1
|
Bailly S, Machault V, Beneteau S, Palany P, Fritzell C, Girod R, Lacaux JP, Quénel P, Flamand C. Spatiotemporal Modeling of Aedes aegypti Risk: Enhancing Dengue Virus Control through Meteorological and Remote Sensing Data in French Guiana. Pathogens 2024; 13:738. [PMID: 39338929 PMCID: PMC11435255 DOI: 10.3390/pathogens13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
French Guiana lacks a dedicated model for developing an early warning system tailored to its entomological contexts. We employed a spatiotemporal modeling approach to predict the risk of Aedes aegypti larvae presence in local households in French Guiana. The model integrated field data on larvae, environmental data obtained from very high-spatial-resolution Pleiades imagery, and meteorological data collected from September 2011 to February 2013 in an urban area of French Guiana. The identified environmental and meteorological factors were used to generate dynamic maps with high spatial and temporal resolution. The study collected larval data from 261 different surveyed houses, with each house being surveyed between one and three times. Of the observations, 41% were positive for the presence of Aedes aegypti larvae. We modeled the Aedes larvae risk within a radius of 50 to 200 m around houses using six explanatory variables and extrapolated the findings to other urban municipalities during the 2020 dengue epidemic in French Guiana. This study highlights the potential of spatiotemporal modeling approaches to predict and monitor the evolution of vector-borne disease transmission risk, representing a major opportunity to monitor the evolution of vector risk and provide valuable information for public health authorities.
Collapse
Affiliation(s)
- Sarah Bailly
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Vanessa Machault
- Aerology Laboratory, Observatoire Midi-Pyrénées (OMP), Université Paul Sabatier, 31062 Toulouse, France
| | - Samuel Beneteau
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Philippe Palany
- Météo-France, Direction Antilles-Guyane, Fort-de-France 97262, Martinique
| | - Camille Fritzell
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
| | - Jean-Pierre Lacaux
- Aerology Laboratory, Observatoire Midi-Pyrénées (OMP), Université Paul Sabatier, 31062 Toulouse, France
| | - Philippe Quénel
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche En Santé, Environnement et Travail)-UMR-S 1085, 35000 Rennes, France
| | - Claude Flamand
- Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana
- Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, Phnom Penh 12201, Cambodia
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| |
Collapse
|
2
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
3
|
Jaramillo-Ramirez GI, Tacugue MC, Power GM, Qureshi R, Seelig F, Quintero J, Logan JG, Jones RT. A Qualitative Analysis of the Perceptions of Stakeholders Involved in Vector Control and Vector-Borne Disease Research and Surveillance in Orinoquia, Colombia. Trop Med Infect Dis 2024; 9:43. [PMID: 38393132 PMCID: PMC10892243 DOI: 10.3390/tropicalmed9020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
Colombia has a tropical climate and environmental conditions that favour the circulation of most of the known vector-borne diseases (VBDs). Protocols have been established and implemented to address the threats of these diseases, but they are for country-wide use and do not take into consideration the nuances of the different environments of the country. Almost the entire population is vulnerable to infection with one or more VBD. This study aims to characterise the perceptions and experiences of stakeholders involved in vector control and VBDs in the Orinoquia region in Colombia. Two panel discussions, and 12 semi-structured interviews, were conducted. Experts from the Colombian National Health Institute (INS), health secretaries from Meta, Guaviare and Vichada Departments, academic researchers, and individuals from private vector control companies participated. All sessions were recorded, transcribed, and translated, and then subject to thematic analysis. Three major themes emerged: involvement, limitations, and recommendations. Results showed that participants are engaged in vector surveillance activities, education, and vector control research. Participants focused on problems of disjointed efforts towards VBD control between health secretaries and the health ministry, as well as societal issues, such as socioeconomic, cultural, and political issues, which became the rationale for the lack of vector control resources. Responses in the panel discussions and interviews overlapped in opinions, and suggested that vector control could be improved through better communication between vector control bodies, strengthened engagement with vulnerable communities, more collaborative actions, and a more balanced distribution of resources.
Collapse
Affiliation(s)
| | - Maria Claudelle Tacugue
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Grace M Power
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Rimsha Qureshi
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Frederik Seelig
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Global Vector Hub, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Juliana Quintero
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Division of Population Health and Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá 110011, Colombia
| | - James G Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Robert T Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Global Vector Hub, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
4
|
Linking mathematical models and trap data to infer the proliferation, abundance, and control of Aedes aegypti. Acta Trop 2023; 239:106837. [PMID: 36657506 DOI: 10.1016/j.actatropica.2023.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Aedes aegypti is one of the most dominant mosquito species in the urban areas of Miami-Dade County, Florida, and is responsible for the local arbovirus transmissions. Since August 2016, mosquito traps have been placed throughout the county to improve surveillance and guide mosquito control and arbovirus outbreak response. In this paper, we develop a deterministic mosquito population model, estimate model parameters by using local entomological and temperature data, and use the model to calibrate the mosquito trap data from 2017 to 2019. We further use the model to compare the Ae. aegypti population and evaluate the impact of rainfall intensity in different urban built environments. Our results show that rainfall affects the breeding sites and the abundance of Ae. aegypti more significantly in tourist areas than in residential places. In addition, we apply the model to quantitatively assess the effectiveness of vector control strategies in Miami-Dade County.
Collapse
|
5
|
Catano-Lopez A, Rojas-Diaz D, Vélez CM. The Influence of Anthropogenic and Environmental Disturbances on Parameter Estimation of a Dengue Transmission Model. Trop Med Infect Dis 2022; 8:5. [PMID: 36668912 PMCID: PMC9861738 DOI: 10.3390/tropicalmed8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Some deterministic models deal with environmental conditions and use parameter estimations to obtain experimental parameters, but they do not consider anthropogenic or environmental disturbances, e.g., chemical control or climatic conditions. Even more, they usually use theoretical or measured in-lab parameters without worrying about uncertainties in initial conditions, parameters, or changes in control inputs. Thus, in this study, we estimate parameters (including chemical control parameters) and confidence contours under uncertainty conditions using data from the municipality of Bello (Colombia) during 2010-2014, which includes two epidemic outbreaks. Our study shows that introducing non-periodic pulse inputs into the mathematical model allows us to: (i) perform parameter estimation by fitting real data of consecutive dengue outbreaks, (ii) highlight the importance of chemical control as a method of vector control, and (iii) reproduce the endemic behavior of dengue. We described a methodology for parameter and sub-contour box estimation under uncertainties and performed reliable simulations showing the behavior of dengue spread in different scenarios.
Collapse
|
6
|
da Silva MR, Lugão PHG, Prezoto F, Chapiro G. Modeling the impact of genetically modified male mosquitoes in the spatial population dynamics of Aedes aegypti. Sci Rep 2022; 12:9112. [PMID: 35650219 PMCID: PMC9160293 DOI: 10.1038/s41598-022-12764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
The mosquito Aedes aegypti is the primary vector of diseases such as dengue, Zika, chikungunya, and yellow fever. Improving control techniques requires a better understanding of the mosquito’s life cycle, including spatial population dynamics in endemic regions. One of the most promising techniques consists of introducing genetically modified male mosquitoes. Several models proposed to describe this technique present mathematical issues or rely on numerous parameters, making their application challenging to real-world situations. We propose a model describing the spatial population dynamics of the Aedes aegypti in the presence of genetically modified males. This model presents some mathematical improvements compared to the literature allowing deeper mathematical analysis. Moreover, this model relies on few parameters, which we show how to obtain or estimate from the literature. Through numerical simulations, we investigate the impacts of environmental heterogeneity, the periodicity of genetically modified male releases, and released genetically modified males quantity on the population dynamics of Aedes aegypti. The main results point to that the successful application of this vector control technique relies on releasing more than a critical amount of modified males with a frequency exceeding a specific critical value.
Collapse
Affiliation(s)
- Monalisa R da Silva
- Laboratory of Applied Mathematics (LAMAP), Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Computational Modeling Graduate Program, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Federal Institute of the Southeast of Minas Gerais, Santos Dumont, MG, Brazil
| | - Pedro H G Lugão
- Computational Modeling Graduate Program - National Laboratory for Scientific Computing (LNCC), Petrópolis, RJ, Brazil
| | - Fábio Prezoto
- Department of Zoology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Grigori Chapiro
- Laboratory of Applied Mathematics (LAMAP), Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| |
Collapse
|
7
|
Romeo-Aznar V, Picinini Freitas L, Gonçalves Cruz O, King AA, Pascual M. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat Commun 2022; 13:996. [PMID: 35194017 PMCID: PMC8864019 DOI: 10.1038/s41467-022-28231-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
The spread of dengue and other arboviruses constitutes an expanding global health threat. The extensive heterogeneity in population distribution and potential complexity of movement in megacities of low and middle-income countries challenges predictive modeling, even as its importance to disease spread is clearer than ever. Using surveillance data at fine resolution from Rio de Janeiro, we document a scale-invariant pattern in the size of successive epidemics following DENV4 emergence. Using surveillance data at fine resolution following the emergence of the DENV4 dengue serotype in Rio de Janeiro, we document a pattern in the size of successive epidemics that is invariant to the scale of spatial aggregation. This pattern emerges from the combined effect of herd immunity and seasonal transmission, and is strongly driven by variation in population density at sub-kilometer scales. It is apparent only when the landscape is stratified by population density and not by spatial proximity as has been common practice. Models that exploit this emergent simplicity should afford improved predictions of the local size of successive epidemic waves.
Collapse
Affiliation(s)
- Victoria Romeo-Aznar
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Departamento de Ecología, Genética y Evolución, and Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- Mansueto Institute for Urban Innovation, The University of Chicago, Chicago, IL, USA
| | - Laís Picinini Freitas
- Postgraduate Program of Epidemiology in Public Health - Escola Nacional de Saúde Pública Sergio Arouca - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Programa de Computação Científica - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Aaron A King
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
- The Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
8
|
Muñoz E, Poveda G, Arbeláez MP, Vélez ID. Spatiotemporal dynamics of dengue in Colombia in relation to the combined effects of local climate and ENSO. Acta Trop 2021; 224:106136. [PMID: 34555353 DOI: 10.1016/j.actatropica.2021.106136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022]
Abstract
Dengue virus (DENV) is an endemic disease in the hot and humid low-lands of Colombia. We characterize the association of monthly series of dengue cases with indices of El Niño/Southern Oscillation (ENSO) at the tropical Pacific and local climatic variables in Colombia during the period 2007-2017 at different temporal and spatial scales. For estimation purposes, we use lagged cross-correlations (Pearson test), cross-wavelet analysis (wavelet cross spectrum, and wavelet coherence), as well as a novel nonlinear causality method, PCMCI, that allows identifying common causal drivers and links among high dimensional simultaneous and time-lagged variables. Our results evidence the strong association of DENV cases in Colombia with ENSO indices and with local temperature and rainfall. El Niño (La Niña) phenomenon is related to an increase (decrease) of dengue cases nationally and in most regions and departments, with maximum correlations occurring at shorter time lags in the Pacific and Andes regions, closer to the Pacific Ocean. This association is mainly explained by the ENSO-driven increase in temperature and decrease in rainfall, especially in the Andes and Pacific regions. The influence of ENSO is not stationary, given the reduction of DENV cases since 2005, and that local climate variables vary in space and time, which prevents to extrapolate results from one region to another. The association between DENV and ENSO varies at national and regional scales when data are disaggregated by seasons, being stronger in DJF and weaker in SON. Overall, the Pacific and Andes regions control the relationship between dengue dynamics and ENSO at national scale. Cross-wavelet analysis indicates that the ENSO-DENV relation in Colombia exhibits a strong coherence in the 12 to 16-months frequency band, which implies the frequency locking between the annual cycle and the interannual (ENSO) timescales. Results of nonlinear causality metrics reveal the complex concomitant effects of ENSO and local climate variables, while offering new insights to develop early warning systems for DENV in Colombia.
Collapse
Affiliation(s)
- Estefanía Muñoz
- World Mosquito Program, Colombia; Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín, Colombia.
| | - Germán Poveda
- Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín, Colombia
| | - M Patricia Arbeláez
- World Mosquito Program, Colombia; PECET, Universidad de Antioquia, Medellín, Colombia
| | - Iván D Vélez
- World Mosquito Program, Colombia; PECET, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
9
|
Aguirre E, Andreo V, Porcasi X, Lopez L, Guzman C, González P, Scavuzzo CM. Implementation of a proactive system to monitor Aedes aegypti populations using open access historical and forecasted meteorological data. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Johansen IC, Castro MCD, Alves LC, Carmo RLD. Population mobility, demographic, and environmental characteristics of dengue fever epidemics in a major city in Southeastern Brazil, 2007-2015. CAD SAUDE PUBLICA 2021; 37:e00079620. [PMID: 33886707 DOI: 10.1590/0102-311x00079620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022] Open
Abstract
Around 14% of world dengue virus (DENV) cases occur in the Americas, most of them in Brazil. While socioeconomic, environmental, and behavioral correlates have been analyzed thoroughly, the role played by population mobility on DENV epidemics, especially at the local level, remains scarce. This study assesses whether the daily pattern of population mobility is associated with DENV incidence in Campinas, a Brazilian major city with over 1.2 million inhabitants in São Paulo State. DENV notifications from 2007 to 2015 were geocoded at street level (n = 114,884) and combined with sociodemographic and environmental data from the 2010 population census. Population mobility was extracted from the Origin-Destination Survey (ODS), carried out in 2011, and daily precipitation was obtained from satellite imagery. Multivariate zero-inflated negative binomial regression models were applied. High population mobility presented a relevant positive effect on higher risk for DENV incidence. High income and residence in apartments were found to be protective characteristics against the disease, while unpaved streets, number of strategic points (such as scrapyards and tire repair shops), and precipitation were consistently risk factors.
Collapse
|
11
|
Chaves LF, Valerín Cordero JA, Delgado G, Aguilar-Avendaño C, Maynes E, Gutiérrez Alvarado JM, Ramírez Rojas M, Romero LM, Marín Rodríguez R. Modeling the association between Aedes aegypti ovitrap egg counts, multi-scale remotely sensed environmental data and arboviral cases at Puntarenas, Costa Rica (2017-2018). CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100014. [PMID: 35284867 PMCID: PMC8906134 DOI: 10.1016/j.crpvbd.2021.100014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Problems with vector surveillance are a major barrier for the effective control of vector-borne disease transmission through Latin America. Here, we present results from a 80-week longitudinal study where Aedes aegypti (L.) (Diptera: Culicidae) ovitraps were monitored weekly at 92 locations in Puntarenas, a coastal city in Costa Rica with syndemic Zika, chikungunya and dengue transmission. We used separate models to investigate the association of either Ae. aegypti-borne arboviral cases or Ae. aegypti egg counts with remotely sensed environmental variables. We also evaluated whether Ae. aegypti-borne arboviral cases were associated with Ae. aegypti egg counts. Using cross-correlation and time series modeling, we found that arboviral cases were not significantly associated with Ae. aegypti egg counts. Through model selection we found that cases had a non-linear response to multi-scale (1-km and 30-m resolution) measurements of temperature standard deviation (SD) with a lag of up to 4 weeks, while simultaneously increasing with finely-grained NDVI (30-m resolution). Meanwhile, median ovitrap Ae. aegypti egg counts increased, and respectively decreased, with temperature SD (1-km resolution) and EVI (30-m resolution) with a lag of 6 weeks. A synchrony analysis showed that egg counts had a travelling wave pattern, with synchrony showing cyclic changes with distance, a pattern not observed in remotely sensed data with 30-m and 10-m resolution. Spatially, using generalized additive models, we found that eggs were more abundant at locations with higher temperatures and where EVI was leptokurtic during the study period. Our results suggest that, in Puntarenas, remotely sensed environmental variables are associated with both Ae. aegypti-borne arbovirus transmission and Ae. aegypti egg counts from ovitraps.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Vigilancia de la Salud, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - José Angel Valerín Cordero
- Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Pacífico Central, Ministerio de Salud, Puntarenas, Puntarenas, Código Postal 60101, Costa Rica
| | - Gabriela Delgado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Carlos Aguilar-Avendaño
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Ezequías Maynes
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - José Manuel Gutiérrez Alvarado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Melissa Ramírez Rojas
- Vigilancia de la Salud, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| | - Luis Mario Romero
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Heredia, Apartado Postal 304-3000, Costa Rica
| | - Rodrigo Marín Rodríguez
- Vigilancia de la Salud, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San José, Apartado Postal 10123-1000, Costa Rica
| |
Collapse
|
12
|
Lorenz C, Castro MC, Trindade PMP, Nogueira ML, de Oliveira Lage M, Quintanilha JA, Parra MC, Dibo MR, Fávaro EA, Guirado MM, Chiaravalloti-Neto F. Predicting Aedes aegypti infestation using landscape and thermal features. Sci Rep 2020; 10:21688. [PMID: 33303912 PMCID: PMC7729962 DOI: 10.1038/s41598-020-78755-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/30/2020] [Indexed: 11/15/2022] Open
Abstract
Identifying Aedes aegypti breeding hotspots in urban areas is crucial for the design of effective vector control strategies. Remote sensing techniques offer valuable tools for mapping habitat suitability. In this study, we evaluated the association between urban landscape, thermal features, and mosquito infestations. Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a neighborhood of São José do Rio Preto, São Paulo, Brazil, in which the numbers of adult female Ae. aegypti were recorded monthly and grouped by season for three years. We used data from 2016 to 2018 to build the model and data from summer of 2019 to validate it. WorldView-3 satellite images were used to extract land cover classes, and land surface temperature data were obtained using the Landsat-8 Thermal Infrared Sensor (TIRS). A multilevel negative binomial model was fitted to the data, which showed that the winter season has the greatest influence on decreases in mosquito abundance. Green areas and pavements were negatively associated, and a higher cover of asbestos roofs and exposed soil was positively associated with the presence of adult females. These features are related to socio-economic factors but also provide favorable breeding conditions for mosquitos. The application of remote sensing technologies has significant potential for optimizing vector control strategies, future mosquito suppression, and outbreak prediction.
Collapse
Affiliation(s)
- Camila Lorenz
- Department of Epidemiology, School of Public Health - University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brazil.
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patricia M P Trindade
- Southern Regional Centre of the National Institute for Space Research (INPE), Santa Maria, RS, Brazil
| | - Maurício L Nogueira
- Virology Research Laboratory, Faculty of Medicine of São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Mariana de Oliveira Lage
- Scientific Division of Management, Environmental Science and Technology of the Institute of Energy and Environment - IEE of University of Sao Paulo, São Paulo, SP, Brazil
| | - José A Quintanilha
- Scientific Division of Management, Environmental Science and Technology of the Institute of Energy and Environment - IEE of University of Sao Paulo, São Paulo, SP, Brazil
| | - Maisa C Parra
- Virology Research Laboratory, Faculty of Medicine of São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Margareth R Dibo
- Entomology Laboratory, Endemics Control Superintendence, São Paulo, SP, Brazil
| | - Eliane A Fávaro
- Virology Research Laboratory, Faculty of Medicine of São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Marluci M Guirado
- Vectors Laboratory, Endemics Control Superintendence, São José do Rio Preto, SP, Brazil
| | - Francisco Chiaravalloti-Neto
- Department of Epidemiology, School of Public Health - University of Sao Paulo, Av. Dr. Arnaldo, São Paulo, SP, 715, Brazil
| |
Collapse
|
13
|
Moura MCBDM, de Oliveira JV, Pedreira RM, Tavares ADM, de Souza TA, de Lima KC, Barbosa IR. Spatio-temporal dynamics of Aedes aegypti and Aedes albopictus oviposition in an urban area of northeastern Brazil. Trop Med Int Health 2020; 25:1510-1521. [PMID: 32959943 DOI: 10.1111/tmi.13491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of this study was to analyse abundance and spatial distribution of Aedes aegypti and Aedes albopictus oviposition in the city of Natal-RN, 2016 to 2018. METHODS Three hundred and seven oviposition traps were installed covered the whole city and were monitored weekly from January 2016 to December 2018. To verify the abundance of the vector based on its location, the formation of oviposition clusters was studied using the Kernel statistics. Egg Density Index (EDI) and Oviposition Positivity Index (OPI) values were calculated. RESULTS Temperature and humidity presented weak and very weak correlation, respectively, with the oviposition indicators. The median of oviposition positivity index (OPI) was 60.5%, and the egg density index (EDI) was 45.4 eggs/trap. The OPI (71.1%) was higher in the second quarter of the year. The areas with the most persistent oviposition are located in a continuous strip that extends from the extreme of the northern district and extends along the western district of the city. Also noteworthy is the proximity to the strategic points. CONCLUSION The spatio-temporal distribution of oviposition revealed that there is spatial segregation and marked seasonality. Therefore, this study highlights the importance of maintaining surveillance targeting and control strategies focused on these areas, especially during the most important period of the year.
Collapse
Affiliation(s)
| | | | | | | | - Talita Araujo de Souza
- Postgratuate in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kenio Costa de Lima
- Postgraduate in Public Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
14
|
Sedda L, Taylor BM, Eiras AE, Marques JT, Dillon RJ. Using the intrinsic growth rate of the mosquito population improves spatio-temporal dengue risk estimation. Acta Trop 2020; 208:105519. [PMID: 32389450 PMCID: PMC7315132 DOI: 10.1016/j.actatropica.2020.105519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/29/2022]
Abstract
Understanding geographic population dynamics of mosquitoes is an essential requirement for estimating the risk of mosquito-borne disease transmission and geographically targeted interventions. However, the use of population dynamics measures, such as the intrinsic growth rate, as predictors in spatio-temporal point processes has not been investigated before. In this work we compared the predictive accuracy of four spatio-temporal log-Gaussian Cox models: (i) With no predictors; (ii) mosquito abundance as predictor; (iii) intrinsic growth rate as predictor; (iv) intrinsic growth rate and mosquito abundance as predictors. This analysis is based on Aedes aegypti mosquito surveillance and human dengue data obtained from the urban area of Caratinga, Brazil. We used a statistical Moran Curve approach to estimate the intrinsic growth rate and a zero inflated Poisson kriging model for estimating mosquito abundance at locations of dengue cases. The incidence of dengue cases was positively associated with mosquito intrinsic growth rate and this model outperformed, in terms of predictive accuracy, the abundance and the null models. The latter includes only the spatio-temporal random effect but no predictors. In the light of these results we suggest that the intrinsic growth rate should be investigated further as a potential tool for predicting the risk of dengue transmission and targeting health interventions for vector-borne diseases.
Collapse
Affiliation(s)
- Luigi Sedda
- Lancaster Medical School, Furness Building, Lancaster University, Lancaster, LA1 4YG, UK.
| | - Benjamín M Taylor
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Furness Building, Lancaster University, Lancaster, LA1 4YG, UK
| | - Alvaro E Eiras
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil; Institut de biologie moléculaire et cellulaire, Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourrg, France
| | - Rod J Dillon
- Biomedical and Life Sciences, Furness Building, Lancaster University, Lancaster, LA1 4YG, UK
| |
Collapse
|
15
|
El Moustaid F, Johnson LR. Modeling Temperature Effects on Population Density of the Dengue Mosquito Aedes aegypti. INSECTS 2019; 10:E393. [PMID: 31703421 PMCID: PMC6920917 DOI: 10.3390/insects10110393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023]
Abstract
Mosquito density plays an important role in the spread of mosquito-borne diseases such as dengue and Zika. While it remains very challenging to estimate the density of mosquitoes, modelers have tried different methods to represent it in mathematical models. The goal of this paper is to investigate the various ways mosquito density has been quantified, as well as to propose a dynamical system model that includes the details of mosquito life stages leading to the adult population. We first discuss the mosquito traits involved in determining mosquito density, focusing on those that are temperature dependent. We evaluate different forms of models for mosquito densities based on these traits and explore their dynamics as temperature varies. Finally, we compare the predictions of the models to observations of Aedes aegypti abundances over time in Vitòria, Brazil. Our results indicate that the four models exhibit qualitatively and quantitatively different behaviors when forced by temperature, but that all seem reasonably consistent with observed abundance data.
Collapse
Affiliation(s)
- Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Leah R. Johnson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
16
|
Forecasting dengue fever in Brazil: An assessment of climate conditions. PLoS One 2019; 14:e0220106. [PMID: 31393908 PMCID: PMC6687106 DOI: 10.1371/journal.pone.0220106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Local climate conditions play a major role in the biology of the Aedes aegypti mosquito, the main vector responsible for transmitting dengue, zika, chikungunya and yellow fever in urban centers. For this reason, a detailed assessment of periods in which changes in climate conditions affect the number of human cases may improve the timing of vector-control efforts. In this work, we develop new machine-learning algorithms to analyze climate time series and their connection to the occurrence of dengue epidemic years for seven Brazilian state capitals. Our method explores the impact of two key variables-frequency of precipitation and average temperature-during a wide range of time windows in the annual cycle. Our results indicate that each Brazilian state capital considered has its own climate signatures that correlate with the overall number of human dengue-cases. However, for most of the studied cities, the winter preceding an epidemic year shows a strong predictive power. Understanding such climate contributions to the vector's biology could lead to more accurate prediction models and early warning systems.
Collapse
|
17
|
Ebranati E, Veo C, Carta V, Percivalle E, Rovida F, Frati ER, Amendola A, Ciccozzi M, Tanzi E, Galli M, Baldanti F, Zehender G. Time-scaled phylogeography of complete Zika virus genomes using discrete and continuous space diffusion models. INFECTION GENETICS AND EVOLUTION 2019; 73:33-43. [PMID: 30974264 DOI: 10.1016/j.meegid.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
Abstract
Zika virus (ZIKV), a vector-borne infectious agent that has recently been associated with neurological diseases and congenital microcephaly, was first reported in the Western hemisphere in early 2015. A number of authors have reconstructed its epidemiological history using advanced phylogenetic approaches, and the majority of Zika phylogeography studies have used discrete diffusion models. Continuous space diffusion models make it possible to infer the possible origin of the virus in real space by reconstructing its ancestral location on the basis of geographical coordinates deduced from the latitude and longitude of the sampling locations. We analysed all the ZIKV complete genome isolates whose sampling times and localities were available in public databases at the time the study began, using a Bayesian approach for discrete and continuous phylogeographic reconstruction. The discrete phylogeographic analysis suggested that ZIKV emerged to become endemic/epidemic in the first decade of the 1900s in the Ugandan rainforests, and then reached Western Africa and Asia between the 1930s and 1950s. After a long period of about 40 years, it spread to the Pacific islands and reached Brazil from French Polynesia. Continuous phylogeography of the American epidemic showed that the virus entered in north-eastern Brazil in late 2012 and started to spread in early 2013 from two high probability regions: one corresponding to the entire north-east Brazil and the second surrounding the city of Rio de Janeiro, in a mainly northwesterly direction to Central America, the north-western countries of south America and the Caribbean islands. Our data suggest its cryptic circulation in both French Polynesia and Brazil, thus raising questions about the mechanisms underlying its undetected persistence in the absence of a known animal reservoir, and underline the importance of continuous diffusion models in making more reliable phylogeographic reconstructions of emerging viruses.
Collapse
Affiliation(s)
- Erika Ebranati
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milano, Italy; CRC-Coordinated Research Center "EpiSoMI", University of Milan, Milano, Italy
| | - Carla Veo
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milano, Italy; CRC-Coordinated Research Center "EpiSoMI", University of Milan, Milano, Italy
| | - Valentina Carta
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milano, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Rosanna Frati
- CRC-Coordinated Research Center "EpiSoMI", University of Milan, Milano, Italy; Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Antonella Amendola
- CRC-Coordinated Research Center "EpiSoMI", University of Milan, Milano, Italy; Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Italy
| | - Elisabetta Tanzi
- CRC-Coordinated Research Center "EpiSoMI", University of Milan, Milano, Italy; Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milano, Italy; CRC-Coordinated Research Center "EpiSoMI", University of Milan, Milano, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milano, Italy; CRC-Coordinated Research Center "EpiSoMI", University of Milan, Milano, Italy.
| |
Collapse
|
18
|
Mathematical modeling of dengue epidemic: control methods and vaccination strategies. Theory Biosci 2019; 138:223-239. [PMID: 30740641 DOI: 10.1007/s12064-019-00273-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/02/2019] [Indexed: 01/12/2023]
Abstract
Dengue is, in terms of death and economic cost, one of the most important infectious diseases in the world. So, its mathematical modeling can be a valuable tool to help us to understand the dynamics of the disease and to infer about its spreading by the proposition of control methods. In this paper, control strategies, which aim to eliminate the Aedes aegypti mosquito, as well as proposals for the vaccination campaign are evaluated. In our mathematical model, the mechanical control is accomplished through the environmental support capacity affected by a discrete function that represents the removal of breedings. Chemical control is carried out using insecticide and larvicide. The efficiency of vaccination is studied through the transfer of a fraction of individuals, proportional to the vaccination rate, from the susceptible to the recovered compartments. Our major find is that the dengue fever epidemic is only eradicated with the use of an immunizing vaccine because control measures, directed against its vector, are not enough to halt the disease spreading. Even when the infected mosquitoes are eliminated from the system, the susceptible ones are still present, and infected humans cause dengue fever to reappear in the human population.
Collapse
|
19
|
Lana RM, Morais MM, de Lima TFM, Carneiro TGDS, Stolerman LM, dos Santos JPC, Cortés JJC, Eiras ÁE, Codeço CT. Assessment of a trap based Aedes aegypti surveillance program using mathematical modeling. PLoS One 2018; 13:e0190673. [PMID: 29304070 PMCID: PMC5755894 DOI: 10.1371/journal.pone.0190673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to assess the goodness-of-fit of theoretical models of population dynamics of Aedes aegypti to trap data collected by a long term entomological surveillance program. The carrying capacity K of this vector was estimated at city and neighborhood level. Adult mosquito abundance was measured via adults collected weekly by a network of sticky traps (Mosquitraps) from January 2008 to December 2011 in Vitória, Espírito Santo, Brazil. K was the only free parameter estimated by the model. At the city level, the model with temperature as a driver captured the seasonal pattern of mosquito abundance. At the local level, we observed a spatial heterogeneity in the estimated carrying capacity between neighborhoods, weakly associated with environmental variables related to poor infrastructure. Model goodness-of-fit was influenced by the number of sticky traps, and suggests a minimum of 16 traps at the neighborhood level for surveillance.
Collapse
Affiliation(s)
- Raquel Martins Lana
- Programa de Computação Científica, (PROCC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Maíra Moreira Morais
- Centro Universitário de Belo Horizonte (UniBH), Belo Horizonte, Minas Gerais, Brazil
| | - Tiago França Melo de Lima
- Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP), João Monlevade, Minas Gerais, Brazil
| | | | - Lucas Martins Stolerman
- Programa de Computação Científica, (PROCC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jefferson Pereira Caldas dos Santos
- Programa de Pós-Graduação em Epidemiologia em Saúde Pública, Escola Nacional de Saúde Pública Sérgio Arouca (ENSP), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Álvaro Eduardo Eiras
- Laboratório de Ecologia Química de Insetos Vetores (Labeq), Departamento de Parasitologia Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Torres Codeço
- Programa de Computação Científica, (PROCC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Santos-Vega M, Martinez PP, Pascual M. Climate forcing and infectious disease transmission in urban landscapes: integrating demographic and socioeconomic heterogeneity. Ann N Y Acad Sci 2016; 1382:44-55. [PMID: 27681053 DOI: 10.1111/nyas.13229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 01/23/2023]
Abstract
Urbanization and climate change are the two major environmental challenges of the 21st century. The dramatic expansion of cities around the world creates new conditions for the spread, surveillance, and control of infectious diseases. In particular, urban growth generates pronounced spatial heterogeneity within cities, which can modulate the effect of climate factors at local spatial scales in large urban environments. Importantly, the interaction between environmental forcing and socioeconomic heterogeneity at local scales remains an open area in infectious disease dynamics, especially for urban landscapes of the developing world. A quantitative and conceptual framework on urban health with a focus on infectious diseases would benefit from integrating aspects of climate forcing, population density, and level of wealth. In this paper, we review what is known about these drivers acting independently and jointly on urban infectious diseases; we then outline elements that are missing and would contribute to building such a framework.
Collapse
Affiliation(s)
| | - Pamela P Martinez
- Ecology and Evolution Department, University of Chicago, Chicago, Illinois
| | - Mercedes Pascual
- Ecology and Evolution Department, University of Chicago, Chicago, Illinois
| |
Collapse
|
21
|
de Lima TFM, Lana RM, de Senna Carneiro TG, Codeço CT, Machado GS, Ferreira LS, de Castro Medeiros LC, Davis Junior CA. DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E920. [PMID: 27649226 PMCID: PMC5036753 DOI: 10.3390/ijerph13090920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
The prevention and control of dengue are great public health challenges for many countries, particularly since 2015, as other arboviruses have been observed to interact significantly with dengue virus. Different approaches and methodologies have been proposed and discussed by the research community. An important tool widely used is modeling and simulation, which help us to understand epidemic dynamics and create scenarios to support planning and decision making processes. With this aim, we proposed and developed DengueME, a collaborative open source platform to simulate dengue disease and its vector's dynamics. It supports compartmental and individual-based models, implemented over a GIS database, that represent Aedes aegypti population dynamics, human demography, human mobility, urban landscape and dengue transmission mediated by human and mosquito encounters. A user-friendly graphical interface was developed to facilitate model configuration and data input, and a library of models was developed to support teaching-learning activities. DengueME was applied in study cases and evaluated by specialists. Other improvements will be made in future work, to enhance its extensibility and usability.
Collapse
Affiliation(s)
- Tiago França Melo de Lima
- Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP) - Campus João Monlevade, João Monlevade, MG 35931-008, Brasil.
| | - Raquel Martins Lana
- Programa Pós-Graduação em Epidemiologia em Saúde Pública, Escola Nacional de Saúde Pública Sérgio Arouca (ENSP), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21045-900, Brasil.
| | - Tiago Garcia de Senna Carneiro
- Departamento de Computação (DECOM), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP) - Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brasil.
| | - Cláudia Torres Codeço
- Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21045-900, Brasil.
| | - Gabriel Souza Machado
- Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP) - Campus João Monlevade, João Monlevade, MG 35931-008, Brasil.
| | - Lucas Saraiva Ferreira
- Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP) - Campus João Monlevade, João Monlevade, MG 35931-008, Brasil.
| | - Líliam César de Castro Medeiros
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José dos Campos, SP 12247-004, Brasil.
| | - Clodoveu Augusto Davis Junior
- Departamento de Ciência da Computação (DCC), Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-010, Brasil.
| |
Collapse
|
22
|
Chang FS, Tseng YT, Hsu PS, Chen CD, Lian IB, Chao DY. Re-assess Vector Indices Threshold as an Early Warning Tool for Predicting Dengue Epidemic in a Dengue Non-endemic Country. PLoS Negl Trop Dis 2015; 9:e0004043. [PMID: 26366874 PMCID: PMC4569482 DOI: 10.1371/journal.pntd.0004043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/09/2015] [Indexed: 11/29/2022] Open
Abstract
Background Despite dengue dynamics being driven by complex interactions between human hosts, mosquito vectors and viruses that are influenced by climate factors, an operational model that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic area has not been developed. The objectives of this study were to evaluate the temporal relationship between meteorological variables, entomological surveillance indices and confirmed dengue cases; and to establish the threshold for entomological surveillance indices including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)] and one adult index (AI) as an early warning tool for dengue epidemic. Methodology/Principal Findings Epidemiological, entomological and meteorological data were analyzed from 2005 to 2012 in Kaohsiung City, Taiwan. The successive waves of dengue outbreaks with different magnitudes were recorded in Kaohsiung City, and involved a dominant serotype during each epidemic. The annual indigenous dengue cases usually started from May to June and reached a peak in October to November. Vector data from 2005–2012 showed that the peak of the adult mosquito population was followed by a peak in the corresponding dengue activity with a lag period of 1–2 months. Therefore, we focused the analysis on the data from May to December and the high risk district, where the inspection of the immature and mature mosquitoes was carried out on a weekly basis and about 97.9% dengue cases occurred. The two-stage model was utilized here to estimate the risk and time-lag effect of annual dengue outbreaks in Taiwan. First, Poisson regression was used to select the optimal subset of variables and time-lags for predicting the number of dengue cases, and the final results of the multivariate analysis were selected based on the smallest AIC value. Next, each vector index models with selected variables were subjected to multiple logistic regression models to examine the accuracy of predicting the occurrence of dengue cases. The results suggested that Model-AI, BI, CI and HI predicted the occurrence of dengue cases with 83.8, 87.8, 88.3 and 88.4% accuracy, respectively. The predicting threshold based on individual Model-AI, BI, CI and HI was 0.97, 1.16, 1.79 and 0.997, respectively. Conclusion/Significance There was little evidence of quantifiable association among vector indices, meteorological factors and dengue transmission that could reliably be used for outbreak prediction. Our study here provided the proof-of-concept of how to search for the optimal model and determine the threshold for dengue epidemics. Since those factors used for prediction varied, depending on the ecology and herd immunity level under different geological areas, different thresholds may be developed for different countries using a similar structure of the two-stage model. With the continuously high levels of worldwide dengue transmission, predicting dengue outbreaks in advance of their occurrence or identifying specific locations where outbreak risks are highest is of critical importance. However, only few studies have been conducted in dengue non-endemic countries to evaluate the association of vector index with the occurrence of dengue cases; and the establishment of an early warning signal would significantly enhance the public health intervention. Our study here provided the proof-of-concept results, utilizing a two-stage model to identify the best set of lag effects of meteorological and entomological variables, explaining dengue epidemics based on the data obtained from Taiwan, which is a dengue-non-endemic country. Each of the vector indices when combined with the meteorological factors has better performance compared to the prediction using AI, BI, CI and HI alone, with 83.8, 87.8, 88.3 and 88.4% accuracy, respectively. Because of the complex interplays between the size of human hosts and movement, environmental factors and dynamic changes of mosquito population and density, each country should consider its own individual data and situation and apply this two-stage model to find the optimal predictive models for allocating public health resources and prevention strategies.
Collapse
Affiliation(s)
- Fong-Shue Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yao-Ting Tseng
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan
| | - Pi-Shan Hsu
- Department of Family Medicine, Taichung Hospital, Department of Health, Executive Yuan, Taiwan, R.O.C
| | - Chaur-Dong Chen
- Department of Health, Kaohsiung City Government, Kaohsiung City, Taiwan
| | - Ie-Bin Lian
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua, Taiwan
- * E-mail: (IBL); (DYC)
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
- * E-mail: (IBL); (DYC)
| |
Collapse
|
23
|
Correlating Remote Sensing Data with the Abundance of Pupae of the Dengue Virus Mosquito Vector, Aedes aegypti, in Central Mexico. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2014. [DOI: 10.3390/ijgi3020732] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Lowe R, Barcellos C, Coelho CAS, Bailey TC, Coelho GE, Graham R, Jupp T, Ramalho WM, Carvalho MS, Stephenson DB, Rodó X. Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. THE LANCET. INFECTIOUS DISEASES 2014; 14:619-26. [PMID: 24841859 DOI: 10.1016/s1473-3099(14)70781-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND With more than a million spectators expected to travel among 12 different cities in Brazil during the football World Cup, June 12-July 13, 2014, the risk of the mosquito-transmitted disease dengue fever is a concern. We addressed the potential for a dengue epidemic during the tournament, using a probabilistic forecast of dengue risk for the 553 microregions of Brazil, with risk level warnings for the 12 cities where matches will be played. METHODS We obtained real-time seasonal climate forecasts from several international sources (European Centre for Medium-Range Weather Forecasts [ECMWF], Met Office, Meteo-France and Centro de Previsão de Tempo e Estudos Climáticos [CPTEC]) and the observed dengue epidemiological situation in Brazil at the forecast issue date as provided by the Ministry of Health. Using this information we devised a spatiotemporal hierarchical Bayesian modelling framework that enabled dengue warnings to be made 3 months ahead. By assessing the past performance of the forecasting system using observed dengue incidence rates for June, 2000-2013, we identified optimum trigger alert thresholds for scenarios of medium-risk and high-risk of dengue. FINDINGS Our forecasts for June, 2014, showed that dengue risk was likely to be low in the host cities Brasília, Cuiabá, Curitiba, Porto Alegre, and São Paulo. The risk was medium in Rio de Janeiro, Belo Horizonte, Salvador, and Manaus. High-risk alerts were triggered for the northeastern cities of Recife (p(high)=19%), Fortaleza (p(high)=46%), and Natal (p(high)=48%). For these high-risk areas, particularly Natal, the forecasting system did well for previous years (in June, 2000-13). INTERPRETATION This timely dengue early warning permits the Ministry of Health and local authorities to implement appropriate, city-specific mitigation and control actions ahead of the World Cup. FUNDING European Commission's Seventh Framework Research Programme projects DENFREE, EUPORIAS, and SPECS; Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro.
Collapse
Affiliation(s)
- Rachel Lowe
- Climate Dynamics and Impacts Unit, Institut Català de Ciències del Clima (IC3), Barcelona, Spain.
| | | | - Caio A S Coelho
- Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
| | - Trevor C Bailey
- Exeter Climate Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Giovanini Evelim Coelho
- Coordenação Geral do Programa Nacional de Controle da Dengue, Ministério da Saúde, Brasília, DF, Brazil
| | | | - Tim Jupp
- Exeter Climate Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | | | | | - David B Stephenson
- Exeter Climate Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Xavier Rodó
- Climate Dynamics and Impacts Unit, Institut Català de Ciències del Clima (IC3), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|