1
|
Costa e Silva J, Potts BM, Wiehl G, Prober SM. Linking leaf economic and hydraulic traits with early-age growth performance and survival of Eucalyptus pauciflora. FRONTIERS IN PLANT SCIENCE 2022; 13:973087. [PMID: 36426150 PMCID: PMC9679299 DOI: 10.3389/fpls.2022.973087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Selection on plant functional traits may occur through their direct effects on fitness (or a fitness component), or may be mediated by attributes of plant performance which have a direct impact on fitness. Understanding this link is particularly challenging for long-lived organisms, such as forest trees, where lifetime fitness assessments are rarely achievable, and performance features and fitness components are usually quantified from early-life history stages. Accordingly, we studied a cohort of trees from multiple populations of Eucalyptus pauciflora grown in a common-garden field trial established at the hot and dry end of the species distribution on the island of Tasmania, Australia. We related the within-population variation in leaf economic (leaf thickness, leaf area and leaf density) and hydraulic (stomatal density, stomatal length and vein density) traits, measured from two-year-old plants, to two-year growth performance (height and stem diameter) and to a fitness component (seven-year survival). When performance-trait relationships were modelled for all traits simultaneously, statistical support for direct effects on growth performance was only observed for leaf thickness and leaf density. Performance-based estimators of directional selection indicated that individuals with reduced leaf thickness and increased leaf density were favoured. Survival-performance relationships were consistent with size-dependent mortality, with fitness-based selection gradients estimated for performance measures providing evidence for directional selection favouring individuals with faster growth. There was no statistical support for an effect associated with the fitness-based quadratic selection gradient estimated for growth performance. Conditional on a performance measure, fitness-based directional selection gradients estimated for the leaf traits did not provide statistical support for direct effects of the focal traits on tree survival. This suggested that, under the environmental conditions of the trial site and time period covered in the current study, early-stage selection on the studied leaf traits may be mediated by their effects on growth performance, which in turn has a positive direct influence on later-age survival. We discuss the potential mechanistic basis of the direct effects of the focal leaf traits on tree growth, and the relevance of a putative causal pathway of trait effects on fitness through mediation by growth performance in the studied hot and dry environment.
Collapse
Affiliation(s)
- João Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Brad M. Potts
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Australian Research Council (ARC) Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | - Georg Wiehl
- CSIRO Land and Water, Private Bag 5, Wembley, WA, Australia
| | | |
Collapse
|
2
|
Duan X, Jia Z, Li J, Wu S. The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
Leaf Economic and Hydraulic Traits Signal Disparate Climate Adaptation Patterns in Two Co-Occurring Woodland Eucalypts. PLANTS 2022; 11:plants11141846. [PMID: 35890479 PMCID: PMC9320154 DOI: 10.3390/plants11141846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
With climate change impacting trees worldwide, enhancing adaptation capacity has become an important goal of provenance translocation strategies for forestry, ecological renovation, and biodiversity conservation. Given that not every species can be studied in detail, it is important to understand the extent to which climate adaptation patterns can be generalised across species, in terms of the selective agents and traits involved. We here compare patterns of genetic-based population (co)variation in leaf economic and hydraulic traits, climate–trait associations, and genomic differentiation of two widespread tree species (Eucalyptus pauciflora and E. ovata). We studied 2-year-old trees growing in a common-garden trial established with progeny from populations of both species, pair-sampled from 22 localities across their overlapping native distribution in Tasmania, Australia. Despite originating from the same climatic gradients, the species differed in their levels of population variance and trait covariance, patterns of population variation within each species were uncorrelated, and the species had different climate–trait associations. Further, the pattern of genomic differentiation among populations was uncorrelated between species, and population differentiation in leaf traits was mostly uncorrelated with genomic differentiation. We discuss hypotheses to explain this decoupling of patterns and propose that the choice of seed provenances for climate-based plantings needs to account for multiple dimensions of climate change unless species-specific information is available.
Collapse
|
4
|
Costa e Silva J, Jordan R, Potts BM, Pinkard E, Prober SM. Directional Selection on Tree Seedling Traits Driven by Experimental Drought Differs Between Mesic and Dry Populations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.722964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We evaluated population differences and drought-induced phenotypic selection on four seedling traits of the Australian forest tree Eucalyptus pauciflora using a glasshouse dry-down experiment. We compared dry and mesic populations and tested for directional selection on lamina length (reflecting leaf size), leaf shape, the node of ontogenetic transition to the petiolate leaf (reflecting the loss of vegetative juvenility), and lignotuber size (reflecting a recovery trait). On average, the dry population had smaller and broader leaves, greater retention of the juvenile leaf state and larger lignotubers than the mesic population, but the populations did not differ in seedling survival. While there was statistical support for directional selection acting on the focal traits in one or other population, and for differences between populations in selection gradient estimates for two traits, only one trait—lamina length—exhibited a pattern of directional selection consistent with the observed population differences being a result of past adaptation to reduce seedling susceptibility to acute drought. The observed directional selection for lamina length in the mesic population suggests that future increases in drought risk in the wild will shift the mean of the mesic population toward that of the dry population. Further, we provide evidence suggesting an early age trade-off between drought damage and recovery traits, with phenotypes which develop larger lignotubers early being more susceptible to drought death. Such trade-offs could have contributed to the absence of population mean differences in survival, despite marked differentiation in seedling traits.
Collapse
|
5
|
Souza ML, Garcia LE, Lovato MB, Lemos-Filho JP. Leaf trait variation during ontogeny in the endangered Brazilian rosewood tree. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1109-1117. [PMID: 34532953 DOI: 10.1111/plb.13318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of plant responses to environmental heterogeneity during ontogeny is important to elucidate the changes that occur to promote resource capture in tropical forests. We tested the hypothesis that expression changes in leaf metamer traits of Brazilian rosewood (Dalbergia nigra), from seedlings to emergent canopy trees, occur as new microclimate environments are achieved. We also tested the hypothesis that increased light heterogeneity in the understorey leads to higher plasticity in leaf traits of seedlings and saplings than in sun-exposed metamers of emergent trees subject to stressful conditions. We compared leaf metamer traits of 53 individuals including seedlings, saplings and emergent trees. We also evaluated the light heterogeneity in vertical strata and the variations in leaf traits within individuals (among metamers of the same individual). These were associated with height of the individuals. Compared to understorey plants, emergent trees presented larger metamers, with lower specific leaf area (SLA), lower investment in leaf area per total dry mass of metamer (LARm ), lower specific petiole length (SPL) and lower specific internode length (SIL). Higher phenotypic variation within individuals was observed in seedlings, which decreased as the trees grew taller. The results suggest the integration of ontogenetic changes in leaf traits under new microclimate conditions as the plants reach different vertical strata in the forest. Additionally, our results support the hypothesis that increased light heterogeneity in the understorey shaped higher phenotypic variation within individuals in juveniles and that stressful conditions in sun-exposed leaf metamers of emergent trees led to increased phenotypic stability.
Collapse
Affiliation(s)
- M L Souza
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Avenida Antonio Carlos, 6627, Belo Horizonte, Brasil, 31270-901, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará/Campus Acaraú, Acaraú, CEP, 62580-000, Brazil
| | - L E Garcia
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Avenida Antonio Carlos, 6627, Belo Horizonte, Brasil, 31270-901, Brazil
| | - M B Lovato
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais/ICB, Avenida Antonio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | - J P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Avenida Antonio Carlos, 6627, Belo Horizonte, Brasil, 31270-901, Brazil
| |
Collapse
|
6
|
Almeida T, Pinto G, Correia B, Gonçalves S, Meijón M, Escandón M. In-depth analysis of the Quercus suber metabolome under drought stress and recovery reveals potential key metabolic players. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110606. [PMID: 32900444 DOI: 10.1016/j.plantsci.2020.110606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 05/08/2023]
Abstract
Cork oak (Quercus suber L.) is a species of ecological, social and economic importance in the Mediterranean region. Given its xerophytic adaptability, the study of cork oak's response to drought stress conditions may provide important data in the global scenario of climate change. The mechanisms behind cork oak's adaptation to drought conditions can inform the design and development of tools to better manage this species under the changing climate patterns. Metabolomics is one of the most promising omics layers to capture a snapshot of a particular physiological state and to identify putative biomarkers of stress tolerance. Drastic changes were observed in the leaf metabolome of Q. suber between the different experimental conditions, namely at the beginning of the drought stress treatment, after one month under drought and post rehydration. All experimental treatments were analyzed through sPLS to inspect for global changes and stress and rehydration responses were analyzed independently for specific alterations. This allowed a more in-depth study and a search for biomarkers specific to a given hydric treatment. The metabolome analyses showed changes in both primary and secondary metabolism, but highlighted the role of secondary metabolism. In addition, a compound-specific response was observed in stress and rehydration. Key compounds such as L-phenylalanine and epigallocatechin 3-gallate were identified in relation to early drought response, terpenoid leonuridine and the flavonoid glycoside (-)-epicatechin-3'-O-glucuronide in long-term drought response, and flavone isoscoparine was identified in relation to the recovery process. The results here obtained provide novel insights into the biology of cork oak, highlighting pathways and metabolites potentially involved in the response of this species during drought and recovery that may be essential for its adaptation to long periods of drought. It is expected that this knowledge can encourage further functional studies in order to validate potential biomarkers of drought and recovery that maybe used to support decision-making in cork oak breeding programs.
Collapse
Affiliation(s)
- Tânia Almeida
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal; Centre for Research in Ceramics & Composite Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gloria Pinto
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| | - Barbara Correia
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal
| | - Mónica Meijón
- Plant Physiology, Department B.O.S., Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| |
Collapse
|
7
|
Ramírez-Valiente JA, López R, Hipp AL, Aranda I. Correlated evolution of morphology, gas exchange, growth rates and hydraulics as a response to precipitation and temperature regimes in oaks (Quercus). THE NEW PHYTOLOGIST 2020; 227:794-809. [PMID: 31733106 DOI: 10.1111/nph.16320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
It is hypothesised that tree distributions in Europe are largely limited by their ability to cope with the summer drought imposed by the Mediterranean climate in the southern areas and by their competitive potential in central regions with more mesic conditions. We investigated the extent to which leaf and plant morphology, gas exchange, leaf and stem hydraulics and growth rates have evolved in a coordinated way in oaks (Quercus) as a result of adaptation to contrasting environmental conditions in this region. We implemented an experiment in which seedlings of 12 European/North African oaks were grown under two watering treatments, a well-watered treatment and a drought treatment in which plants were subjected to three cycles of drought. Consistent with our hypothesis, species from drier summers had traits conferring more tolerance to drought such as small sclerophyllous leaves and lower percent loss of hydraulic conductivity. However, these species did not have lower growth rates as expected by a trade-off with drought tolerance. Overall, our results revealed that climate is an important driver of functional strategies in oaks and that traits have evolved along two coordinated functional axes to adapt to different precipitation and temperature regimes.
Collapse
Affiliation(s)
- José Alberto Ramírez-Valiente
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL, 60532-1293, USA
- The Field Museum, Chicago, IL, 60605, USA
| | - Ismael Aranda
- Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa, Palma de Mallorca, 07122, Spain
| |
Collapse
|
8
|
Damián X, Ochoa-López S, Gaxiola A, Fornoni J, Domínguez CA, Boege K. Natural selection acting on integrated phenotypes: covariance among functional leaf traits increases plant fitness. THE NEW PHYTOLOGIST 2020; 225:546-557. [PMID: 31403698 DOI: 10.1111/nph.16116] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Plant functional strategies are usually accomplished through the simultaneous expression of different traits, and hence their correlations should be promoted by natural selection. The adaptive value of correlations among leaf functional traits, however, has not been assessed in natural populations. We estimated intraspecific variation in leaf functional traits related to the primary metabolism and anti-herbivore defence in a population of Turnera velutina. We analysed whether natural selection favoured the expression of individual traits, particular combinations of traits or leaf phenotypic integration. Patterns of covariation among traits were related to water and nitrogen economy, and were similar among genotypes, but the magnitude of their phenotypic integration differed by 10-fold. Although families did not differ in the mean values of leaf functional traits, directional selection favoured low nitrogen content and low chemical defence, high content of chlorophyll, sugar in extrafloral nectar and trichome density. Families with higher phenotypic integration among leaf traits grew faster and produced more flowers. We suggest that the coordinated expression of leaf traits has an adaptive value, probably related to optimisation in the expression of traits related to water conservation and nitrogen acquisition.
Collapse
Affiliation(s)
- Xóchitl Damián
- Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Ciudad Universitaria, Coyoacán, 04510, CDMX, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado Edificio A, 1º Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, CDMX, Mexico
| | - Sofía Ochoa-López
- Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Ciudad Universitaria, Coyoacán, 04510, CDMX, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado Edificio A, 1º Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, CDMX, Mexico
| | - Aurora Gaxiola
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda, 340, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, 7800003, Chile
| | - Juan Fornoni
- Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Ciudad Universitaria, Coyoacán, 04510, CDMX, México
| | - César A Domínguez
- Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Ciudad Universitaria, Coyoacán, 04510, CDMX, México
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Ciudad Universitaria, Coyoacán, 04510, CDMX, México
| |
Collapse
|
9
|
Ramírez-Valiente JA, Etterson JR, Deacon NJ, Cavender-Bares J. Evolutionary potential varies across populations and traits in the neotropical oak Quercus oleoides. TREE PHYSIOLOGY 2019; 39:427-439. [PMID: 30321394 DOI: 10.1093/treephys/tpy108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Heritable variation in polygenic (quantitative) traits is critical for adaptive evolution and is especially important in this era of rapid climate change. In this study, we examined the levels of quantitative genetic variation of populations of the tropical tree Quercus oleoides Cham. and Schlect. for a suite of traits related to resource use and drought resistance. We tested whether quantitative genetic variation differed across traits, populations and watering treatments. We also tested potential evolutionary factors that might have shaped such a pattern: selection by climate and genetic drift. We measured 15 functional traits on 1322 1-year-old seedlings of 84 maternal half-sib families originating from five populations growing under two watering treatments in a greenhouse. We estimated the additive genetic variance, coefficient of additive genetic variation and narrow-sense heritability for each combination of traits, populations and treatments. In addition, we genotyped a total of 119 individuals (with at least 20 individuals per population) using nuclear microsatellites to estimate genetic diversity and population genetic structure. Our results showed that gas exchange traits and growth exhibited strikingly high quantitative genetic variation compared with traits related to leaf morphology, anatomy and photochemistry. Quantitative genetic variation differed between populations even at geographical scales as small as a few kilometers. Climate was associated with quantitative genetic variation, but only weakly. Genetic structure and diversity in neutral markers did not relate to coefficient of additive genetic variation. Our study demonstrates that quantitative genetic variation is not homogeneous across traits and populations of Q. oleoides. More importantly, our findings suggest that predictions about potential responses of species to climate change need to consider population-specific evolutionary characteristics.
Collapse
Affiliation(s)
- José A Ramírez-Valiente
- Department of Forest Ecology and Genetics, INIA-CIFOR, Ctra. de la Coruna km 7.5, Madrid, Spain
| | - Julie R Etterson
- Department of Biology, University of Minnesota-Duluth, 1049 University Drive, Duluth, MN, USA
| | - Nicholas J Deacon
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, USA
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, USA
| |
Collapse
|
10
|
Souza ML, Duarte AA, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP. Climatic factors shaping intraspecific leaf trait variation of a neotropical tree along a rainfall gradient. PLoS One 2018; 13:e0208512. [PMID: 30521598 PMCID: PMC6283565 DOI: 10.1371/journal.pone.0208512] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/18/2018] [Indexed: 11/17/2022] Open
Abstract
Intraspecific trait variation has been singled out as an important mechanism by which individuals can cope with environmental variations and avoid local extinctions. Here we evaluate variation in metamer traits (i.e., traits associated with internodes, petioles and their corresponding leaves) and parameters of chlorophyll fluorescence within and among populations of a neotropical tree, Copaifera langsdorffii. We also evaluated phenotypic plasticity in natural settings comparing traits between shade and sun-exposed metamers. We selected six populations along a climatic gradient ranging from semi-arid to humid and representing three different biomes (Caatinga, Cerrado, and Atlantic Forest). Local climatic conditions significantly affected the morphological and physiological traits of populations. Trait variation among populations was explained mainly by aridity index and evapotranspiration. Individuals from drier regions had lower specific leaf area (SLA), lower investment in leaf area per total dry mass of metamer (LARm), lower specific petiole length (SPL) and lower potential quantum yield (Fv/Fm, only for sun-exposed metamers). Populations from locations with greater environmental heterogeneity (interannual variation) had greater plasticity in response to light for Fv/Fm and electron transport rate (ETR) and morphological traits related to the hydraulic and biomechanical aspects of the leaves (petiole length, internode length and SPL). High intraspecific variation in metamer traits in C. langsdorffii coupled with its ability to modify these traits in response to different climate conditions can explain the success of the species over a range of different habitats and represent important factors for the persistence of this species in the face of climate change.
Collapse
Affiliation(s)
- Matheus L Souza
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| | - Alexandre A Duarte
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| | - Maria B Lovato
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| | - Marcilio Fagundes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, CCBS-UNIMONTES, Montes Claros, Brazil
| | - Fernando Valladares
- LINCGlobal Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, Spain.,Departamento de Biología y Geología ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Jose P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Costa e Silva J, Harrison PA, Wiltshire R, Potts BM. Evidence that divergent selection shapes a developmental cline in a forest tree species complex. ANNALS OF BOTANY 2018; 122:181-194. [PMID: 29788049 PMCID: PMC6025196 DOI: 10.1093/aob/mcy064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/16/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Evolutionary change in developmental trajectories (heterochrony) is a major mechanism of adaptation in plants and animals. However, there are few detailed studies of the variation in the timing of developmental events among wild populations. We here aimed to identify the climatic drivers and measure selection shaping a genetic-based developmental cline among populations of an endemic tree species complex on the island of Tasmania. METHODS Seed lots from 38 native provenances encompassing the clinal transition from the heteroblastic Eucalyptus tenuiramis to the homoblastic Eucalyptus risdonii were grown in a common-garden field trial in southern Tasmania for 20 years. We used 27 climatic variables to model the provenance variation in vegetative juvenility as assessed at age 5 years. A phenotypic selection analysis was used to measure the fitness consequences of variation in vegetative juvenility based on its impact on the survival and reproductive capacity of survivors at age 20 years. KEY RESULTS Significant provenance divergence in vegetative juvenility was shown to be associated with home-site aridity, with the retention of juvenile foliage increasing with increasing aridity. Our results indicated that climate change may lead to different directions of selection across the geographic range of the complex, and in our mesic field site demonstrated that total directional selection within phenotypically variable provenances was in favour of reduced vegetative juvenility. CONCLUSIONS We provide evidence that heteroblasty is adaptive and argue that, in assessing the impacts of rapid global change, developmental plasticity and heterochrony are underappreciated processes which can contribute to populations of long-lived organisms, such as trees, persisting and ultimately adapting to environmental change.
Collapse
Affiliation(s)
- João Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Peter A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert Wiltshire
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
12
|
Ramírez‐Valiente JA, Deacon NJ, Etterson J, Center A, Sparks JP, Sparks KL, Longwell T, Pilz G, Cavender‐Bares J. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak
Quercus oleoides. Mol Ecol 2018; 27:2176-2192. [DOI: 10.1111/mec.14566] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Affiliation(s)
| | - Nicholas J. Deacon
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
| | - Julie Etterson
- Department of Biology University of Minnesota Duluth Duluth MN USA
| | - Alyson Center
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN USA
- Department of Biology Normandale Community College Bloomington MN USA
| | - Jed P. Sparks
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Kimberlee L. Sparks
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | | | - George Pilz
- Herbarium Paul C. Standley Escuela Agricola Panamericana Tegucigalpa Honduras
| | | |
Collapse
|
13
|
Ramírez-Valiente JA, Cavender-Bares J. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). TREE PHYSIOLOGY 2017; 37:889-901. [PMID: 28419347 DOI: 10.1093/treephys/tpx040] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/29/2017] [Indexed: 05/07/2023]
Abstract
In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not necessarily tightly coupled with resource-use strategies. Overall, our study demonstrates the importance of considering intraspecific variation in analyses of the vulnerability of tropical trees to climate change.
Collapse
Affiliation(s)
- Jose A Ramírez-Valiente
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
- Department of Integrative Ecology, Doñana Biological Station (EBD-CSIC), Avda Americo Vespucio s/n, 41092 Seville, Spain
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
14
|
Ramírez-Valiente JA, Center A, Sparks JP, Sparks KL, Etterson JR, Longwell T, Pilz G, Cavender-Bares J. Population-Level Differentiation in Growth Rates and Leaf Traits in Seedlings of the Neotropical Live Oak Quercus oleoides Grown under Natural and Manipulated Precipitation Regimes. FRONTIERS IN PLANT SCIENCE 2017; 8:585. [PMID: 28536582 PMCID: PMC5423273 DOI: 10.3389/fpls.2017.00585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/31/2017] [Indexed: 05/21/2023]
Abstract
Widely distributed species are normally subjected to spatial heterogeneity in environmental conditions. In sessile organisms like plants, adaptive evolution and phenotypic plasticity of key functional traits are the main mechanisms through which species can respond to environmental heterogeneity and climate change. While extended research has been carried out in temperate species in this regard, there is still limited knowledge as to how species from seasonally-dry tropical climates respond to spatial and temporal variation in environmental conditions. In fact, studies of intraspecific genetically-based differences in functional traits are still largely unknown and studies in these ecosystems have largely focused on in situ comparisons where environmental and genetic effects cannot be differentiated. In this study, we tested for ecotypic differentiation and phenotypic plasticity in leaf economics spectrum (LES) traits, water use efficiency and growth rates under natural and manipulated precipitation regimes in a common garden experiment where seedlings of eight populations of the neotropical live oak Quercus oleoides were established. We also examined the extent to which intraspecific trait variation was associated with plant performance under different water availability. Similar to interspecific patterns among seasonally-dry tropical tree species, live oak populations with long and severe dry seasons had higher leaf nitrogen content and growth rates than mesic populations, which is consistent with a "fast" resource-acquisition strategy aimed to maximize carbon uptake during the wet season. Specific leaf area (SLA) was the best predictor of plant performance, but contrary to expectations, it was negatively associated with relative and absolute growth rates. This observation was partially explained by the negative association between SLA and area-based photosynthetic rates, which is contrary to LES expectations but similar to other recent intraspecific studies on evergreen oaks. Overall, our study shows strong intraspecific differences in functional traits in a tropical oak, Quercus oleoides, and suggests that precipitation regime has played an important role in driving adaptive divergence in this widespread species.
Collapse
Affiliation(s)
| | - Alyson Center
- Department of Ecology, Evolution and Behavior, University of MinnesotaSaint Paul, MN, USA
- Department of Biology, Normandale Community CollegeBloomington, MN, USA
| | - Jed P. Sparks
- Department of Ecology and Evolutionary Biology, Cornell UniversityIthaca, NY, USA
| | - Kimberlee L. Sparks
- Department of Ecology and Evolutionary Biology, Cornell UniversityIthaca, NY, USA
| | - Julie R. Etterson
- Department of Biology, University of Minnesota DuluthDuluth, MN, USA
| | - Timothy Longwell
- Herbarium Paul C. Standley, Escuela Agricola PanamericanaTegucigalpa, Honduras
- Biltmore Environmental ConsultantsLoveland, CO, USA
| | - George Pilz
- Herbarium Paul C. Standley, Escuela Agricola PanamericanaTegucigalpa, Honduras
| | | |
Collapse
|
15
|
Steane DA, Mclean EH, Potts BM, Prober SM, Stock WD, Stylianou VM, Vaillancourt RE, Byrne M. Evidence for adaptation and acclimation in a widespread eucalypt of semi-arid Australia. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dorothy A. Steane
- School of Biological Sciences and ARC Centre for Forest Value, University of Tasmania, Hobart, Tasmania 7001, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, 4556, Australia
- CSIRO Land and Water, Private Bag 5, Wembley 6913, Western Australia
| | - Elizabeth H. Mclean
- CSIRO Land and Water, Private Bag 5, Wembley 6913, Western Australia
- Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia
| | - Brad M. Potts
- School of Biological Sciences and ARC Centre for Forest Value, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Suzanne M. Prober
- CSIRO Land and Water, Private Bag 5, Wembley 6913, Western Australia
| | - William D. Stock
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, 6027, Western Australia
| | - Vanessa M. Stylianou
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, 6027, Western Australia
| | - René E. Vaillancourt
- School of Biological Sciences and ARC Centre for Forest Value, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia
| |
Collapse
|
16
|
Ribeiro PC, Souza ML, Muller LAC, Ellis VA, Heuertz M, Lemos-Filho JP, Lovato MB. Climatic drivers of leaf traits and genetic divergence in the tree Annona crassiflora: a broad spatial survey in the Brazilian savannas. GLOBAL CHANGE BIOLOGY 2016; 22:3789-3803. [PMID: 27062055 DOI: 10.1111/gcb.13312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
Collapse
Affiliation(s)
- Priciane C Ribeiro
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus L Souza
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Larissa A C Muller
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Vincenzo A Ellis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Myriam Heuertz
- Forest Ecology and Genetics, Forest Research Centre, INIA, 28040, Madrid, Spain
- BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France
| | - José P Lemos-Filho
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Bernadete Lovato
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Bartoli G, Bottega S, Spanò C. Morpho-anatomical and physiological traits of Agrostis castellana living in an active geothermal alteration field. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Variation of Oriental Oak (Quercus variabilis) Leaf δ13C across Temperate and Subtropical China: Spatial Patterns and Sensitivity to Precipitation. FORESTS 2015. [DOI: 10.3390/f6072296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|