1
|
Mlugu EM, Dondorp AM, Barnes KI. Resistant malaria parasites gaining momentum in Africa. THE LANCET. INFECTIOUS DISEASES 2024; 24:1181-1182. [PMID: 39159634 DOI: 10.1016/s1473-3099(24)00413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Eulambius M Mlugu
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Amsterdam Institute for Global Health Development, University of Amsterdam and Vrije University, Amsterdam, Netherlands
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa; WorldWide Antimalarial Resistance Network, Pharmacology Scientific Module and South-East African Regional Centre, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
2
|
Björkman A, Gil P, Alifrangis M. Alarming Plasmodium falciparum resistance to artemisinin-based combination therapy in Africa: the critical role of the partner drug. THE LANCET. INFECTIOUS DISEASES 2024; 24:e540-e541. [PMID: 39053482 DOI: 10.1016/s1473-3099(24)00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Anders Björkman
- Department of Global Public Health, Tumor and Cell Biology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Pedro Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Michael Alifrangis
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Ngasala B, Bushukatale S, Chiduo M, Makene T, Mkony L, Mohamed A, Molteni F, Chacky F, Njau RJA, Mwaiswelo R. Efficacy of artesunate-amodiaquine for treatment of uncomplicated Plasmodium falciparum malaria in mainland Tanzania. Malar J 2024; 23:90. [PMID: 38553737 PMCID: PMC10979577 DOI: 10.1186/s12936-024-04923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Diversification of artemisinin-based combination therapy (ACT) is suggested as one of the strategies that can be used to contain artemisinin resistance. Artesunate-amodiaquine (ASAQ) is one of the artemisinin-based combinations that can be used in the diversification strategy as an alternative first-line treatment for uncomplicated malaria in mainland Tanzania. There is however limited data on the efficacy of ASAQ in mainland Tanzania. This study assessed the efficacy of ASAQ for treatment of uncomplicated Plasmodium falciparum malaria in selected sentinel sites for therapeutic efficacy studies in mainland Tanzania. METHODS Between December 2018 and March 2020, children aged between 6 months and 10 years, attending at Nagaga, Mkuzi, and Mlimba primary health facilities, and with suspected uncomplicated malaria infection were screened for eligibility to participate in the study. Malaria infection was screened using microscopy. Children with uncomplicated P. falciparum monoinfection and who fulfilled all other inclusion criteria, and had none of the exclusion criteria, according to the World Health Organization (WHO) guidelines, were treated with ASAQ. Follow-up visits were scheduled on days 0, 1, 2, 3, 7, 14, 21, and 28 or on any day of recurrent infection for clinical and laboratory assessment. Polymerase chain reaction (PCR)-corrected cure rate on day 28 was the primary outcome. RESULTS A total of 264 children, 88 in each of the three study sites (Mlimba, Mkuzi and Nagaga health facilities) were enrolled and treated with ASAQ. The ASAQ PCR-corrected cure rate was 100% at all the three study sites. None of the participants had early treatment failure or late clinical failure. Furthermore, none of the participants had a serious adverse event. CONCLUSION ASAQ was highly efficacious for the treatment of uncomplicated P. falciparum malaria in mainland Tanzania, therefore, it can be deployed as an alternative first-line treatment for uncomplicated malaria as part of diversification strategy to contain the spread of partial artemisinin resistance in the country.
Collapse
Affiliation(s)
- Billy Ngasala
- Department of Medical Parasitology and Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Samwel Bushukatale
- Department of Medical Parasitology and Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Mercy Chiduo
- National Institute for Medical Research, Tanga Research Centre, P.O Box 5004, Tanga, Tanzania
| | - Twilumba Makene
- Department of Medical Parasitology and Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Lilian Mkony
- Department of Medical Parasitology and Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Ally Mohamed
- National Malaria Control Program (NMCP), Ministry of Health, P.O. Box 743, Dar Es Salaam, Tanzania
| | - Fablizio Molteni
- National Malaria Control Program (NMCP), Ministry of Health, P.O. Box 743, Dar Es Salaam, Tanzania
| | - Frank Chacky
- National Malaria Control Program (NMCP), Ministry of Health, P.O. Box 743, Dar Es Salaam, Tanzania
| | - Ritha J A Njau
- Department of Medical Parasitology and Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Richard Mwaiswelo
- Department of Microbiology, Immunology, and Parasitology, Faculty of Medicine, Hubert Kairuki Memorial University, P.O Box 65300, Dar es Salaam, Tanzania.
| |
Collapse
|
4
|
Edossa DG, Wedajo AG, Koya PR. Optimal Combinations of Control Strategies and Cost-Effectiveness Analysis of Dynamics of Endemic Malaria Transmission Model. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:7677951. [PMID: 37284173 PMCID: PMC10241587 DOI: 10.1155/2023/7677951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 06/08/2023]
Abstract
In this study, we propose and analyze a determinastic nonlinear system of ordinary differential equation model for endemic malaria disease transmission and optimal combinations of control strategies with cost effective analysis. Basic properties of the model, existence of disease-free and endemic equilibrium points, and basic reproduction number of the model are derived and analyzed. From this analysis, we conclude that if the basic reproduction number is less than unity, then the disease-free equilibrium point is both locally and globally asymptotically stable. The endemic equilibrium will also exist if the basic reproduction number is greater than unity. Moreover, existence and necessary condition for forward bifurcation is derived and established. Furthermore, optimal combinations of time-dependent control measures are incorporated to the model. By using Pontryagin's maximum principal theory, we derived the necessary conditions of optimal control. Numerical simulations were conducted to confirm our analytical results. Our findings were that malaria disease may be controlled well with strict application of the combination of prevention of drug resistance, insecticide-treated net (ITN), indoor residual spray (IRS), and active treatment. The use of a combination of insecticide-treated net, indoor residual spray, and active treatment is the most optimal cost-effective and efficacious strategy.
Collapse
|
5
|
Collins O, Duffy K. A mathematical model for the dynamics and control of malaria in Nigeria. Infect Dis Model 2022; 7:728-741. [DOI: 10.1016/j.idm.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
6
|
Topazian HM, Moser KA, Ngasala B, Oluoch PO, Forconi CS, Mhamilawa LE, Aydemir O, Kharabora O, Deutsch-Feldman M, Read AF, Denton M, Lorenzo A, Mideo N, Ogutu B, Moormann AM, Mårtensson A, Odwar B, Bailey JA, Akala H, Ong'echa JM, Juliano JJ. Low Complexity of Infection Is Associated With Molecular Persistence of Plasmodium falciparum in Kenya and Tanzania. FRONTIERS IN EPIDEMIOLOGY 2022; 2:852237. [PMID: 38455314 PMCID: PMC10910917 DOI: 10.3389/fepid.2022.852237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/06/2022] [Indexed: 03/09/2024]
Abstract
Background Plasmodium falciparum resistance to artemisinin-based combination therapies (ACTs) is a threat to malaria elimination. ACT-resistance in Asia raises concerns for emergence of resistance in Africa. While most data show high efficacy of ACT regimens in Africa, there have been reports describing declining efficacy, as measured by both clinical failure and prolonged parasite clearance times. Methods Three hundred children aged 2-10 years with uncomplicated P. falciparum infection were enrolled in Kenya and Tanzania after receiving treatment with artemether-lumefantrine. Blood samples were taken at 0, 24, 48, and 72 h, and weekly thereafter until 28 days post-treatment. Parasite and host genetics were assessed, as well as clinical, behavioral, and environmental characteristics, and host anti-malarial serologic response. Results While there was a broad range of clearance rates at both sites, 85% and 96% of Kenyan and Tanzanian samples, respectively, were qPCR-positive but microscopy-negative at 72 h post-treatment. A greater complexity of infection (COI) was negatively associated with qPCR-detectable parasitemia at 72 h (OR: 0.70, 95% CI: 0.53-0.94), and a greater baseline parasitemia was marginally associated with qPCR-detectable parasitemia (1,000 parasites/uL change, OR: 1.02, 95% CI: 1.01-1.03). Demographic, serological, and host genotyping characteristics showed no association with qPCR-detectable parasitemia at 72 h. Parasite haplotype-specific clearance slopes were grouped around the mean with no association detected between specific haplotypes and slower clearance rates. Conclusions Identifying risk factors for slow clearing P. falciparum infections, such as COI, are essential for ongoing surveillance of ACT treatment failure in Kenya, Tanzania, and more broadly in sub-Saharan Africa.
Collapse
Affiliation(s)
- Hillary M. Topazian
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Peter O. Oluoch
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Catherine S. Forconi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lwidiko E. Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Oksana Kharabora
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Molly Deutsch-Feldman
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States
| | - Andrew F. Read
- Department of Entomology, Penn State University, University Park, PA, United States
| | - Madeline Denton
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Antonio Lorenzo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Bernhards Ogutu
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Ann M. Moormann
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Boaz Odwar
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Hoseah Akala
- Center for Global Health Research, Kenyan Medical Research Institute, Kisumu, Kenya
| | | | - Jonathan J. Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Whitlock AOB, Juliano JJ, Mideo N. Immune selection suppresses the emergence of drug resistance in malaria parasites but facilitates its spread. PLoS Comput Biol 2021; 17:e1008577. [PMID: 34280179 PMCID: PMC8321109 DOI: 10.1371/journal.pcbi.1008577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/29/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Although drug resistance in Plasmodium falciparum typically evolves in regions of low transmission, resistance spreads readily following introduction to regions with a heavier disease burden. This suggests that the origin and the spread of resistance are governed by different processes, and that high transmission intensity specifically impedes the origin. Factors associated with high transmission, such as highly immune hosts and competition within genetically diverse infections, are associated with suppression of resistant lineages within hosts. However, interactions between these factors have rarely been investigated and the specific relationship between adaptive immunity and selection for resistance has not been explored. Here, we developed a multiscale, agent-based model of Plasmodium parasites, hosts, and vectors to examine how host and parasite dynamics shape the evolution of resistance in populations with different transmission intensities. We found that selection for antigenic novelty (“immune selection”) suppressed the evolution of resistance in high transmission settings. We show that high levels of population immunity increased the strength of immune selection relative to selection for resistance. As a result, immune selection delayed the evolution of resistance in high transmission populations by allowing novel, sensitive lineages to remain in circulation at the expense of the spread of a resistant lineage. In contrast, in low transmission settings, we observed that resistant strains were able to sweep to high population prevalence without interference. Additionally, we found that the relationship between immune selection and resistance changed when resistance was widespread. Once resistance was common enough to be found on many antigenic backgrounds, immune selection stably maintained resistant parasites in the population by allowing them to proliferate, even in untreated hosts, when resistance was linked to a novel epitope. Our results suggest that immune selection plays a role in the global pattern of resistance evolution. Drug resistance in the malaria parasite, Plasmodium falciparum, presents an ongoing public health challenge, but aspects of its evolution are poorly understood. Although antimalarial resistance is common worldwide, it can typically be traced to just a handful of evolutionary origins. Counterintuitively, although Sub Saharan Africa bears 90% of the global malaria burden, resistance typically originates in regions where transmission intensity is low. In high transmission regions, infections are genetically diverse, and hosts have significant standing adaptive immunity, both of which are known to suppress the frequency of resistance within infections. However, interactions between immune-driven selection, transmission intensity, and resistance have not been investigated. Using a multiscale, agent-based model, we found that high transmission intensity slowed the evolution of resistance via its effect on host population immunity. High host immunity strengthened selection for antigenic novelty, interfering with selection for resistance and allowing sensitive lineages to suppress resistant lineages in untreated hosts. However, once resistance was common in the circulating parasite population, immune selection maintained it in the population at a high prevalence. Our findings provide a novel explanation for observations about the origin of resistance and suggest that adaptive immunity is a critical component of selection.
Collapse
Affiliation(s)
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple Artemisinin-Based Combination Therapies for Malaria - A New Paradigm? Trends Parasitol 2020; 37:15-24. [PMID: 33060063 DOI: 10.1016/j.pt.2020.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/31/2023]
Abstract
Recent gains in the fight against malaria are threatened by the emergence and spread of artemisinin and partner drug resistance in Plasmodium falciparum in the Greater Mekong Subregion (GMS). When artemisinins are combined with a single partner drug, all recommended artemisinin-based combination therapies have shown reduced efficacy in some countries in the GMS at some point. Novel drugs are not available for the near future. Triple artemisinin-based combination therapies, combining artemisinins with two currently available partner drugs, will provide one of the last remaining safe and effective treatments for falciparum malaria that can be deployed rapidly in the GMS, whereas their deployment beyond the GMS could delay or prevent the global emergence and spread of resistance to currently available drugs.
Collapse
Affiliation(s)
- Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Mhamilawa LE, Ngasala B, Morris U, Kitabi EN, Barnes R, Soe AP, Mmbando BP, Björkman A, Mårtensson A. Parasite clearance, cure rate, post-treatment prophylaxis and safety of standard 3-day versus an extended 6-day treatment of artemether-lumefantrine and a single low-dose primaquine for uncomplicated Plasmodium falciparum malaria in Bagamoyo district, Tanzania: a randomized controlled trial. Malar J 2020; 19:216. [PMID: 32576258 PMCID: PMC7310382 DOI: 10.1186/s12936-020-03287-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) resistant Plasmodium falciparum represents an increasing threat to Africa. Extended ACT regimens from standard 3 to 6 days may represent a means to prevent its development and potential spread in Africa. Methods Standard 3-day treatment with artemether–lumefantrine (control) was compared to extended 6-day treatment and single low-dose primaquine (intervention); in a randomized controlled, parallel group, superiority clinical trial of patients aged 1–65 years with microscopy confirmed uncomplicated P. falciparum malaria, enrolled in Bagamoyo district, Tanzania. The study evaluated parasite clearance, including proportion of PCR detectable P. falciparum on days 5 and 7 (primary endpoint), cure rate, post-treatment prophylaxis, safety and tolerability. Clinical, and laboratory assessments, including ECG were conducted during 42 days of follow-up. Blood samples were collected for parasite detection (by microscopy and PCR), molecular genotyping and pharmacokinetic analyses. Kaplan–Meier survival analyses were done for both parasite clearance and recurrence. Results A total of 280 patients were enrolled, 141 and 139 in the control and intervention arm, respectively, of whom 121 completed 42 days follow-up in each arm. There was no difference in proportion of PCR positivity across the arms at day 5 (80/130 (61.5%) vs 89/134 (66.4%), p = 0.44), or day 7 (71/129 (55.0%) vs 70/134 (52.2%), p = 0.71). Day 42 microscopy determined cure rates (PCR adjusted) were 97.4% (100/103) and 98.3% (110/112), p = 0.65, in the control and intervention arm, respectively. Microscopy determined crude recurrent parasitaemia during follow-up was 21/121 (17.4%) in the control and 14/121 (11.6%) in the intervention arm, p = 0.20, and it took 34 days and 42 days in the respective arms for 90% of the patients to remain without recurrent parasitaemia. Lumefantrine exposure was significantly higher in intervention arm from D3 to D42, but cardiac, biochemical and haematological safety was high and similar in both arms. Conclusion Extended 6-day artemether–lumefantrine treatment and a single low-dose of primaquine was not superior to standard 3-day treatment for ACT sensitive P. falciparum infections but, importantly, equally efficacious and safe. Thus, extended artemether–lumefantrine treatment may be considered as a future treatment regimen for ACT resistant P. falciparum, to prolong the therapeutic lifespan of ACT in Africa. Trial registration ClinicalTrials.gov, NCT03241901. Registered July 27, 2017 https://clinicaltrials.gov/show/NCT03241901
Collapse
Affiliation(s)
- Lwidiko E Mhamilawa
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden. .,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eliford Ngaimisi Kitabi
- Office of Clinical Pharmacology, Division of Pharmacometrics, Food and Drugs Administration, Silver Spring, MD, USA
| | - Rory Barnes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aung Paing Soe
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bruno P Mmbando
- Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Greischar MA, Beck-Johnson LM, Mideo N. Partitioning the influence of ecology across scales on parasite evolution. Evolution 2019; 73:2175-2188. [PMID: 31495911 DOI: 10.1111/evo.13840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022]
Abstract
Vector-borne parasites must succeed at three scales to persist: they must proliferate within a host, establish in vectors, and transmit back to hosts. Ecology outside the host undergoes dramatic seasonal and human-induced changes, but predicting parasite evolutionary responses requires integrating their success across scales. We develop a novel, data-driven model to titrate the evolutionary impact of ecology at multiple scales on human malaria parasites. We investigate how parasites invest in transmission versus proliferation, a life-history trait that influences disease severity and spread. We find that transmission investment controls the pattern of host infectiousness over the course of infection: a trade-off emerges between early and late infectiousness, and the optimal resolution of that trade-off depends on ecology outside the host. An expanding epidemic favors rapid proliferation, and can overwhelm the evolutionary influence of host recovery rates and mosquito population dynamics. If transmission investment and recovery rate are positively correlated, then ecology outside the host imposes potent selection for aggressive parasite proliferation at the expense of transmission. Any association between transmission investment and recovery represents a key unknown, one that is likely to influence whether the evolutionary consequences of interventions are beneficial or costly for human health.
Collapse
Affiliation(s)
- Megan A Greischar
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | | | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
11
|
Muthui MK, Mogeni P, Mwai K, Nyundo C, Macharia A, Williams TN, Nyangweso G, Wambua J, Mwanga D, Marsh K, Bejon P, Kapulu MC. Gametocyte carriage in an era of changing malaria epidemiology: A 19-year analysis of a malaria longitudinal cohort. Wellcome Open Res 2019; 4:66. [PMID: 31223663 PMCID: PMC6557001 DOI: 10.12688/wellcomeopenres.15186.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Interventions to block malaria transmission from humans to mosquitoes are currently in development. To be successfully implemented, key populations need to be identified where the use of these transmission-blocking and/or reducing strategies will have greatest impact. Methods: We used data from a longitudinally monitored cohort of children from Kilifi county located along the Kenyan coast collected between 1998-2016 to describe the distribution and prevalence of gametocytaemia in relation to transmission intensity, time and age. Data from 2,223 children accounting for 9,134 person-years of follow-up assessed during cross-sectional surveys for asexual parasites and gametocytes were used in logistic regression models to identify factors predictive of gametocyte carriage in this cohort. Results: Our analysis showed that children 1-5 years of age were more likely to carry microscopically detectable gametocytes than their older counterparts. Carrying asexual parasites and recent episodes of clinical malaria were also strong predictors of gametocyte carriage. The prevalence of asexual parasites and of gametocyte carriage declined over time, and after 2006, when artemisinin combination therapy (ACT) was introduced, recent episodes of clinical malaria ceased to be a predictor of gametocyte carriage. Conclusions: Gametocyte carriage in children in Kilifi has fallen over time. Previous episodes of clinical malaria may contribute to the development of carriage, but this appears to be mitigated by the use of ACTs highlighting the impact that gametocidal antimalarials can have in reducing the overall prevalence of gametocytaemia when targeted on acute febrile illness.
Collapse
Affiliation(s)
- Michelle K Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Polycarp Mogeni
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,African Health Research Institute, Durban, Congella, 4013, Private bag X7, South Africa
| | - Kennedy Mwai
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, Parktown, 2193, 27 St Andrews Road, South Africa
| | - Christopher Nyundo
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Alex Macharia
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Thomas N Williams
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Department of Medicine, Imperial College London, St Mary's Campus, London, W21NY, UK
| | - George Nyangweso
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Juliana Wambua
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Daniel Mwanga
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
12
|
Muthui MK, Mogeni P, Mwai K, Nyundo C, Macharia A, Williams TN, Nyangweso G, Wambua J, Mwanga D, Marsh K, Bejon P, Kapulu MC. Gametocyte carriage in an era of changing malaria epidemiology: A 19-year analysis of a malaria longitudinal cohort. Wellcome Open Res 2019; 4:66. [PMID: 31223663 PMCID: PMC6557001 DOI: 10.12688/wellcomeopenres.15186.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 10/25/2023] Open
Abstract
Background: Interventions to block malaria transmission from humans to mosquitoes are currently in development. To be successfully implemented, key populations need to be identified where the use of these transmission-blocking and/or reducing strategies will have greatest impact. Methods: We used data from a longitudinally monitored cohort of children from Kilifi county located along the Kenyan coast collected between 1998-2016 to describe the distribution and prevalence of gametocytaemia in relation to transmission intensity, time and age. Data from 2,223 children accounting for 9,134 person-years of follow-up assessed during cross-sectional surveys for asexual parasites and gametocytes were used in logistic regression models to identify factors predictive of gametocyte carriage in this cohort. Results: Our analysis showed that children 1-5 years of age were more likely to carry microscopically detectable gametocytes than their older counterparts. Carrying asexual parasites and recent episodes of clinical malaria were also strong predictors of gametocyte carriage. The prevalence of asexual parasites and of gametocyte carriage declined over time, and after 2006, when artemisinin combination therapy (ACT) was introduced, recent episodes of clinical malaria ceased to be a predictor of gametocyte carriage. Conclusions: Gametocyte carriage in children in Kilifi has fallen over time. Previous episodes of clinical malaria may contribute to the development of carriage, but this appears to be mitigated by the use of ACTs highlighting the impact that gametocidal antimalarials can have in reducing the overall prevalence of gametocytaemia when targeted on acute febrile illness.
Collapse
Affiliation(s)
- Michelle K. Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Polycarp Mogeni
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- African Health Research Institute, Durban, Congella, 4013, Private bag X7, South Africa
| | - Kennedy Mwai
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, Parktown, 2193, 27 St Andrews Road, South Africa
| | - Christopher Nyundo
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Alex Macharia
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Thomas N. Williams
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Department of Medicine, Imperial College London, St Mary's Campus, London, W21NY, UK
| | - George Nyangweso
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Juliana Wambua
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Daniel Mwanga
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Melissa C. Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
13
|
Chaumeau V, Kajeechiwa L, Fustec B, Landier J, Naw Nyo S, Nay Hsel S, Phatharakokordbun P, Kittiphanakun P, Nosten S, Thwin MM, Win Tun S, Wiladphaingern J, Cottrell G, Parker DM, Minh MC, Kwansomboon N, Metaane S, Montazeau C, Kunjanwong K, Sawasdichai S, Andolina C, Ling C, Haohankhunnatham W, Christiensen P, Wanyatip S, Konghahong K, Cerqueira D, Imwong M, Dondorp AM, Chareonviriyaphap T, White NJ, Nosten FH, Corbel V. Contribution of Asymptomatic Plasmodium Infections to the Transmission of Malaria in Kayin State, Myanmar. J Infect Dis 2019; 219:1499-1509. [PMID: 30500927 PMCID: PMC6467188 DOI: 10.1093/infdis/jiy686] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The objective of mass antimalarial drug administration (MDA) is to eliminate malaria rapidly by eliminating the asymptomatic malaria parasite reservoirs and interrupting transmission. In the Greater Mekong Subregion, where artemisinin-resistant Plasmodium falciparum is now widespread, MDA has been proposed as an elimination accelerator, but the contribution of asymptomatic infections to malaria transmission has been questioned. The impact of MDA on entomological indices has not been characterized previously. METHODS MDA was conducted in 4 villages in Kayin State (Myanmar). Malaria mosquito vectors were captured 3 months before, during, and 3 months after MDA, and their Plasmodium infections were detected by polymerase chain reaction (PCR) analysis. The relationship between the entomological inoculation rate, the malaria prevalence in humans determined by ultrasensitive PCR, and MDA was characterized by generalized estimating equation regression. RESULTS Asymptomatic P. falciparum and Plasmodium vivax infections were cleared by MDA. The P. vivax entomological inoculation rate was reduced by 12.5-fold (95% confidence interval [CI], 1.6-100-fold), but the reservoir of asymptomatic P. vivax infections was reconstituted within 3 months, presumably because of relapses. This was coincident with a 5.3-fold (95% CI, 4.8-6.0-fold) increase in the vector infection rate. CONCLUSION Asymptomatic infections are a major source of malaria transmission in Southeast Asia.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre hospitalier universitaire de Montpellier, Montpellier
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Bénédicte Fustec
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Institut de Recherches pour le Développement, Aix Marseille Univ, INSERM, SESSTIM, Marseille
| | - Saw Naw Nyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Saw Nay Hsel
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Phabele Phatharakokordbun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Prapan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Suphak Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - May Myo Thwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Saw Win Tun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Gilles Cottrell
- UMR 216 “Mère et enfant face aux infections tropicales,” Institut de Recherche pour le Développement, Université Paris Descartes, Paris, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, University of California, Irvine
| | - Myo Chit Minh
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Nittpha Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Selma Metaane
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Céline Montazeau
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| | - Kitti Kunjanwong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Warat Haohankhunnatham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Peter Christiensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Sunaree Wanyatip
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | | | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Vincent Corbel
- UMR 224 “Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle,” Institut de Recherche pour le Développement, Montpellier
| |
Collapse
|
14
|
Mudududdla R, Mohanakrishnan D, Bharate SS, Vishwakarma RA, Sahal D, Bharate SB. Orally Effective Aminoalkyl 10H-Indolo[3,2-b]quinoline-11-carboxamide Kills the Malaria Parasite by Inhibiting Host Hemoglobin Uptake. ChemMedChem 2018; 13:2581-2598. [PMID: 30358112 DOI: 10.1002/cmdc.201800579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Indexed: 12/26/2022]
Abstract
A series of indolo[3,2-b]quinoline-C11-carboxamides were synthesized by incorporation of aminoalkyl side chains into the core of indolo[3,2-b]quinoline-C11-carboxylic acid. Their in vitro antiplasmodial evaluation against Plasmodium falciparum led to the identification of a 2-(piperidin-1-yl)ethanamine-linked analogue {2-bromo-N-[2-(piperidin-1-yl)ethyl]-10H-indolo[3,2-b]quinoline-11-carboxamide (3 g)} (IC50 =1.3 μm) as the most promising compound exhibiting good selectivity indices against mammalian cell lines. The kill kinetics on erythrocytic-stage parasites revealed that 3 g caused complete killing of only the trophozoite-stage parasites. Mechanistic studies showed that 3 g targets the food vacuole of the parasite and inhibits hemoglobin uptake, β-hematin formation, and the basic endocytic processes of the parasite. Analogue 3 g was found to be orally bioavailable, and its curative antimalarial studies at 50 mg per kg p.o. against a Plasmodium berghei (ANKA)-infected mouse model revealed that mice treated with 3 g showed 27-35 % suppression of parasitemia with an increase in life span relative to untreated, control mice. Thus, the present work demonstrated a proof of concept for the oral efficacy of indolo[3,2-b]quinoline-C11-carboxamides.
Collapse
Affiliation(s)
- Ramesh Mudududdla
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dinesh Mohanakrishnan
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sonali S Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandip B Bharate
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
15
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
16
|
Abstract
Increasing antimalarial drug resistance once again threatens effective antimalarial drug treatment, malaria control, and elimination. Artemisinin combination therapies (ACTs) are first-line treatment for uncomplicated falciparum malaria in all endemic countries, yet partial resistance to artemisinins has emerged in the Greater Mekong Subregion. Concomitant emergence of partner drug resistance is now causing high ACT treatment failure rates in several areas. Genetic markers for artemisinin resistance and several of the partner drugs have been established, greatly facilitating surveillance. Single point mutations in the gene coding for the Kelch propeller domain of the K13 protein strongly correlate with artemisinin resistance. Novel regimens and strategies using existing antimalarial drugs will be needed until novel compounds can be deployed. Elimination of artemisinin resistance will imply elimination of all falciparum malaria from the same areas. In vivax malaria, chloroquine resistance is an increasing problem.
Collapse
Affiliation(s)
- Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh 12201, Cambodia
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| |
Collapse
|
17
|
Wotodjo AN, Doucoure S, Gaudart J, Diagne N, Diene Sarr F, Faye N, Tall A, Raoult D, Sokhna C. Malaria in Dielmo, a Senegal village: Is its elimination possible after seven years of implementation of long-lasting insecticide-treated nets? PLoS One 2017; 12:e0179528. [PMID: 28678846 PMCID: PMC5497975 DOI: 10.1371/journal.pone.0179528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The malaria burden has decreased significantly in recent years in Africa through the widespread use of artemisinin-based combination therapy (ACT) and long-lasting insecticide-treated nets (LLINs). However, the occurrence of malaria resurgences, the loss of immunity of exposed populations constitute among other factors, serious concerns about the future of malaria elimination efforts. This study investigated the evolution of malaria morbidity in Dielmo (Senegal) before and after the implementation of LLINs. METHODS A longitudinal study was carried out in Dielmo over eight years, from July 2007 to July 2015. In July 2008, LLINs were offered to all villagers, and in July 2011 and August 2014 the LLINs were renewed. A survey on LLINs use was done each quarter of the year. Thick smears stained with Giemsa, a rapid diagnostic test (RDT) and quantitative polymerase chain reaction (PCR) methods were performed for all cases of fever to assess malaria clinical attacks. Malaria cases were treated with ACT since June 2006. RESULTS Malaria morbidity has decreased significantly since the implementation of LLINs in Dielmo, together with ACT. However, malaria resurgences have occurred twice during the seven years of LLINs use. These resurgences occurred the first time during the third year after the introduction of LLINs (aIRR (adjusted incidence-rate ratio) [95%CI] = 5.90 [3.53; 9.88] p< 0.001) and a second time during the third year after the renewal of LLINs (aIRR [95%CI] = 5.60 [3.34; 9.39] p< 0.001). Sixty-nine percent (69%) of the nets tested for their long-lasting insecticidal activity remained effective after 3 years of use. CONCLUSION Good management of malaria cases by the use of ACT as first-line treatment against malaria in addition to the use of LLINs has significantly reduced malaria in Dielmo and allowed to reach the phase of pre-elimination of the disease. However, the occurrence of malaria resurgences raised serious concerns about malaria elimination, which would require additional tools in this village.
Collapse
Affiliation(s)
- Amélé Nyedzie Wotodjo
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP, CP Dakar, Senegal,Université Cheikh Anta Diop de Dakar, Faculté des Sciences et Techniques/ Laboratoire de Parasitologie, Dakar, Senegal
| | - Souleymane Doucoure
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP, CP Dakar, Senegal
| | - Jean Gaudart
- Aix Marseille Univ, IER, INSERM, SESSTIM UMR912, Marseille, France
| | - Nafissatou Diagne
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP, CP Dakar, Senegal
| | - Fatoumata Diene Sarr
- Institut Pasteur de Dakar, Unité d'Épidémiologie des maladies infectieuses, Dakar, Senegal
| | - Ngor Faye
- Université Cheikh Anta Diop de Dakar, Faculté des Sciences et Techniques/ Laboratoire de Parasitologie, Dakar, Senegal
| | - Adama Tall
- Institut Pasteur de Dakar, Unité d'Épidémiologie des maladies infectieuses, Dakar, Senegal
| | - Didier Raoult
- Institut Hospitalo Universitaire Méditerranée-Infection, Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, IRD198, UM63, CNRS7278, INSERMU1095, Marseille, France
| | - Cheikh Sokhna
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, IRD198, UM63, CNRS7278, INSERMU1095, Aix-Marseille Université, Campus UCAD-IRD, BP, CP Dakar, Senegal,* E-mail:
| |
Collapse
|
18
|
Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J 2017; 284:2569-2578. [PMID: 28580606 PMCID: PMC5575457 DOI: 10.1111/febs.14127] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023]
Abstract
Over the past 50 years, Plasmodium falciparum has developed resistance against all antimalarial drugs used against it: chloroquine, sulphadoxine-pyrimethamine, quinine, piperaquine and mefloquine. More recently, resistance to the artemisinin derivatives and the resulting failure of artemisinin-based combination therapy (ACT) are threatening all major gains made in malaria control. Each time resistance has developed progressively, with delayed clearance of parasites first emerging only in a few regions, increasing in prevalence and geographic range, and then ultimately resulting in the complete failure of that antimalarial. Drawing from this repeated historical chain of events, this article presents context-specific approaches for combating drug-resistant P. falciparum malaria. The approaches begin with a context of drug-sensitive parasites and focus on the prevention of the emergence of drug resistance. Next, the approaches address a scenario in which resistance has emerged and is increasing in prevalence and geographic extent, with interventions focused on disrupting transmission through vector control, early diagnosis and treatment, and the use of new combination therapies. Elimination is also presented as an approach for addressing the imminent failure of all available antimalarials. The final drug resistance context presented is one in which all available antimalarials have failed; leaving only personal protection and the use of new antimalarials (or new combinations of antimalarials) as a viable strategy for dealing with complete resistance. All effective strategies and contexts require a multipronged, holistic approach.
Collapse
Affiliation(s)
- Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
19
|
Brock AR, Ross JV, Greenhalgh S, Durham DP, Galvani A, Parikh S, Esterman A. Modelling the impact of antimalarial quality on the transmission of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum. Infect Dis Model 2017; 2:161-187. [PMID: 29928735 PMCID: PMC6001968 DOI: 10.1016/j.idm.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Background The use of poor quality antimalarial medicines, including the use of non-recommended medicines for treatment such as sulfadoxine-pyrimethamine (SP) monotherapy, undermines malaria control and elimination efforts. Furthermore, the use of subtherapeutic doses of the active ingredient(s) can theoretically promote the emergence and transmission of drug resistant parasites. Methods We developed a deterministic compartmental model to quantify the impact of antimalarial medicine quality on the transmission of SP resistance, and validated it using sensitivity analysis and a comparison with data from Kenya collected in 2006. We modelled human and mosquito population dynamics, incorporating two Plasmodium falciparum subtypes (SP-sensitive and SP-resistant) and both poor quality and good quality (artemether-lumefantrine) antimalarial use. Findings The model predicted that an increase in human malaria cases, and among these, an increase in the proportion of SP-resistant infections, resulted from an increase in poor quality SP antimalarial use, whether it was full- or half-dose SP monotherapy. Interpretation Our findings suggest that an increase in poor quality antimalarial use predicts an increase in the transmission of resistance. This highlights the need for stricter control and regulation on the availability and use of poor quality antimalarial medicines, in order to offer safe and effective treatments, and work towards the eradication of malaria.
Collapse
Affiliation(s)
- Aleisha R Brock
- School of Nursing & Midwifery, University of South Australia, Adelaide, SA, Australia
| | - Joshua V Ross
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Scott Greenhalgh
- Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada
| | - David P Durham
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Alison Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT, USA
| | - Adrian Esterman
- Sansom Institute for Research Health, University of South Australia, Adelaide, SA, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
20
|
Tapanelli S, Chianese G, Lucantoni L, Yerbanga RS, Habluetzel A, Taglialatela-Scafati O. Transmission blocking effects of neem (Azadirachta indica) seed kernel limonoids on Plasmodium berghei early sporogonic development. Fitoterapia 2016; 114:122-126. [PMID: 27642038 DOI: 10.1016/j.fitote.2016.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023]
Abstract
Azadirachta indica, known as neem tree and traditionally called "nature's drug store" makes part of several African pharmacopeias and is widely used for the preparation of homemade remedies and commercial preparations against various illnesses, including malaria. Employing a bio-guided fractionation approach, molecules obtained from A. indica ripe and green fruit kernels were tested for activity against early sporogonic stages of Plasmodium berghei, the parasite stages that develop in the mosquito mid gut after an infective blood meal. The limonoid deacetylnimbin (3) was identified as one the most active compounds of the extract, with a considerably higher activity compared to that of the close analogue nimbin (2). Pure deacetylnimbin (3) appeared to interfere with transmissible Plasmodium stages at a similar potency as azadirachtin A. Considering its higher thermal and chemical stability, deacetylnimbin could represent a suitable alternative to azadirachtin A for the preparation of transmission blocking antimalarials.
Collapse
Affiliation(s)
- Sofia Tapanelli
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032 Camerino, MC, Italy
| | - Giuseppina Chianese
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Leonardo Lucantoni
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | | | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032 Camerino, MC, Italy.
| | | |
Collapse
|
21
|
Mischlinger J, Agnandji ST, Ramharter M. Single dose treatment of malaria - current status and perspectives. Expert Rev Anti Infect Ther 2016; 14:669-78. [PMID: 27254098 DOI: 10.1080/14787210.2016.1192462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Despite increased international efforts for control and ultimate elimination, malaria remains a major health problem. Currently, artemisinin-based combination therapies are the treatment of choice for uncomplicated malaria exhibiting high efficacy in clinical trial settings in sub-Saharan Africa. However, their administration over a three-day period is associated with important problems of treatment adherence resulting in markedly reduced effectiveness of currently recommended antimalarials under real world settings. AREAS COVERED Antimalarial drug candidates and antimalarial drug combinations currently under advanced clinical development for the indication as single dose antimalarial therapy. Expert commentary: Several new drug candidates and combinations are currently undergoing pivotal proof-of-concept studies or clinical development programmes. The development of a single dose combination therapy would constitute a breakthrough in the control of malaria. Such an innovative treatment approach would simultaneously close the effectiveness gap of current three-day therapies and revolutionize population based interventions in the context of malaria elimination campaigns.
Collapse
Affiliation(s)
- Johannes Mischlinger
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Selidji T Agnandji
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany
| | - Michael Ramharter
- a Centre de Recherches Médicales de Lambaréné , Lambaréné , Gabon.,b Institut für Tropenmedizin , Universität Tübingen , Tübingen , Germany.,c Department of Medicine I, Division of Infectious Diseases and Tropical Medicine , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
22
|
Abdul-Ghani R, Basco LK, Beier JC, Mahdy MAK. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malar J 2015; 14:413. [PMID: 26481312 PMCID: PMC4617745 DOI: 10.1186/s12936-015-0936-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
Standard anti-malarial drug efficacy and drug resistance assessments neglect the gametocyte parameters in their protocols. With the spread of drug resistance and the absence of clinically proven vaccines, the use of gametocytocidal drugs or drug combinations with transmission-blocking activity is a high priority for malaria control and elimination. However, the limited repertoire of gametocytocidal drugs and induction of gametocytogenesis after treatment with certain anti-malarial drugs necessitate both regular monitoring
of gametocytocidal activities of anti-malarial drugs in clinical use and the effectiveness of candidate gametocytocidal agents. Therefore, updating current protocols of anti-malarial drug efficacy is needed to reflect the effects of anti-malarial drugs or drug combinations on gametocyte carriage and gametocyte density along with asexual parasite density. Developing protocols of anti-malarial drug efficacy that include gametocyte parameters related to both microscopic and submicroscopic gametocytaemias is important if drugs or drug combinations are to be strategically used in transmission-blocking interventions in the context of malaria elimination. The present piece of opinion highlights the challenges in gametocyte detection and follow-up and discuss the need for including the gametocyte parameter in anti-malarial efficacy studies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| | - Leonardo K Basco
- Unité de Recherche 198, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut de Recherche pour le Développement, Faculté de Médecine La Timone, Aix-Marseille Université, Marseille, France.
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
23
|
Read AF, Huijben S. Evolutionary biology and the avoidance of antimicrobial resistance. Evol Appl 2015; 2:40-51. [PMID: 25567846 PMCID: PMC3352414 DOI: 10.1111/j.1752-4571.2008.00066.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/11/2008] [Indexed: 11/29/2022] Open
Abstract
Evolutionary biologists have largely left the search for solutions to the drug resistance crisis to biomedical scientists, physicians, veterinarians and public health specialists. We believe this is because the vast majority of professional evolutionary biologists consider the evolutionary science of drug resistance to be conceptually uninteresting. Using malaria as case study, we argue that it is not. We review examples of evolutionary thinking that challenge various fallacies dominating antimalarial therapy, and discuss open problems that need evolutionary insight. These problems are unlikely to be resolved by biomedical scientists ungrounded in evolutionary biology. Involvement by evolutionary biologists in the science of drug resistance requires no intellectual compromises: the problems are as conceptually challenging as they are important.
Collapse
Affiliation(s)
- Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park PA, USA
| | - Silvie Huijben
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park PA, USA ; School of Biological Sciences, University of Edinburgh West Mains Road, Edinburgh, UK
| |
Collapse
|
24
|
Sheikh IH, Kaushal DC, Singh V, Kumar N, Chandra D, Kaushal NA. Cloning, overexpression and characterization of soluble 42kDa fragment of merozoite surface protein-1 of Plasmodium vivax. Protein Expr Purif 2014; 103:64-74. [PMID: 25195175 DOI: 10.1016/j.pep.2014.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax represents the second most prevalent malaria species of major public health importance and the global eradication of malaria requires the development of vaccines to prevent infection. The lack of in vitro culture and a suitable animal model for P. vivax malaria are the major problems for the delay in developing a functional vivax vaccine. A number of antigens have been identified for P. vivax as potential malaria vaccine candidates and among these 42kDa fragment of merozoite surface protein-1 (MSP-142) is one of most promising antigen of asexual blood stage. In most of the earlier studies, the MSP-142 of malaria parasites was expressed as insoluble protein in inclusion bodies and it is difficult to get purified protein in conformation form. In the present study, we have cloned, overexpressed and characterized the 42kDa fragment of P. vivax MSP-1 as soluble protein in Escherichiacoli. The 42kDa gene fragment of P. vivax MSP-1 was PCR amplified using specific primers, sequenced and subcloned into pTriEx-4 expression vector. The optimum expression of recombinant P. vivax protein was obtained in SOC growth medium by inducing with 0.2mM IPTG at 37°C for 4h. The SDS-PAGE analysis showed a fusion protein of 55kDa and about 80% was present in soluble form. The purified P. vivax MSP-142 was characterized and found to be correctly folded and in conformation form as evident by CD spectroscopy, presence of 1 free -SH group and the reactivity with reduction sensitive conformational monoclonals against P. vivax MSP-142.
Collapse
Affiliation(s)
- Inayat Hussain Sheikh
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Biochemistry, Lucknow University, Lucknow, India
| | - Deep C Kaushal
- Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226010, India
| | - Vandana Singh
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Niraj Kumar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepak Chandra
- Department of Biochemistry, Lucknow University, Lucknow, India
| | - Nuzhat A Kaushal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
25
|
Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop 2014; 137:44-57. [PMID: 24801884 DOI: 10.1016/j.actatropica.2014.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 12/16/2022]
Abstract
Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.
Collapse
|
26
|
Makanga M. A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission. Malar J 2014; 13:291. [PMID: 25069530 PMCID: PMC4126813 DOI: 10.1186/1475-2875-13-291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/08/2014] [Indexed: 01/02/2023] Open
Abstract
While significant advances have been made in the prevention and treatment of malaria in recent years, these successes continue to fall short of the World Health Organization (WHO) goals for malaria control and elimination. For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical. Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes. The gametocytocidal properties of artemisinins are a bonus attribute; there is epidemiological evidence of reductions in malaria incidence and transmission in African regions since the introduction of these agents. Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage. In this systematic review of 62 articles published between 1998 and January 2014, the effects of AL on gametocyte carriage and malaria transmission are compared with other artemisinin-based anti-malarials and non-ACT. The impact of AL treatment of asymptomatic carriers on population gametocyte carriage, and the potential future role of AL in malaria elimination initiatives are also considered. Despite the inherent difficulties in comparing data from a range of different studies that also utilized different diagnostic approaches to assess baseline gametocyte counts, the gametocytocidal effect of AL was proportionately consistent across the studies reviewed, suggesting that AL will continue to play a vital role in the treatment of malaria and contribute to clearing the path towards malaria elimination. However, the specific place of AL is the subject of much ongoing research and will undoubtedly be dependent on different demographic and geographical scenarios. Utilizing ACT, such as AL, within malaria elimination strategies is also associated with a number of other challenges, such as balancing potential increased use of ACT (e g, treatment of asymptomatic carriers and home-based treatment) with rational use and avoidance of drug resistance development.
Collapse
Affiliation(s)
- Michael Makanga
- European & Developing Countries Clinical Trials Partnership (EDCTP), PO Box 19070, Tygerberg, Cape Town, South Africa.
| |
Collapse
|
27
|
Asare KK, Boampong JN, Afoakwah R, Ameyaw EO, Sehgal R, Quashie NB. Use of proscribed chloroquine is associated with an increased risk of pfcrt T76 mutation in some parts of Ghana. Malar J 2014; 13:246. [PMID: 24969960 PMCID: PMC4088365 DOI: 10.1186/1475-2875-13-246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/19/2014] [Indexed: 01/18/2023] Open
Abstract
Background After years of disuse of chloroquine (CQ) as first-line anti-malarial drug in Ghana, reports from molecular studies conducted in parts of the country indicate varying prevalence of T76 mutation in the pfcrt gene. This situation has several health implications, one being that mutations that confer resistance to CQ have been reported to show substantial cross-resistance to other anti-malarial drugs. It is important to identify some of the factors contributing to the continuous presence of CQ resistance markers in the country. This study determined the prevalence of T76 mutation in pfcrt gene of Plasmodium falciparum isolates collected from selected areas of the Central region of Ghana and correlated with the level of CQ use in these areas. Methods Plasmodium falciparum DNA was extracted from collected blood-blot filter paper samples in the study sites. The prevalence of T76 point mutation in pfcrt gene was assessed using nested PCR followed by RFLP. CQ from pharmacy and chemical shops was obtained using mystery buying method. The extent of CQ use by the participants was determined by measuring the level of the drug in their urine samples using the Saker-Solomon method. Results Of the 214 P. falciparum isolates analysed, 71.9% were found to have T76 mutation of pfcrt gene. The study revealed that 14.49% of community pharmacies and chemical shops had stocks of CQ for sale while 16.9% of the participants had CQ in their urine samples. There is five times more risks of becoming infected with CQ resistant strain for staying in an area where CQ is stocked for sale [RR = 0.20, p < 0.0001] and thirteen times more risks of having CQ-resistant mutant from those who still use CQ than non-users [OR = 0.08, p < 0.0001]. Conclusion This study has shown that high variation in the prevalence of T76 mutations of P. falciparum is linked with the level of CQ stocking and usage within study area.
Collapse
Affiliation(s)
| | - Johnson N Boampong
- Department of Biomedical and Forensic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | | | | | | | | |
Collapse
|
28
|
A Mathematical Model for the Transmission and Spread of Drug Sensitive and Resistant Malaria Strains within a Human Population. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/636973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malaria remains by far the world's most important tropical disease, killing more people than any other communicable disease. A number of preventive and control measures have been put in place and most importantly drug treatment. The emergence of drug resistance against the most common and affordable antimalarials is widespread and poses a key obstacle to malaria control. A mathematical model that incorporates evolution of drug resistance and treatment as a preventive strategy is formulated and analyzed. The qualitative analysis of the model is given in terms of the effective reproduction number, Re. The existence and stability of the disease-free and endemic equilibria of the model are studied. We establish the threshold parameters below which the burden due to malaria can be brought under control. Numerical simulations are done to determine the role played by key parameters in the model. The public health implications of the results are twofold; firstly every effort should be taken to minimize the evolution of drug resistance due to treatment failure and secondly high levels of treatment and development of immunity are essential in reducing the malaria burden.
Collapse
|
29
|
Abstract
Conventional 48-h in vitro susceptibility tests have low sensitivity in identifying artemisinin-resistant Plasmodium falciparum, defined phenotypically by low in vivo parasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistant P. falciparum is prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P = 0.001). TMI IC50s correlated significantly with the in vivo responses to artesunate (parasite clearance time [r = 0.44, P = 0.001] and parasite clearance half-life [r = 0.46, P = 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility.
Collapse
|
30
|
Abdul-Ghani R, Farag HF, Allam AF, Azazy AA. Measuring resistant-genotype transmission of malaria parasites: challenges and prospects. Parasitol Res 2014; 113:1481-7. [PMID: 24562760 DOI: 10.1007/s00436-014-3789-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Abstract
Increased gametocytemia in infections with resistant strains of Plasmodium species and their enhanced transmissibility are a matter of concern in planning and evaluating the impact of malaria control strategies. Various studies have determined weekly gametocyte carriage in response to antimalarial drugs in clinical trials. The advent of molecular biology techniques makes it easy to detect and quantify gametocytes, the stages responsible for transmission, and to detect resistant genotypes of the parasite. With the validation of molecular markers of resistance to certain antimalarial drugs, there is a need to devise a simpler formula that could be used with these epidemiological antimalarial resistance tools. Theoretical models for transmission of resistant malaria parasites are difficult to deploy in epidemiological studies. Therefore, devising a simple formula that determines the potential resistant-genotype transmission of malaria parasites should provide further insights into understanding the spread of drug resistance. The present perspective discusses gametocytogenesis in the context of antimalarial treatment and drug resistance. It also highlights the difficulties in applying the available theoretical models of drug resistance transmission and suggests Rashad's devised formula that could perhaps be used in determining potentially transmissible resistant genotypes as well as in mapping areas with high potential risk for the transmission of drug-resistant malaria. The suggested formula makes use of the data on gametocytes and resistant genotypes of malaria parasites, detected by molecular techniques in a certain geographical area within a particular point in time, to calculate the potential risk of resistant genotype transmission.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen,
| | | | | | | |
Collapse
|
31
|
Klein EY. The impact of heterogeneous transmission on the establishment and spread of antimalarial drug resistance. J Theor Biol 2014; 340:177-85. [PMID: 24076451 PMCID: PMC3864917 DOI: 10.1016/j.jtbi.2013.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/01/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
Despite the important insights gained by extending the classical models of malaria, other factors, such as immunity, heterogeneous biting, and differential patterns of drug use have not been fully explored due to the complexity of modeling multiple simultaneous malaria infections competing within a host. Understanding these factors is important for understanding how to control the spread of drug resistance to artemisinin which is just emerging in Southeast Asia. The emergence of resistance plays out at the population level, but is the result of competition within individuals for transmission events. Most studies of drug resistance evolution have focused on transmission between hosts and ignored the role of within-host competition due to the inherent complexity of modeling at multiple scales. To embed within-host competition in the model, we used an agent-based framework that was developed to understand how deviations from the classical assumptions of the Ross-MacDonald type models, which have been well-described and analyzed, impact the dynamics of disease. While structured to be a stochastic analog to classical Ross-Macdonald type models, the model is nonetheless based on individuals, and thus aspects of within-host competition can be explored. We use this framework to explore the role of heterogeneous biting and transmission on the establishment and spread of resistance in a population. We find that heterogeneous transmission slows the establishment of resistance in a population, but once resistance is established, it speeds the spread of resistance through the population. These results are due to the skewed distribution of biting which makes onward transmission a low probability and suggests that targeting the "core" group of individuals that provide the vast majority of bites could significantly slow the spread of resistance.
Collapse
Affiliation(s)
- Eili Y Klein
- Center for Advanced Modeling, Department of Emergency Medicine, Johns Hopkins University, 5801 Smith Avenue, Davis Suite 3220, Baltimore, MD 21209, United States; Center for Disease Dynamics, Economics & Policy, Washington, DC, United States.
| |
Collapse
|
32
|
Johnston GL, Smith DL, Fidock DA. Malaria's missing number: calculating the human component of R0 by a within-host mechanistic model of Plasmodium falciparum infection and transmission. PLoS Comput Biol 2013; 9:e1003025. [PMID: 23637586 PMCID: PMC3630126 DOI: 10.1371/journal.pcbi.1003025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population). Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0. We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of drug treatment and drug resistance on transmission. We report a new mathematical model of the progression, within a human host, of a malaria infection caused by the parasite Plasmodium falciparum. This model incorporates probability distributions for the key parameters of infection and transmission so that model outputs match the entire range of observed responses in patients, without the requirement for fitting individual data. Further, we simulate the daily densities of both the disease-causing and transmissible forms of the parasite within an individual, as well as the onset of fever and the probability of parasite transmission to mosquitoes. This model allows us to reproduce aspects of infection that are critical for malaria control modeling. As a first application, we calculate the net infectiousness of humans to mosquitoes and predict that net human infectivity from a single infection is on average equal to approximately 32 fully infectious days. This value has been used to help map the worldwide intensity of malaria transmission. We also predict that mean daily infectivity is greater than five percent for approximately 138 days. Our modeling framework, available as downloadable software, will allow researchers to probe the effects of treatment and drug resistance on malaria transmission in unprecedented detail, helping to improve malaria control efforts.
Collapse
Affiliation(s)
- Geoffrey L. Johnston
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- School of International and Public Affairs, Columbia University, New York, New York, United States of America
- Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, United States of America
| | - David L. Smith
- Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (DLS); (DAF)
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail: (DLS); (DAF)
| |
Collapse
|
33
|
White NJ, Qiao LG, Qi G, Luzzatto L. Rationale for recommending a lower dose of primaquine as a Plasmodium falciparum gametocytocide in populations where G6PD deficiency is common. Malar J 2012; 11:418. [PMID: 23237606 PMCID: PMC3546849 DOI: 10.1186/1475-2875-11-418] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 11/28/2012] [Indexed: 12/28/2022] Open
Abstract
In areas of low malaria transmission, it is currently recommended that a single dose of primaquine (0.75 mg base/kg; 45 mg adult dose) be added to artemisinin combination treatment (ACT) in acute falciparum malaria to block malaria transmission. Review of studies of transmission-blocking activity based on the infectivity of patients or volunteers to anopheline mosquitoes, and of haemolytic toxicity in glucose 6-dehydrogenase (G6PD) deficient subjects, suggests that a lower primaquine dose (0.25 mg base/kg) would be safer and equally effective. This lower dose could be deployed together with ACTs without G6PD testing wherever use of a specific gametocytocide is indicated.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | |
Collapse
|
34
|
Abstract
Falciparum malaria is transmitted by anopheline mosquitoes that have fed on blood containing gametocytes of Plasmodium falciparum. In areas of low malaria transmission, where symptomatic infections contribute substantially to malaria transmission, the use of gametocytocidal drugs reduces the incidence of malaria. Artemisinin-based combination therapies provide high cure rates and substantially reduce gametocyte carriage. Artemisinin resistance in P falciparum lessens overall gametocytocidal activity, which provides a selective pressure to the spread of these resistant parasites. The 8-aminoquinoline compounds possess unique gametocytocidal properties and rapidly sterilise the mature transmissible stages of P falciparum. The addition of one dose of primaquine to artemisinin-based combination regimens could help to counter the spread of artemisinin resistance. Although primaquine is commonly recommended for falciparum and vivax malaria, concerns about drug-related haemolysis frequently prevent its administration. The limited available evidence on transmission-blocking effects of primaquine and its forerunner plasmoquine suggests that doses lower than currently recommended (0.50-0.75 mg base per kg), which would be safer, might still be very effective.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
35
|
Dechy-Cabaret O, Benoit-Vical F. Effects of Antimalarial Molecules on the Gametocyte Stage of Plasmodium falciparum: The Debate. J Med Chem 2012; 55:10328-44. [DOI: 10.1021/jm3005898] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Odile Dechy-Cabaret
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Service de Parasitologie-Mycologie
and Faculté de Médecine de Rangueil, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
36
|
Brown T, Smith LS, Oo EKS, Shawng K, Lee TJ, Sullivan D, Beyrer C, Richards AK. Molecular surveillance for drug-resistant Plasmodium falciparum in clinical and subclinical populations from three border regions of Burma/Myanmar: cross-sectional data and a systematic review of resistance studies. Malar J 2012; 11:333. [PMID: 22992214 PMCID: PMC3518194 DOI: 10.1186/1475-2875-11-333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/15/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Confirmation of artemisinin-delayed parasite clearance in Plasmodium falciparum along the Thai-Myanmar border has inspired a global response to contain and monitor drug resistance to avert the disastrous consequences of a potential spread to Africa. However, resistance data from Myanmar are sparse, particularly from high-risk areas where limited health services and decades of displacement create conditions for resistance to spread. Subclinical infections may represent an important reservoir for resistance genes that confer a fitness disadvantage relative to wild-type alleles. This study estimates the prevalence of resistance genotypes in three previously unstudied remote populations in Myanmar and tests the a priori hypothesis that resistance gene prevalence would be higher among isolates collected from subclinical infections than isolates collected from febrile clinical patients. A systematic review of resistance studies is provided for context. METHODS Community health workers in Karen and Kachin States and an area spanning the Indo-Myanmar border collected dried blood spots from 988 febrile clinical patients and 4,591 villagers with subclinical infection participating in routine prevalence surveys. Samples positive for P. falciparum 18 s ribosomal RNA by real-time PCR were genotyped for P. falciparum multidrug resistance protein (pfmdr1) copy number and the pfcrt K76T polymorphism using multiplex real-time PCR. RESULTS Pfmdr1 copy number increase and the pfcrt K76 polymorphism were determined for 173 and 269 isolates, respectively. Mean pfmdr1 copy number was 1.2 (range: 0.7 to 3.7). Pfmdr1 copy number increase was present in 17.5%, 9.6% and 11.1% of isolates from Karen and Kachin States and the Indo-Myanmar border, respectively. Pfmdr1 amplification was more prevalent in subclinical isolates (20.3%) than clinical isolates (6.4%, odds ratio 3.7, 95% confidence interval 1.1 - 12.5). Pfcrt K76T prevalence ranged from 90-100%. CONCLUSIONS Community health workers can contribute to molecular surveillance of drug resistance in remote areas of Myanmar. Marginal and displaced populations under-represented among previous resistance investigations can and should be included in resistance surveillance efforts, particularly once genetic markers of artemisinin-delayed parasite clearance are identified. Subclinical infections may contribute to the epidemiology of drug resistance, but determination of gene amplification from desiccated filter samples requires further validation when DNA concentration is low.
Collapse
Affiliation(s)
- Tyler Brown
- Johns Hopkins University School of Medicine, Broadway Research Building, 733 N. Broadway, Suite 147, Baltimore, MD, 21205, USA
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
| | - Linda S Smith
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
| | - Eh Kalu Shwe Oo
- Karen Department of Health and Welfare, PO Box 189, Mae Sot, Tak, 63110, Thailand
| | - Kum Shawng
- Office of the Director of the Health Department, Kachin Baptist Convention 135/Shan Su (South), Myitkyina, Kachin State, Myanmar
| | - Thomas J Lee
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
- School of Medicine, University of California at Los Angeles, 924 Westwood Blvd, Suite 300, Los Angeles, CA, 90024, USA
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health 615 North Wolfe St, Room E5628, Baltimore, MD, 21205, USA
| | - Chris Beyrer
- Department of Epidemiology Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Suite E7152, Baltimore, MD, 21205, USA
| | - Adam K Richards
- Global Health Access Program, 2550 Ninth Street, Ste 111, Berkeley, CA, 94710, USA
- Department of General Internal Medicine and Health Services Research, University of California at Los Angeles, 911 Broxton Ave, Los Angeles, CA, 90025, USA
| |
Collapse
|
37
|
Abstract
BACKGROUND Mosquitoes become infected with malaria when they ingest gametocyte stages of the parasite from the blood of a human host. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ). The World Health Organization (WHO) recommends giving a single dose or short course of PQ alongside primary treatment for people ill with P. falciparum infection to reduce malaria transmission. Gametocytes themselves cause no symptoms, so this intervention does not directly benefit individuals. PQ causes haemolysis in some people with glucose-6-phosphate dehydrogenase (G6PD) deficiency so may not be safe. OBJECTIVES To assess whether a single dose or short course of PQ added to treatments for malaria caused by P. falciparum infection reduces malaria transmission and is safe. SEARCH METHODS We searched the following databases up to 10 April 2012 for studies: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT) and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and we contacted likely researchers and organizations for relevant trials. SELECTION CRITERIA Trials of mass treatment of whole populations (or actively detected fever or malaria cases within such populations) with antimalarial drugs, compared to treatment with the same drug plus PQ; or patients with clinical malaria being treated for malaria at health facilities randomized to short course/single dose PQ versus no PQ. DATA COLLECTION AND ANALYSIS Two authors (PMG and HG) independently screened all abstracts, applied inclusion criteria, and abstracted data. We sought data on the effect of PQ on malaria transmission intensity, participant infectiousness, the number of participants with gametocytes, and gametocyte density over time. We stratified results by primary treatment drug as this may modify any PQ effect. We calculated the area under the curve (AUC) for gametocyte density over time for comparisons for which data were available, and also sought data on haematologic and other adverse effects. We used GRADE guidelines to assess evidence quality, and this is reflected in the wording of the results: high quality ("PQ reduces ...."); moderate quality ("PQ probably reduces ..."); low quality ("PQ may reduce...."); and very low quality ("we don't know if PQ reduces...."). MAIN RESULTS We included 11 individually randomized trials, with a total of 1776 individuals. The 11 trials included 20 comparisons with partner drugs, which included chloroquine (CQ), sulfadoxine-pyrimethamine (SP), mefloquine (MQ), quinine (QN), artesunate (AS), and a variety of artemisinin combination therapies (ACTs). For G6PD deficiency, studies either did not test (one study), tested and included all (one study), included only G6PD deficient (one study), excluded G6PD deficient (two studies), or made no comment (six studies).None of the trials we included assessed effects on malaria transmission (incidence, prevalence, or entomological inoculation rate (EIR)) in the trial area.With non-artemisinin drug regimens, PQ may reduce the infectiousness to mosquitoes of individuals treated, based on one small study with large effects (Risk Ratio (RR) 0.06 on day 8 after treatment, 95% confidence interval (CI) 0 to 0.89; low quality evidence). Participants who received PQ had fewer circulating gametocytes up to day 43 (log(10) AUC relative decrease from 24.3 to 27.1%, one study (two comparisons), moderate quality evidence); and there were 38% fewer people with gametocytes on day 8 (RR 0.62, 95% CI 0.51 to 0.76, four studies (five comparisons), moderate quality evidence). We did not identify any study that looked for effects of the drug on haemolytic anaemia.With artemisinin-based drug regimens, we do not know if PQ influences infectiousness to mosquitoes, as no study has examined this directly. PQ probably reduces infectiousness, based on reduction in log(10) AUC (relative decrease range from 26.1% to 87.5%, two studies (six comparisons), moderate quality evidence); and reduces by 88% the number of participants with gametocytes on day 8 (RR 0.12, 95% CI 0.08 to 0.20, four studies (eight comparisons), moderate quality evidence).When used with artemisinin-based regimens, we do not know if PQ results in haemolytic anaemia; one trial reported percent change in mean haemoglobin against baseline, and for the PQ group this indicated a significantly greater drop at day 8 in those given PQ (very low quality evidence). Overall, the safety of PQ used in single dose or short course was poorly evaluated. AUTHORS' CONCLUSIONS We do not know whether PQ added to treatment regimens for patients with P. falciparum infection reduces transmission of malaria. In individual patients, it reduces gametocyte prevalence and density. In practical terms, even if PQ results in large reductions in gametocytes in people being treated for malaria, there is no reliable evidence that this will reduce transmission in a malaria-endemic community, where many people are infected but have no symptoms and are unlikely to be treated. Since PQ is acting as a monotherapy against gametocytes, there is a risk of the parasite developing resistance to the drug. In terms of harms, there is insufficient evidence from trials to know whether the drug can be used safely in this way in populations where G6PD deficiency occurs.In light of these doubts about safety, and lack of evidence of any benefit in reducing transmission, countries should question whether to continue to use PQ routinely in primary treatment of malaria. Further synthesis of observational data on safety and new trials may help elucidate a role for PQ in malaria elimination, or in situations where most infected individuals are symptomatic and receive treatment.
Collapse
|
38
|
Klein EY, Smith DL, Laxminarayan R, Levin S. Superinfection and the evolution of resistance to antimalarial drugs. Proc Biol Sci 2012; 279:3834-42. [PMID: 22787024 DOI: 10.1098/rspb.2012.1064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance.
Collapse
Affiliation(s)
- Eili Y Klein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
39
|
Eteng MU, Abolaji AO, Ebong PE, Brisibe EA, Dar A, Kabir N, Iqbal Choudhary M. Biochemical and Haematological Evaluation of Repeated Dose Exposure of Male Wistar Rats to an Ethanolic Extract ofArtemisia annua. Phytother Res 2012; 27:602-9. [DOI: 10.1002/ptr.4758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/20/2012] [Accepted: 05/20/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Mbeh U. Eteng
- Department of Biochemistry, Faculty of Basic Medical Sciences; University of Calabar; P.M.B. 1115; Calabar; Cross River State; Nigeria
| | | | - Patrick E. Ebong
- Department of Biochemistry, Faculty of Basic Medical Sciences; University of Calabar; P.M.B. 1115; Calabar; Cross River State; Nigeria
| | | | - Ahsana Dar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences; University of Karachi; Karachi; 75270; Pakistan
| | - Nurul Kabir
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences; University of Karachi; Karachi; 75270; Pakistan
| | - M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences; University of Karachi; Karachi; 75270; Pakistan
| |
Collapse
|
40
|
Abolaji AO, Eteng MU, Ebong PE, Brisibe EA, Dar A, Kabir N, Choudhary MI. A safety assessment of the antimalarial herb Artemisia annua during pregnancy in Wistar rats. Phytother Res 2012; 27:647-54. [PMID: 22736625 DOI: 10.1002/ptr.4760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 11/11/2022]
Abstract
Artemisia annua is a Chinese antimalarial herb that has been used for more than 2000 years. The maternal and foetal safety of the ethanolic leaf extract of therapeutically active Artemisia annua (EAA), with previously determined artemisinin yield of 1.098% was evaluated in Wistar rats. Twenty pregnant rats, divided into four study groups of saline treated (control), and test groups administered orally with 100, 200 and 300 mg/kg body weights of EAA, respectively, from gestation days (GD) 8 to 19. Following overnight fast, animals were sacrificed on GD 20, and maternal blood was collected to evaluate biochemical and haematological markers. Foetuses were carefully removed, weighed, and observed for any possible malformation. Biochemical and haematological studies revealed that EAA did not result in maternal hepatotoxicity, haematotoxicity, and hyperlipidemia. While litter size significantly decreased (p < 0.05) at 100 mg/kg EAA, maternal estrogen levels decreased in all the EAA-treated groups. Non-viable (21%) and malformed (31%) foetuses were observed at the 300 mg/kg dose of EAA, which implies that although consumption of the leaf extract may not predispose users to hepatotoxicity, haematotoxicity, and hyperlipidemia, it should be taken with caution during pregnancy due to possible risk of embryotoxicity at concentrations higher than the therapeutic dose.
Collapse
Affiliation(s)
- Amos O Abolaji
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bell AS, Huijben S, Paaijmans KP, Sim DG, Chan BHK, Nelson WA, Read AF. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria. PLoS One 2012; 7:e37172. [PMID: 22701563 PMCID: PMC3368907 DOI: 10.1371/journal.pone.0037172] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/17/2012] [Indexed: 11/19/2022] Open
Abstract
The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.
Collapse
Affiliation(s)
- Andrew S. Bell
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Silvie Huijben
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Krijn P. Paaijmans
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Derek G. Sim
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Brian H. K. Chan
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - William A. Nelson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
42
|
Jovel IT, Mejía RE, Banegas E, Piedade R, Alger J, Fontecha G, Ferreira PE, Veiga MI, Enamorado IG, Bjorkman A, Ursing J. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America. Malar J 2011; 10:376. [PMID: 22183028 PMCID: PMC3266654 DOI: 10.1186/1475-2875-10-376] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/19/2011] [Indexed: 12/19/2022] Open
Abstract
Background In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.
Collapse
Affiliation(s)
- Irina T Jovel
- Malaria Research Laboratory, Infectious Diseases Unit, Department of Medicine, Karolinska University Hospital/Karolinska Institutet, Retzius väg 10, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Impact of changing drug treatment and malaria endemicity on the heritability of malaria phenotypes in a longitudinal family-based cohort study. PLoS One 2011; 6:e26364. [PMID: 22073159 PMCID: PMC3207815 DOI: 10.1371/journal.pone.0026364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/25/2011] [Indexed: 11/20/2022] Open
Abstract
Despite considerable success of genome wide association (GWA) studies in identifying causal variants for many human diseases, their success in unraveling the genetic basis to complex diseases has been more mitigated. Pathogen population structure may impact upon the infectious phenotype, especially with the intense short-term selective pressure that drug treatment exerts on pathogens. Rigorous analysis that accounts for repeated measures and disentangles the influence of genetic and environmental factors must be performed. Attempts should be made to consider whether pathogen diversity will impact upon host genetic responses to infection.We analyzed the heritability of two Plasmodium falciparum phenotypes, the number of clinical malaria episodes (PFA) and the proportion of these episodes positive for gametocytes (Pfgam), in a family-based cohort followed for 19 years, during which time there were four successive drug treatment regimes, with documented appearance of drug resistance. Repeated measures and variance components analyses were performed with fixed environmental, additive genetic, intra-individual and maternal effects for each drug period. Whilst there was a significant additive genetic effect underlying PFA during the first drug period of study, this was lost in subsequent periods. There was no additive genetic effect for Pfgam. The intra-individual effect increased significantly in the chloroquine period.The loss of an additive genetic effect following novel drug treatment may result in significant loss of power to detect genes in a GWA study. Prior genetic analysis must be a pre-requisite for more detailed GWA studies. The temporal changes in the individual genetic and the intra-individual estimates are consistent with those expected if there were specific host-parasite interactions. The complex basis to the human response to malaria parasite infection likely includes dominance/epistatic genetic effects encompassed within the intra-individual variance component. Evaluating their role in influencing the outcome of infection through host genotype by parasite genotype interactions warrants research effort.
Collapse
|
44
|
Mideo N, Nelson WA, Reece SE, Bell AS, Read AF, Day T. Bridging scales in the evolution of infectious disease life histories: application. Evolution 2011; 65:3298-310. [PMID: 22023593 DOI: 10.1111/j.1558-5646.2011.01382.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Within- and between-host disease processes occur on the same timescales, therefore changes in the within-host dynamics of parasites, resources, and immunity can interact with changes in the epidemiological dynamics to affect evolutionary outcomes. Consequently, studies of the evolution of disease life histories, that is, infection-age-specific patterns of transmission and virulence, have been constrained by the need for a mechanistic understanding of within-host disease dynamics. In a companion paper (Day et al. 2011), we develop a novel approach that quantifies the relevant within-host aspects of disease through genetic covariance functions. Here, we demonstrate how to apply this theory to data. Using two previously published datasets from rodent malaria infections, we show how to translate experimental measures into disease life-history traits, and how to quantify the covariance in these traits. Our results show how patterns of covariance can interact with epidemiological dynamics to affect evolutionary predictions for disease life history. We also find that the selective constraints on disease life-history evolution can vary qualitatively, and that "simple" virulence-transmission trade-offs that are often the subject of experimental investigation can be obscured by trade-offs within one trait alone. Finally, we highlight the type and quality of data required for future applications.
Collapse
Affiliation(s)
- Nicole Mideo
- Centre for Immunity, Infection, and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011; 24:377-410. [PMID: 21482730 PMCID: PMC3122489 DOI: 10.1128/cmr.00051-10] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| |
Collapse
|
46
|
Churcher TS, Dawes EJ, Sinden RE, Christophides GK, Koella JC, Basáñez MG. Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions. Malar J 2010; 9:311. [PMID: 21050427 PMCID: PMC2988043 DOI: 10.1186/1475-2875-9-311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022] Open
Abstract
Background The combined effects of multiple density-dependent, regulatory processes may have an important impact on the growth and stability of a population. In a malaria model system, it has been shown that the progression of Plasmodium berghei through Anopheles stephensi and the survival of the mosquito both depend non-linearly on parasite density. These processes regulating the development of the malaria parasite within the mosquito may influence the success of transmission-blocking interventions (TBIs) currently under development. Methods An individual-based stochastic mathematical model is used to investigate the combined impact of these multiple regulatory processes and examine how TBIs, which target different parasite life-stages within the mosquito, may influence overall parasite transmission. Results The best parasite molecular targets will vary between different epidemiological settings. Interventions that reduce ookinete density beneath a threshold level are likely to have auxiliary benefits, as transmission would be further reduced by density-dependent processes that restrict sporogonic development at low parasite densities. TBIs which reduce parasite density but fail to clear the parasite could cause a modest increase in transmission by increasing the number of infectious bites made by a mosquito during its lifetime whilst failing to sufficiently reduce its infectivity. Interventions with a higher variance in efficacy will therefore tend to cause a greater reduction in overall transmission than a TBI with a more uniform effectiveness. Care should be taken when interpreting these results as parasite intensity values in natural parasite-vector combinations of human malaria are likely to be significantly lower than those in this model system. Conclusions A greater understanding of the development of the malaria parasite within the mosquito is required to fully evaluate the impact of TBIs. If parasite-induced vector mortality influenced the population dynamics of Plasmodium species infecting humans in malaria endemic regions, it would be important to quantify the variability and duration of TBI efficacy to ensure that community benefits of control measures are not overestimated.
Collapse
Affiliation(s)
- Thomas S Churcher
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Huijben S, Nelson WA, Wargo AR, Sim DG, Drew DR, Read AF. Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites. Evolution 2010; 64:2952-68. [PMID: 20584075 DOI: 10.1111/j.1558-5646.2010.01068.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria model Plasmodium chabaudi, we found that low-dose chemotherapy did reduce competitive release. A higher drug dose regimen exerted stronger positive selection on resistant parasites for no detectable clinical gain. We estimated instantaneous selection coefficients throughout the course of replicate infections to analyze the temporal pattern of the strength and direction of within-host selection. The strength of selection on resistance varied through the course of infections, even in untreated infections, but increased immediately following drug treatment, particularly in the high-dose groups. Resistance remained under positive selection for much longer than expected from the half life of the drug. Although there are many differences between mice and people, our data do raise the question whether the aggressive treatment regimens aimed at complete parasite clearance are the best resistance-management strategies for humans.
Collapse
Affiliation(s)
- Silvie Huijben
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania 16827, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Alvarez G, Tobón A, Piñeros JG, Ríos A, Blair S. Dynamics of Plasmodium falciparum parasitemia regarding combined treatment regimens for acute uncomplicated malaria, Antioquia, Colombia. Am J Trop Med Hyg 2010; 83:90-6. [PMID: 20595483 DOI: 10.4269/ajtmh.2010.09-0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Selecting suitable anti-malarial treatment represents one of the best tools for reducing morbidity and mortality caused by this disease. Sexual and asexual parasite dynamics were thus evaluated in patients involved in antimalarial drug efficacy studies by using combined treatment with and without artemisinin derivatives for treating uncomplicated acute Plasmodium falciparum malaria in Antioquia, Colombia. All treatment doses were supervised and administered according to patients' weight; sexual and asexual parasitemia were evaluated during 28- or 42-days follow-up in 468 patients. Artemisinin-based combination therapy showed greater parasiticidal ability, showing a mean asexual parasitemia survival rate of one day and mean gametocyte survival rate of 1-2 days. Sexual and asexual parasitemias were eliminated more quickly and effectively in the group receiving artemisinin-based combination therapy. Adding 45 mg of primaquine to treatment with artesunate and mefloquine reduced gametocyte and asexual parasite survival by one day.
Collapse
|
49
|
Mullié C, Jonet A, Dassonville-Klimpt A, Gosmann G, Sonnet P. Inhibitory effect of ursolic acid derivatives on hydrogen peroxide- and glutathione-mediated degradation of hemin: a possible additional mechanism of action for antimalarial activity. Exp Parasitol 2010; 125:202-7. [PMID: 20109452 DOI: 10.1016/j.exppara.2010.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 11/30/2022]
Abstract
Compounds obtained by the condensation of ursolic acid (UA) with 1,4-bis(3-aminopropyl)piperazines have previously been shown as cytocidal to Plasmodium falciparum strains. Preliminary results indicated that the inhibition of beta-hematin formation (one of the possible mechanisms of action of antimalarial drugs) was achieved by a few of these molecules with varying efficiencies. To gain further insight in the antimalarial action of UA derivatives, we report here the results of additional pathways that may explain their in vitro cytocidal activity such as inhibition of hemin degradation by H(2)O(2) or glutathione (GSH). H(2)O(2)-mediated hemin degradation was drastically reduced by hydroxybenzyl-substituted UA derivatives while UA and intermediate compounds displayed weaker inhibitory actions. The results of GSH-mediated hemin degradation inhibition did not parallel those of H(2)O(2) degradation as hydroxybenzyl-substituted UA only proved to be a weak inhibitor. As H(2)O(2) interaction with the iron moiety of hemin is the first step towards its degradation, we assume that the interaction of our products with the ferric ion in the hemin structure is of upmost importance in inhibiting its peroxidative degradation. A two-step mechanism of action implying (1) stacking of the acetylursolic acid structure to hemin and (2) additive protection of hemin ferric iron from H(2)O(2) by hydroxyphenyl groups through steric hindrance and/or trapping of oxygen reactive species in the direct neighborhood of ferric iron can be put forward. For GSH degradation pathway, grafting of UA structure with a piperazine structure gave the best inhibition, pleading for the implication of this latter moiety in the inhibitory process.
Collapse
Affiliation(s)
- Catherine Mullié
- Laboratoire des Glucides - UMR CNRS 6219, Faculté de Pharmacie, rue des Louvels, Amienx Cedex 1, France.
| | | | | | | | | |
Collapse
|
50
|
Distiller GB, Little F, Barnes KI. Nonlinear mixed effects modeling of gametocyte carriage in patients with uncomplicated malaria. Malar J 2010; 9:60. [PMID: 20187935 PMCID: PMC2845183 DOI: 10.1186/1475-2875-9-60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 02/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background Gametocytes are the sexual form of the malaria parasite and the main agents of transmission. While there are several factors that influence host infectivity, the density of gametocytes appears to be the best single measure that is related to the human host's infectivity to mosquitoes. Despite the obviously important role that gametocytes play in the transmission of malaria and spread of anti-malarial resistance, it is common to estimate gametocyte carriage indirectly based on asexual parasite measurements. The objective of this research was to directly model observed gametocyte densities over time, during the primary infection. Methods Of 447 patients enrolled in sulphadoxine-pyrimethamine therapeutic efficacy studies in South Africa and Mozambique, a subset of 103 patients who had no gametocytes pre-treatment and who had at least three non-zero gametocyte densities over the 42-day follow up period were included in this analysis. Results A variety of different functions were examined. A modified version of the critical exponential function was selected for the final model given its robustness across different datasets and its flexibility in assuming a variety of different shapes. Age, site, initial asexual parasite density (logged to the base 10), and an empirical patient category were the co-variates that were found to improve the model. Conclusions A population nonlinear modeling approach seems promising and produced a flexible function whose estimates were stable across various different datasets. Surprisingly, dihydrofolate reductase and dihydropteroate synthetase mutation prevalence did not enter the model. This is probably related to a lack of power (quintuple mutations n = 12), and informative censoring; treatment failures were withdrawn from the study and given rescue treatment, usually prior to completion of follow up.
Collapse
Affiliation(s)
- Greg B Distiller
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | |
Collapse
|