeneson
- Centre for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Centre Utrecht, P.O. Box 85090 3508 AB Utrecht, The Netherlands
| |
Collapse
|
5
|
Vegter RJK, van den Brink S, Mouton LJ, Sibeijn-Kuiper A, van der Woude LHV, Jeneson JAL. Magnetic Resonance-Compatible Arm-Crank Ergometry: A New Platform Linking Whole-Body Calorimetry to Upper-Extremity Biomechanics and Arm Muscle Metabolism. Front Physiol 2021; 12:599514. [PMID: 33679429 PMCID: PMC7933461 DOI: 10.3389/fphys.2021.599514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Evaluation of the effect of human upper-body training regimens may benefit from knowledge of local energy expenditure in arm muscles. To that end, we developed a novel arm-crank ergometry platform for use in a clinical magnetic resonance (MR) scanner with 31P spectroscopy capability to study arm muscle energetics. Complementary datasets on heart-rate, whole-body oxygen consumption, proximal arm-muscle electrical activity and power output, were obtained in a mock-up scanner. The utility of the platform was tested by a preliminary study over 4 weeks of skill practice on the efficiency of execution of a dynamic arm-cranking task in healthy subjects. RESULTS The new platform successfully recorded the first ever in vivo 31P MR spectra from the human biceps brachii (BB) muscle during dynamic exercise in five healthy subjects. Changes in BB energy- and pH balance varied considerably between individuals. Surface electromyography and mechanical force recordings revealed that individuals employed different arm muscle recruitment strategies, using either predominantly elbow flexor muscles (pull strategy; two subjects), elbow extensor muscles (push strategy; one subject) or a combination of both (two subjects). The magnitude of observed changes in BB energy- and pH balance during ACT execution correlated closely with each strategy. Skill practice improved muscle coordination but did not alter individual strategies. Mechanical efficiency on group level seemed to increase as a result of practice, but the outcomes generated by the new platform showed the additional caution necessary for the interpretation that total energy cost was actually reduced at the same workload. CONCLUSION The presented platform integrates dynamic in vivo 31P MRS recordings from proximal arm muscles with whole-body calorimetry, surface electromyography and biomechanical measurements. This new methodology enables evaluation of cyclic motor performance and outcomes of upper-body training regimens in healthy novices. It may be equally useful for investigations of exercise physiology in lower-limb impaired athletes and wheelchair users as well as frail patients including patients with debilitating muscle disease and the elderly.
Collapse
Affiliation(s)
- Riemer J. K. Vegter
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sebastiaan van den Brink
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Leonora J. Mouton
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anita Sibeijn-Kuiper
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, Groningen, Netherlands
| | - Lucas H. V. van der Woude
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Center for Rehabilitation, University Medical Center Groningen, Groningen, Netherlands
| | - Jeroen A. L. Jeneson
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, Groningen, Netherlands
- Center for Child Development and Exercise, Wilhelmina’s Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
6
|
Hoogeveen IJ, de Boer F, Boonstra WF, van der Schaaf CJ, Steuerwald U, Sibeijn‐Kuiper AJ, Vegter RJK, van der Hoeven JH, Heiner‐Fokkema MR, Clarke KC, Cox PJ, Derks TGJ, Jeneson JAL. Effects of acute nutritional ketosis during exercise in adults with glycogen storage disease type IIIa are phenotype-specific: An investigator-initiated, randomized, crossover study. J Inherit Metab Dis 2021; 44:226-239. [PMID: 33448466 PMCID: PMC7891643 DOI: 10.1002/jimd.12302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
Glycogen storage disease type IIIa (GSDIIIa) is an inborn error of carbohydrate metabolism caused by a debranching enzyme deficiency. A subgroup of GSDIIIa patients develops severe myopathy. The purpose of this study was to investigate whether acute nutritional ketosis (ANK) in response to ketone-ester (KE) ingestion is effective to deliver oxidative substrate to exercising muscle in GSDIIIa patients. This was an investigator-initiated, researcher-blinded, randomized, crossover study in six adult GSDIIIa patients. Prior to exercise subjects ingested a carbohydrate drink (~66 g, CHO) or a ketone-ester (395 mg/kg, KE) + carbohydrate drink (30 g, KE + CHO). Subjects performed 15-minute cycling exercise on an upright ergometer followed by 10-minute supine cycling in a magnetic resonance (MR) scanner at two submaximal workloads (30% and 60% of individual maximum, respectively). Blood metabolites, indirect calorimetry data, and in vivo 31 P-MR spectra from quadriceps muscle were collected during exercise. KE + CHO induced ANK in all six subjects with median peak βHB concentration of 2.6 mmol/L (range: 1.6-3.1). Subjects remained normoglycemic in both study arms, but delta glucose concentration was 2-fold lower in the KE + CHO arm. The respiratory exchange ratio did not increase in the KE + CHO arm when workload was doubled in subjects with overt myopathy. In vivo 31 P MR spectra showed a favorable change in quadriceps energetic state during exercise in the KE + CHO arm compared to CHO in subjects with overt myopathy. Effects of ANK during exercise are phenotype-specific in adult GSDIIIa patients. ANK presents a promising therapy in GSDIIIa patients with a severe myopathic phenotype. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT03011203.
Collapse
Affiliation(s)
- Irene J. Hoogeveen
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Foekje de Boer
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Willemijn F. Boonstra
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Caroline J. van der Schaaf
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Ulrike Steuerwald
- National Hospital of the Faroe Islands, Medical CenterTórshavnFaroe Islands
| | - Anita J. Sibeijn‐Kuiper
- Neuroimaging Center, Department of NeuroscienceUniversity Medical Center GroningenGroningenThe Netherlands
| | - Riemer J. K. Vegter
- Center for Human Movement Sciences, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Johannes H. van der Hoeven
- Department of Neurology, University Medical Centre GroningenUniversity of GroningenGroningenThe Netherlands
| | - M. Rebecca Heiner‐Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Kieran C. Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Pete J. Cox
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Terry G. J. Derks
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Jeroen A. L. Jeneson
- Neuroimaging Center, Department of NeuroscienceUniversity Medical Center GroningenGroningenThe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
7
|
Bleeker JC, Visser G, Clarke K, Ferdinandusse S, de Haan FH, Houtkooper RH, IJlst L, Kok IL, Langeveld M, van der Pol WL, de Sain‐van der Velden MGM, Sibeijn‐Kuiper A, Takken T, Wanders RJA, van Weeghel M, Wijburg FA, van der Woude LH, Wüst RCI, Cox PJ, Jeneson JAL. Nutritional ketosis improves exercise metabolism in patients with very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2020; 43:787-799. [PMID: 31955429 PMCID: PMC7384182 DOI: 10.1002/jimd.12217] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
A maladaptive shift from fat to carbohydrate (CHO) oxidation during exercise is thought to underlie myopathy and exercise-induced rhabdomyolysis in patients with fatty acid oxidation (FAO) disorders. We hypothesised that ingestion of a ketone ester (KE) drink prior to exercise could serve as an alternative oxidative substrate supply to boost muscular ATP homeostasis. To establish a rational basis for therapeutic use of KE supplementation in FAO, we tested this hypothesis in patients deficient in Very Long-Chain acyl-CoA Dehydrogenase (VLCAD). Five patients (range 17-45 y; 4 M/1F) patients were included in an investigator-initiated, randomised, blinded, placebo-controlled, 2-way cross-over study. Patients drank either a KE + CHO mix or an isocaloric CHO equivalent and performed 35 minutes upright cycling followed by 10 minutes supine cycling inside a Magnetic Resonance scanner at individual maximal FAO work rate (fatmax; approximately 40% VO2 max). The protocol was repeated after a 1-week interval with the alternate drink. Primary outcome measures were quadriceps phosphocreatine (PCr), Pi and pH dynamics during exercise and recovery assayed by in vivo 31 P-MR spectroscopy. Secondary outcomes included plasma and muscle metabolites and respiratory gas exchange recordings. Ingestion of KE rapidly induced mild ketosis and increased muscle BHB content. During exercise at FATMAX, VLCADD-specific plasma acylcarnitine levels, quadriceps glycolytic intermediate levels and in vivo Pi/PCr ratio were all lower in KE + CHO than CHO. These results provide a rational basis for future clinical trials of synthetic ketone ester supplementation therapy in patients with FAO disorders. Trial registration: ClinicalTrials.gov. Protocol ID: NCT03531554; METC2014.492; ABR51222.042.14.
Collapse
Affiliation(s)
- Jeannette C. Bleeker
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gepke Visser
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ferdinand H. de Haan
- ACHIEVE, Center for Applied Research, Faculty of HealthUniversity of Applied Sciences AmsterdamAmsterdamThe Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Irene L. Kok
- Department of Metabolic Diseases, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, Spieren voor Spieren KindercentrumUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Anita Sibeijn‐Kuiper
- Neuroimaging Center, Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Tim Takken
- Center for Child Development & Exercise, Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ronald J. A. Wanders
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Core Facility Metabolomics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Frits A. Wijburg
- Department of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc H. van der Woude
- Human Movement SciencesUniversity Medical Center GroningenGroningenThe Netherlands
| | - Rob C. I. Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Pete J. Cox
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Jeroen A. L. Jeneson
- Neuroimaging Center, Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenGroningenThe Netherlands
- Center for Child Development & Exercise, Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Haarman MG, Vos JDL, Berger RMF, Willems TP, Jeneson JAL. Failing Homeostasis of Quadriceps Muscle Energy- and pH Balance During Bicycling in a Young Patient With a Fontan Circulation. Front Cardiovasc Med 2019; 6:121. [PMID: 31497605 PMCID: PMC6712941 DOI: 10.3389/fcvm.2019.00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Aims: Patients with a congenital heart condition palliated with a Fontan circulation generally present with decreased exercise capacity due to impaired cardiopulmonary function. Recently, a study in patients with a Fontan circulation reported evidence for abnormal vascular endothelial function in leg muscle. We investigated if abnormal skeletal muscle hemodynamics during exercise play a role in the limited exercise tolerance of Fontan patients. If so, abnormalities in intramuscular energy metabolism would be expected both during exercise as well as during post-exercise metabolic recovery. Methods: In a young patient with a Fontan circulation and his healthy twin brother we studied the in vivo dynamics of energy- and pH-balance in quadriceps muscle during and after a maximal in-magnet bicycling exercise challenge using 31-phosphorus magnetic resonance spectroscopy. An unrelated age-matched boy was also included as independent control. Results: Quadriceps phosphocreatine (PCr) depletion during progressive exercise was more extensive in the Fontan patient than in both controls (95% vs. 80%, respectively). Importantly, it failed to reach an intermittent plateau phase observed in both controls. Quadriceps pH during exercise in the Fontan patient fell 0.3 units at low to moderate workloads, dropping to pH 6.6 at exhaustion. In both controls quadriceps acidification during exercise was absent but for the maximal workload in the twin brother (pH 6.8). Post-exercise, the rate of metabolic recovery in the Fontan patient and both controls was identical (time constant of PCr recovery 32 ± 4, 31 ± 2, and 28 ± 4 s, respectively). Conclusion: Homeostasis of quadriceps energy- and pH-balance during a maximal exercise test failed in the Fontan patient in comparison to his healthy twin brother and an age-matched independent control. Post-exercise metabolic recovery was normal which does not support the contribution of significant endothelial dysfunction affecting adequate delivery of oxidative substrates to the muscle to the lower exercise capacity in this particular Fontan patient. These results suggest that mitochondrial ATP synthetic capacity of the quadriceps muscle was intact but cardiac output to the leg muscles during exercise was insufficient to meet the muscular demand for oxygen. Therefore, improving cardiac output remains the main therapeutic target to improve exercise capacity in patients with a Fontan circulation.
Collapse
Affiliation(s)
- Meindina G. Haarman
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Meindina G. Haarman
| | - Johannes D. L. Vos
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rolf M. F. Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tineke P. Willems
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jeroen A. L. Jeneson
- Division of Neurosciences, Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
West SL, Banks L, Schneiderman JE, Caterini JE, Stephens S, White G, Dogra S, Wells GD. Physical activity for children with chronic disease; a narrative review and practical applications. BMC Pediatr 2019; 19:12. [PMID: 30621667 PMCID: PMC6325687 DOI: 10.1186/s12887-018-1377-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Physical activity (PA) is associated with a diverse range of health benefits. International guidelines suggest that children should be participating in a minimum of 60 min of moderate to vigorous intensity PA per day to achieve these benefits. However, current guidelines are intended for healthy children, and thus may not be applicable to children with a chronic disease. Specifically, the dose of PA and disease specific exercise considerations are not included in these guidelines, leaving such children with few, if any, evidence-based informed suggestions pertaining to PA. Thus, the purpose of this narrative review was to consider current literature in the area of exercise as medicine and provide practical applications for exercise in five prevalent pediatric chronic diseases: respiratory, congenital heart, metabolic, systemic inflammatory/autoimmune, and cancer. METHODS For each disease, we present the pathophysiology of exercise intolerance, summarize the pediatric exercise intervention research, and provide PA suggestions. RESULTS Overall, exercise intolerance is prevalent in pediatric chronic disease. PA is important and safe for most children with a chronic disease, however exercise prescription should involve the entire health care team to create an individualized program. CONCLUSIONS Future research, including a systematic review to create evidence-based guidelines, is needed to better understand the safety and efficacy of exercise among children with chronic disease.
Collapse
Affiliation(s)
- Sarah L. West
- Department of Biology, Trent/Fleming School of Nursing, Trent University, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | | | - Jane E. Schneiderman
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- Faculty of Kinesiology and Physical Education, The University of Toronto, Toronto, Canada
| | - Jessica E. Caterini
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- Faculty of Kinesiology and Physical Education, The University of Toronto, Toronto, Canada
| | - Samantha Stephens
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada
- Institute of Health Policy Management and Evaluation, The University of Toronto, Toronto, Canada
| | - Gillian White
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- Faculty of Kinesiology and Physical Education, The University of Toronto, Toronto, Canada
| | - Shilpa Dogra
- Faculty of Health Sciences (Kinesiology), University of Ontario Institute of Technology, Oshawa, Canada
| | - Greg D. Wells
- Translational Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 10th floor, 686 Bay St., Toronto, ON M5G 0A4 Canada
| |
Collapse
|
11
|
Hulzebos HJE, Jeneson JAL, van der Ent CK, Takken T. CrossTalk opposing view: Skeletal muscle oxidative capacity is not altered in cystic fibrosis patients. J Physiol 2018; 595:1427-1428. [PMID: 28247514 DOI: 10.1113/jp272505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | | | - Tim Takken
- University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Physical activity for paediatric rheumatic diseases: standing up against old paradigms. Nat Rev Rheumatol 2017; 13:368-379. [DOI: 10.1038/nrrheum.2017.75] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Vinnakota KC, Cha CY, Rorsman P, Balaban RS, La Gerche A, Wade-Martins R, Beard DA, Jeneson JAL. Improving the physiological realism of experimental models. Interface Focus 2016; 6:20150076. [PMID: 27051507 PMCID: PMC4759746 DOI: 10.1098/rsfs.2015.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
Collapse
Affiliation(s)
- Kalyan C. Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chae Y. Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, National Heart Lung Blood Institute, Bethesda, MD, USA
| | - Andre La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen A. L. Jeneson
- Neuroimaging Centre, Division of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. PLoS One 2016; 11:e0147818. [PMID: 26881790 PMCID: PMC4755596 DOI: 10.1371/journal.pone.0147818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/09/2016] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD.
Collapse
|