1
|
Bonelli M, Eustacchio E, Avesani D, Michelsen V, Falaschi M, Caccianiga M, Gobbi M, Casartelli M. The Early Season Community of Flower-Visiting Arthropods in a High-Altitude Alpine Environment. INSECTS 2022; 13:insects13040393. [PMID: 35447835 PMCID: PMC9032982 DOI: 10.3390/insects13040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
In mountain ecosystems, climate change can cause spatiotemporal shifts, impacting the composition of communities and altering fundamental biotic interactions, such as those involving flower-visiting arthropods. On of the main problems in assessing the effects of climate change on arthropods in these environments is the lack of baseline data. In particular, the arthropod communities on early flowering high-altitude plants are poorly investigated, although the early season is a critical moment for possible mismatches. In this study, we characterised the flower-visiting arthropod community on the early flowering high-altitude Alpine plant, Androsace brevis (Primulaceae). In addition, we tested the effect of abiotic factors (temperature and wind speed) and other variables (time, i.e., hour of the day, and number of flowers per plant) on the occurrence, abundance, and diversity of this community. A. brevis is a vulnerable endemic species growing in the Central Alps above 2000 m asl and flowering for a very short period immediately after snowmelt, thus representing a possible focal plant for arthropods in this particular moment of the season. Diptera and Hymenoptera were the main flower visitors, and three major features of the community emerged: an evident predominance of anthomyiid flies among Diptera, a rare presence of bees, and a relevant share of parasitoid wasps. Temperature and time (hour of the day), but not wind speed and number of flowers per plant, affected the flower visitors' activity. Our study contributes to (1) defining the composition of high-altitude Alpine flower-visiting arthropod communities in the early season, (2) establishing how these communities are affected by environmental variables, and (3) setting the stage for future evaluation of climate change effects on flower-visiting arthropods in high-altitude environments in the early season.
Collapse
Affiliation(s)
- Marco Bonelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE—Science Museum, 38122 Trento, Italy;
- Correspondence:
| | - Elena Eustacchio
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE—Science Museum, 38122 Trento, Italy;
| | - Daniele Avesani
- Zoology Section, Civic Museum of Natural History of Verona, 37129 Verona, Italy;
| | - Verner Michelsen
- Natural History Museum of Denmark, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Mattia Falaschi
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy;
| | - Marco Caccianiga
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, 80138 Naples, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE—Science Museum, 38122 Trento, Italy;
| | - Morena Casartelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (E.E.); (M.C.); (M.C.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
2
|
Stanley A, Martel C, Arceo-Gómez G. Spatial variation in bidirectional pollinator-mediated interactions between two co-flowering species in serpentine plant communities. AOB PLANTS 2021; 13:plab069. [PMID: 34804469 PMCID: PMC8598379 DOI: 10.1093/aobpla/plab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Pollinator-mediated competition and facilitation are two important mechanisms mediating co-flowering community assembly. Experimental studies, however, have mostly focused on evaluating outcomes for a single interacting partner at a single location. Studies that evaluate spatial variation in the bidirectional effects between co-flowering species are necessary if we aim to advance our understanding of the processes that mediate species coexistence in diverse co-flowering communities. Here, we examine geographic variation (i.e. at landscape level) in bidirectional pollinator-mediated effects between co-flowering Mimulus guttatus and Delphinium uliginosum. We evaluated effects on pollen transfer dynamics (conspecific and heterospecific pollen deposition) and plant reproductive success. We found evidence of asymmetrical effects (one species is disrupted and the other one is facilitated) but the effects were highly dependent on geographical location. Furthermore, effects on pollen transfer dynamics did not always translate to effects on overall plant reproductive success (i.e. pollen tube growth) highlighting the importance of evaluating effects at multiple stages of the pollination process. Overall, our results provide evidence of a spatial mosaic of pollinator-mediated interactions between co-flowering species and suggest that community assembly processes could result from competition and facilitation acting simultaneously. Our study highlights the importance of experimental studies that evaluate the prevalence of competitive and facilitative interactions in the field, and that expand across a wide geographical context, in order to more fully understand the mechanisms that shape plant communities in nature.
Collapse
Affiliation(s)
- Amber Stanley
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carlos Martel
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
- Instituto de Ciencias Ómicas y Biotecnología Aplicada, Pontificia Universidad Católica del Perú, San Miguel 15088, Lima, Peru
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
3
|
Pollination success increases with plant diversity in high-Andean communities. Sci Rep 2021; 11:22107. [PMID: 34764375 PMCID: PMC8586006 DOI: 10.1038/s41598-021-01611-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Pollinator-mediated plant–plant interactions have traditionally been viewed within the competition paradigm. However, facilitation via pollinator sharing might be the rule rather than the exception in harsh environments. Moreover, plant diversity could be playing a key role in fostering pollinator-mediated facilitation. Yet, the facilitative effect of plant diversity on pollination remains poorly understood, especially under natural conditions. By examining a total of 9371 stigmas of 88 species from nine high-Andean communities in NW Patagonia, we explored the prevalent sign of the relation between conspecific pollen receipt and heterospecific pollen diversity, and assessed whether the incidence of different outcomes varies with altitude and whether pollen receipt relates to plant diversity. Conspecific pollen receipt increased with heterospecific pollen diversity on stigmas. In all communities, species showed either positive or neutral but never negative relations between the number of heterospecific pollen donor species and conspecific pollen receipt. The incidence of species showing positive relations increased with altitude. Finally, stigmas collected from communities with more co-flowering species had richer heterospecific pollen loads and higher abundance of conspecific pollen grains. Our findings suggest that plant diversity enhances pollination success in high-Andean plant communities. This study emphasizes the importance of plant diversity in fostering indirect plant–plant facilitative interactions in alpine environments, which could promote species coexistence and biodiversity maintenance.
Collapse
|
4
|
Gao E, Wang Y, Bi C, Kaiser-Bunbury CN, Zhao Z. Restoration of Degraded Alpine Meadows Improves Pollination Network Robustness and Function in the Tibetan Plateau. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.632961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological restoration is widely used to mitigate the negative impacts of anthropogenic activities. There is an increasing demand to identify suitable restoration management strategies for specific habitat and disturbance types to restore interactions between organisms of degraded habitats, such as pollination. In the Tibetan Plateau, alpine meadows have suffered severe degradation due to overgrazing and climate change. Protecting vegetation by fencing during the growing season is a widely applied management regime for restoration of degraded grasslands in this region. Here, we investigated the effect of this restoration strategy on plant–pollinator communities and plant reproduction in the eastern Tibetan Plateau. We collected interaction and seed set data monthly across three grazed (grazed all year) and three ungrazed (fenced during growing season) alpine meadows in growing seasons of two consecutive years. We found ungrazed meadows produced more flowers and attracted more pollinator visits. Many common network metrics, such as nestedness, connectance, network specialization, and modularity, did not differ between grazing treatments. However, plants in ungrazed meadows were more robust to secondary species extinction than those in grazed meadows. The observed changes in the networks corresponded with higher seed set of plants that rely on pollinators for reproduction. Our results indicate that protection from grazing in growing seasons improves pollination network stability and function and thus is a viable restoration approach for degraded meadows.
Collapse
|
5
|
Inouye DW. Effects of climate change on alpine plants and their pollinators. Ann N Y Acad Sci 2019; 1469:26-37. [PMID: 31025387 DOI: 10.1111/nyas.14104] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 01/20/2023]
Abstract
Alpine environments are among the habitats most strongly affected by climate change, and consequently their unique plants and pollinators are faced with the challenge of adapting or going extinct. Changes in temperature and precipitation affect snowpack and snowmelt, resulting in changes in the growing season in this environment where plant growth and pollinator activity are constrained to the snow-free season, which can vary significantly across the landscape if there is significant topographic complexity. As in other ecosystems, the resulting changes in phenology are not uniform among species, creating the potential for altered and new interspecific interactions. New plant and animal species are arriving as lower altitude species move up with warming temperatures, introducing new competitors and generating changes in plant-pollinator interactions. Repeating historical surveys, taking advantage of museum collections, and using new technology will facilitate our understanding of how plants and pollinators are responding to the changing alpine environment.
Collapse
Affiliation(s)
- David W Inouye
- Department of Biology, University of Maryland, College Park, Maryland.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| |
Collapse
|
6
|
Losapio G, Fortuna MA, Bascompte J, Schmid B, Michalet R, Neumeyer R, Castro L, Cerretti P, Germann C, Haenni JP, Klopfstein S, Ortiz-Sanchez FJ, Pont AC, Rousse P, Schmid J, Sommaggio D, Schöb C. Plant interactions shape pollination networks via nonadditive effects. Ecology 2019; 100:e02619. [PMID: 30636292 DOI: 10.1002/ecy.2619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Plants grow in communities where they interact with other plants and with other living organisms such as pollinators. On the one hand, studies of plant-plant interactions rarely consider how plants interact with other trophic levels such as pollinators. On the other, studies of plant-animal interactions rarely deal with interactions within trophic levels such as plant-plant competition and facilitation. Thus, to what degree plant interactions affect biodiversity and ecological networks across trophic levels is poorly understood. We manipulated plant communities driven by foundation species facilitation and sampled plant-pollinator networks at fine spatial scale in a field experiment in Sierra Nevada, Spain. We found that plant-plant facilitation shaped pollinator diversity and structured pollination networks. Nonadditive effects of plant interactions on pollinator diversity and interaction diversity were synergistic in one foundation species networks while they were additive in another foundation species. Nonadditive effects of plant interactions were due to rewiring of pollination interactions. In addition, plant facilitation had negative effects on the structure of pollination networks likely due to increase in plant competition for pollination. Our results empirically demonstrate how different network types are coupled, revealing pervasive consequences of interaction chains in diverse communities.
Collapse
Affiliation(s)
- Gianalberto Losapio
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.,Department of Environmental Systems Science, Institute of Agricultural Sciences, Swiss Federal Institute of Technology Zurich, Biocommunication Group, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Miguel A Fortuna
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Richard Michalet
- UMR 5805 EPOC, University of Bordeaux, Avenue des Facultés, Talence, 33405, France
| | - Rainer Neumeyer
- University of Zurich, Probsteistrasse 89, Zurich, 8051, Switzerland
| | - Leopoldo Castro
- I.E.S. Vega del Turia, Avenida Sanz Gadea 9, Teruel, 44002, Spain
| | - Pierfilippo Cerretti
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Viale dell'università 32, Rome, 00185, Italy
| | | | - Jean-Paul Haenni
- Muséum d'histoire Naturelle, Entomologie, Rue des Terreaux 14, Neuchâtel, 2000, Switzerland
| | - Seraina Klopfstein
- Naturhistorisches Museum der Burgergemeinde Bern, WL, Bernastrasse 15, Bern, 3005, Switzerland
| | | | - Adrian C Pont
- Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom
| | - Pascal Rousse
- Unité Expertise-Risques Biologiques, Laboratoire de la Santé des Végétaux, ANSES, 7 rue Jean Dixméras 49000, Angers, France
| | - Jürg Schmid
- University of Zurich, Poststrasse 3, Ilanz, 7130, Switzerland
| | - Daniele Sommaggio
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, Bologna, 40127, Italy
| | - Christian Schöb
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Tannenstrasse 1, Zurich, 8092, Switzerland
| |
Collapse
|
7
|
Simmons BI, Cirtwill AR, Baker NJ, Wauchope HS, Dicks LV, Stouffer DB, Sutherland WJ. Motifs in bipartite ecological networks: uncovering indirect interactions. OIKOS 2018. [DOI: 10.1111/oik.05670] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Benno I. Simmons
- Dept of Zoology, Univ. of Cambridge, The David Attenborough Building, Pembroke Street; Cambridge CB2 3QZ UK
| | - Alyssa R. Cirtwill
- Dept of Physics, Chemistry and Biology (IFM), Linköping Univ; Linköping Sweden
| | - Nick J. Baker
- Centre for Integrative Ecology, School of Biological Sciences, Univ. of Canterbury; Christchurch New Zealand
| | - Hannah S. Wauchope
- Dept of Zoology, Univ. of Cambridge, The David Attenborough Building, Pembroke Street; Cambridge CB2 3QZ UK
| | - Lynn V. Dicks
- School of Biological Sciences, Univ. of East Anglia; UK
| | - Daniel B. Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, Univ. of Canterbury; Christchurch New Zealand
| | - William J. Sutherland
- Dept of Zoology, Univ. of Cambridge, The David Attenborough Building, Pembroke Street; Cambridge CB2 3QZ UK
| |
Collapse
|
8
|
Chen J, Li Y, Yang Y, Sun H. How cushion communities are maintained in alpine ecosystems: A review and case study on alpine cushion plant reproduction. PLANT DIVERSITY 2017; 39:221-228. [PMID: 30159515 PMCID: PMC6112308 DOI: 10.1016/j.pld.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 05/07/2023]
Abstract
Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive strategies responsible for cushion species reproductive success and maintenance in severe alpine habitats remain largely unclear. In this study, we reviewed the current understanding of reproductive strategies and population persistence in alpine cushion species. We then present a preliminary case study on the sexual reproduction of Arenaria polytrichoides (Caryophyllaceae), a typical cushion species inhabiting high elevations of the Himalaya Hengduan Mountains, which is a hotspot for diversification of cushion species. Finally, we highlight the limitations of our current understanding of alpine cushion species reproduction and propose future directions for study.
Collapse
Affiliation(s)
- Jianguo Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yanbo Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Corresponding author.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Corresponding author. Fax: +86 871 65215002.
| |
Collapse
|
9
|
Mesgaran MB, Bouhours J, Lewis MA, Cousens RD. How to be a good neighbour: Facilitation and competition between two co-flowering species. J Theor Biol 2017; 422:72-83. [PMID: 28419864 DOI: 10.1016/j.jtbi.2017.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/29/2022]
Abstract
Empirical evidence suggests that co-flowering species can facilitate each other through shared pollinators. However, the extent to which one co-flowering species can relieve pollination limitation of another while simultaneously competing for abiotic resource has rarely been examined. Using a deterministic model we explored the demographic outcome for one ("focal") species of its co-occurrence with a species that shares pollinators and competes for both pollinator visitation and abiotic resources. In this paper we showed how the overall impact can be positive or negative, depending on the balance between enhanced fertilization versus increased competition. Our model could predict the density of co-flowering species that will maximize the pollination rate of the focal species by attracting pollinators. Because that density will also give rise to competitive effects, a lower density of co-flowering species is required for optimizing the trade-off between enhanced fertilization and competition so as to give the maximum possible facilitation of reproduction in the focal species. Results were qualitatively different when we considered attractiveness of the co-flowering species, as opposed to its density, because attractiveness, unlike density, had no effect on competition for abiotic resources. Whereas unattractive neighbours would not bring in pollinators, very attractive neighbours would captivate pollinators, not sharing them with the focal species. Thus optimal benefit to the focal species came at intermediate levels of attractiveness in the co-flowering species. This intermediate level of attractiveness in co-flowering species simultaneously maximized pollination and overall facilitation of reproduction for the focal species. The likelihood of facilitation was predicted to decline with the selfing rate of the focal species, revealing an indirect cost for an inbreeding mating system. Whether a co-flowering species can be facilitative depends on the way pollinators respond to the plant density: only a Type III functional response for visitation rate can result in facilitation. Our model provided both a conceptual framework and precise quantitative measures for determining the impacts of a neighbouring co-flowering species on reproduction.
Collapse
Affiliation(s)
- Mohsen B Mesgaran
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia.
| | - Juliette Bouhours
- Department of Mathematical and Statistical Sciences, University of Alberta, Alberta, T6G 2G1 Canada
| | - Mark A Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Alberta, T6G 2G1 Canada; Department of Biological Sciences, University of Alberta, Alberta, T6G2G1, Canada
| | - Roger D Cousens
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
10
|
Bouhours J, Mesgaran MB, Cousens RD, Lewis MA. Neutral hybridization can overcome a strong Allee effect by improving pollination quality. THEOR ECOL-NETH 2017. [DOI: 10.1007/s12080-017-0333-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Liczner AR, Lortie CJ. A global meta-analytic contrast of cushion-plant effects on plants and on arthropods. PeerJ 2014; 2:e265. [PMID: 24688848 PMCID: PMC3940482 DOI: 10.7717/peerj.265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/19/2014] [Indexed: 11/20/2022] Open
Abstract
Nurse plant facilitation is a commonly reported plant-plant interaction and is an important factor influencing community structure in stressful environments. Cushion plants are an example of alpine nurse plants that modify microclimatic conditions within their canopies to create favourable environments for other plants. In this meta-analysis, the facilitative effects of cushion plants was expanded from previous syntheses of the topic and the relative strength of facilitation for other plants and for arthropods were compared globally.The abundance, diversity, and species presence/absence effect size estimates were tested as plant responses to nurse plants and a composite measure was tested for arthropods. The strength of facilitation was on average three times greater for arthropods relative to all plant responses to cushions. Plant species presence, i.e., frequency of occurrence, was not enhanced by nurse-plants. Cushion plants nonetheless acted as nurse plants for both plants and arthropods in most alpine contexts globally, and although responses by other plant species currently dominate the facilitation literature, preliminary synthesis of the evidence suggests that the potential impacts of nurses may be even greater for other trophic levels.
Collapse
|
12
|
Waters SM, Fisher SE, Hille Ris Lambers J. Neighborhood-contingent indirect interactions between native and exotic plants: multiple shared pollinators mediate reproductive success during invasions. OIKOS 2014. [DOI: 10.1111/j.1600-0706.2013.00643.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|