1
|
Nuwa A, Baker K, Kajubi R, Nnaji CA, Theiss-Nyland K, Odongo M, Kyagulanyi T, Nabakooza J, Salandini D, Asua V, Nakirunda M, Rassi C, Rutazaana D, Achuma R, Sagaki P, Bwanika JB, Magumba G, Yeka A, Nsobya S, Kamya MR, Tibenderana J, Opigo J. Effectiveness of sulfadoxine-pyrimethamine plus amodiaquine and dihydroartemisinin-piperaquine for seasonal malaria chemoprevention in Uganda: a three-arm, open-label, non-inferiority and superiority, cluster-randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00746-1. [PMID: 39826559 DOI: 10.1016/s1473-3099(24)00746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine combined with amodiaquine (SPAQ) effectively protects eligible children from malaria in areas of high and seasonal transmission. However, concerns about parasite resistance to sulfadoxine-pyrimethamine in East and Southern Africa necessitate evaluating alternative drug regimens. This study assessed the effectiveness of SPAQ and dihydroartemisinin-piperaquine for SMC in Uganda. METHODS This three-arm, open-label, non-inferiority and superiority, cluster-randomised, controlled trial was conducted in Karamoja subregion, Uganda, among children aged 3-59 months and 6-59 months for SPAQ and dihydroartemisinin-piperaquine, respectively. Of 427 villages, 380 were randomly assigned (1:1) to the SPAQ group and dihydroartemisinin-piperaquine group, and 47 were assigned to the control group (no SMC). The superiority component compared the SPAQ and dihydroartemisinin-piperaquine groups with the control group, whereas the non-inferiority component compared the dihydroartemisinin-piperaquine group with the SPAQ group. The primary endpoint was confirmed malaria incidence using rapid diagnostic tests or microscopy. Survival analyses were done on an intention-to-treat basis (in all randomised participants), with adjustments made for covariate imbalances at baseline. Additionally, molecular markers associated with resistance to sulfadoxine-pyrimethamine and amodiaquine were analysed on 750 malaria-positive blood samples from children younger than 5 years before and after five SMC cycles. This trial was registered with ClinicalTrials.gov, NCT05323721, and has been completed. FINDINGS During June 18-30, 2022, 3881 children were enrolled; 1755 in SPAQ, 1736 in dihydroartemisinin-piperaquine, and 390 in control villages. Of these children, 3629 were analysed. Incidence rates were 0·90 cases per 100 person-months in the SPAQ group, 0·80 cases per 100 person-months in the dihydroartemisinin-piperaquine group, and 18·26 cases per 100 person-months in the control group. SPAQ and dihydroartemisinin-piperaquine reduced malaria risk by 94% (hazard ratio [HR] 0·06 [95% CI 0·04-0·08]; p<0·001) and 96% (0·04 [0·03-0·06]; p<0·001), respectively. Based on the prespecified non-inferiority margin of 1·4, there was non-inferiority between the protective effectiveness of dihydroartemisinin-piperaquine and that of SPAQ (HR 0·90 [95% CI 0·58-1·39]). Prevalence of mutations linked to moderate (Plasmodium falciparum dihydrofolate reductase [PfDHFR] and P falciparum dihydropteroate synthetase reductase [PfDHPS]) and high (PfDHFR Ile164Leu and PfDHPS Ala581Gly) sulfadoxine-pyrimethamine resistance were more than 88% and less than 5%, respectively. Mutations associated with 4-aminoquinolone resistance (P falciparum multidrug resistance protein-1 [PfMDR1] Asp1246Tyr and PfMDR1 Asn86Tyr) were less than 1%. There was no significant increase in the prevalence of antifolate and artemisinin partial resistance-associated mutations, but a decrease was observed for key aminoquinoline resistance-associated alleles: P falciparum chloroquine resistance transporter protein Lys76Thr, P falciparum multidrug resistance protein Asn86Tyr, and PfMDR1 Asp1246Tyr (p<0·001). No serious or fatal adverse events were reported. INTERPRETATION SPAQ and dihydroartemisinin-piperaquine effectively reduced malaria in children younger than 5 years, with no safety concerns. There was no evidence of resistance selection by SMC. Although these findings support SPAQ-based SMC in Eastern and Southern Africa, ongoing resistance surveillance and efficacy monitoring are essential for sustained impact. FUNDING GiveWell. TRANSLATION For the Swahili translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
| | - Kevin Baker
- Malaria Consortium, London, UK; Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | - Victor Asua
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | | | | | | | | | - Adoke Yeka
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Sam Nsobya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Makerere University College of Health Sciences, Kampala, Uganda; Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | |
Collapse
|
2
|
Kattenberg JH, Mutsaers M, Nguyen VH, Nguyen THN, Umugwaneza A, Lara-Escandell M, Nguyen XX, Nguyen THB, Rosanas-Urgell A. Genetic surveillance shows spread of ACT resistance during period of malaria decline in Vietnam (2018-2020). Front Genet 2024; 15:1478706. [PMID: 39687741 PMCID: PMC11646998 DOI: 10.3389/fgene.2024.1478706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Vietnam's goal to eliminate malaria by 2030 is challenged by the further spread of drug-resistant Plasmodium falciparum malaria to key antimalarials, particularly dihydroartemisinin-piperaquine (DHA-PPQ). Methods The custom targeted NGS amplicon sequencing assay, AmpliSeq Pf Vietnam v2, targeting drug resistance, population genetic- and other markers, was applied to detect genetic diversity and resistance profiles in samples from 8 provinces in Vietnam (n = 354), in a period of steep decline of incidence (2018-2020). Variants in 14 putative resistance genes, including P. falciparum Kelch 13 (PfK13) and P. falciparum chloroquine resistance transporter (Pfcrt), were analyzed and within-country parasite diversity was evaluated. Other targets included KEL1-lineage markers and diagnostic markers of Pfhrp2/3. Results A concerning level of DHA-PPQ resistance was detected. The C580Y mutation in PfK13 was found in nearly 80% of recent samples, a significant rise from previous data. Vietnam has experienced a significant challenge with the spread of DHA-PPQ resistant malaria parasites, particularly in the provinces of Binh Phuoc and Gia Lai. Resistance spread to high levels in Binh Thuan prior to the country-wide treatment policy change from DHA-PPQ to pyronadine-artesunate (PA). A complex picture of PPQ-resistance dynamics was observed, with an increase of PPQ-resistance associated Pfcrt mutations, indicating an evolutionary response to antimalarial pressure. Additionally, the compensatory mutation C258W in Pfcrt, which increases chloroquine (CQ) resistance while reversing PPQ resistance, is emerging in Gia Lai following the adoption of PA as the first-line treatment. This study found high levels of multidrug resistance, with over 70% of parasites in 6 out of 8 provinces showing significant sulfadoxine-pyrimethamine (SP) resistance and widespread chloroquine-resistant Pfcrt haplotypes. We also report an absence of P. falciparum histidine rich protein 2 and 3 (Pfhrp2/3) gene deletions, ensuring the continued reliability of HRP2/3-based rapid diagnostic tests. P. falciparum populations in Vietnam are becoming more isolated, with clonal populations showing high geographical clustering by province. The central highlands, particularly Gia Lai province, have the highest residual malaria burden but exhibit low diversity and clonal populations, likely due to the pressures from the antimalarial drugs and targeted national malaria control program (NMCP) efforts. Discussion In conclusion, examining a broad panel of full-length resistance genes and SNPs provided high-resolution insights into genetic diversity and resistance evolution in Vietnam, offering valuable information to inform local treatment and intervention strategies.
Collapse
Affiliation(s)
| | - Mathijs Mutsaers
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Van Hong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Hong Ngoc Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Arlette Umugwaneza
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maria Lara-Escandell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xuan Xa Nguyen
- Regional Artemisinin Initiative, RAI project, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Huong Binh Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
3
|
Bohissou FET, Sondo P, Inoue J, Rouamba T, Kaboré B, Nassa GJW, Kambou AES, Traoré TE, Asua V, Borrmann S, Tinto H, Held J. Evolution of Pfdhps and Pfdhfr mutations before and after adopting seasonal malaria chemoprevention in Nanoro, Burkina Faso. Sci Rep 2024; 14:24224. [PMID: 39414909 PMCID: PMC11484836 DOI: 10.1038/s41598-024-75369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Seasonal Malaria Chemoprevention consisting of monthly administration of amodiaquine/sulfadoxine-pyrimethamine to children aged 3-59 months during the transmission season could promote SP-resistance. Mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes were assessed before and after SMC adoption in Burkina Faso. A total of 769 dried blood spots were selected from studies conducted in Nanoro, Burkina Faso, between 2010 and 2020. Of those, 299 were pre-SMC (2010-2012) and 470 were post-SMC-samples. Pfdhps and Pfdhfr genes were PCR-amplified and sequenced. A systematic review/meta-analysis of published studies conducted in Burkina Faso (2009-2023) was additionally performed. In Nanoro, the prevalence of Pfdhfr triple mutations (CIRNI) rose from 43.6% pre-SMC to 89.4% post-SMC (p < 0.0001). There was no mutation in Pfdhfr 164 and Pfdhps 540; Pfdhps A437G mutation increased from 63.9% (2010-2012) to 84.7% (2020) (p < 0.0001). The VAGKGS haplotype was 2.8% (2020). Pfdhfr/Pfdhps quintuple mutant IRN-436A437G rose from 18.6% (2010-2012) to 58.3% (2020) (p < 0.0001). Meta-analysis results from Burkina Faso showed an increase in mutations at Pfdhfr N51I, C59R, S108N, and Pfdhps A437G after SMC adoption. Post-SMC, the pyrimethamine-resistance marker prevalence increased, while the sulfadoxine-resistance marker prevalence remained stable. Detection of emerging PfdhpsVAGKGS haplotypes in 2020 underscores the importance of continuous SP-resistance monitoring.
Collapse
Affiliation(s)
- Francis Emmanuel Towanou Bohissou
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Institut de Recherche en Sciences de la Santé (IRSS)/Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Paul Sondo
- Institut de Recherche en Sciences de la Santé (IRSS)/Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Juliana Inoue
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Toussaint Rouamba
- Institut de Recherche en Sciences de la Santé (IRSS)/Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Berenger Kaboré
- Institut de Recherche en Sciences de la Santé (IRSS)/Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | | | - A Elisée Sié Kambou
- Institut de Recherche en Sciences de la Santé (IRSS)/Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Tiampan Edwig Traoré
- Institut de Recherche en Sciences de la Santé (IRSS)/Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso
| | - Victor Asua
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Steffen Borrmann
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, (CERMEL), Lambaréné, Gabon
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé (IRSS)/Clinical Research Unit of Nanoro (CRUN), Nanoro, Burkina Faso.
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales de Lambaréné, (CERMEL), Lambaréné, Gabon.
| |
Collapse
|
4
|
Kajubi R, Ainsworth J, Baker K, Richardson S, Bonnington C, Rassi C, Achan J, Magumba G, Rubahika D, Nabakooza J, Tibenderana J, Nuwa A, Opigo J. A hybrid effectiveness-implementation study protocol to assess the effectiveness and chemoprevention efficacy of implementing seasonal malaria chemoprevention in five districts in Karamoja region, Uganda. Gates Open Res 2023; 7:14. [PMID: 38196920 PMCID: PMC10774186 DOI: 10.12688/gatesopenres.14287.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/11/2024] Open
Abstract
Background The World Health Organization (WHO) recommends seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SPAQ) for children aged 3 to 59 months, living in areas where malaria transmission is highly seasonal. However, due to widespread prevalence of resistance markers, SMC has not been implemented at scale in East and Southern Africa. An initial study in Uganda showed that SMC with SPAQ was feasible, acceptable, and protective against malaria in eligible children in Karamoja region. Nonetheless, exploration of alternative regimens is warranted since parasite resistance threats persist. Objective The study aims to test the effectiveness of SMC with Dihydroartemisinin-piperaquine (DP) or SPAQ (DP-SMC & SPAQ-SMC), chemoprevention efficacy as well as the safety and tolerability of DP compared to that of SPAQ among 3-59 months old children in Karamoja region, an area of Uganda where malaria transmission is highly seasonal. Methods A Type II hybrid effectiveness-implementation study design consisting of four components: 1) a cluster randomized controlled trial (cRCT) using passive surveillance to establish confirmed malaria cases in children using both SPAQ and DP; 2a) a prospective cohort study to determine the chemoprevention efficacy of SPAQ and DP (if SPAQ or DP clears sub-patent infection and provides 28 days of protection from new infection) and whether drug concentrations and/or resistance influence the ability to clear and prevent infection; 2b) a sub study examining pharmacokinetics of DP in children between 3 to <6 months; 3) a resistance markers study in children 3-59 months in the research districts plus the standard intervention districts to measure changes in resistance marker prevalence over time and finally; 4) a process evaluation. Discussion This study evaluates the effects of SPAQ-SMC versus DP-SMC on clinical malaria in vulnerable children in the context of high parasite SP resistance, whilst informing on the best implementation strategies. Conclusion This study will inform malaria policy in high-burden countries, specifically on utility of SMC outside the sahel, and contribute to progress in malaria control.
Collapse
Affiliation(s)
| | | | - Kevin Baker
- Technical, Malaria Consortium, London, UK
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | | | | | | | - Jane Achan
- Technical, Malaria Consortium, London, UK
| | | | - Denis Rubahika
- National Malaria Control Division, Ministry of Health of Uganda, Kampala, Uganda
| | - Jane Nabakooza
- National Malaria Control Division, Ministry of Health of Uganda, Kampala, Uganda
| | | | | | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health of Uganda, Kampala, Uganda
| |
Collapse
|
5
|
Roh ME, Zongo I, Haro A, Huang L, Somé AF, Yerbanga RS, Conrad MD, Wallender E, Legac J, Aweeka F, Ouédraogo JB, Rosenthal PJ. Seasonal Malaria Chemoprevention Drug Levels and Drug Resistance Markers in Children With or Without Malaria in Burkina Faso: A Case-Control Study. J Infect Dis 2023; 228:926-935. [PMID: 37221018 PMCID: PMC10547452 DOI: 10.1093/infdis/jiad172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Despite scale-up of seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SP-AQ) in children 3-59 months of age in Burkina Faso, malaria incidence remains high, raising concerns regarding SMC effectiveness and selection of drug resistance. Using a case-control design, we determined associations between SMC drug levels, drug resistance markers, and presentation with malaria. METHODS We enrolled 310 children presenting at health facilities in Bobo-Dioulasso. Cases were SMC-eligible children 6-59 months of age diagnosed with malaria. Two controls were enrolled per case: SMC-eligible children without malaria; and older (5-10 years old), SMC-ineligible children with malaria. We measured SP-AQ drug levels among SMC-eligible children and SP-AQ resistance markers among parasitemic children. Conditional logistic regression was used to compute odds ratios (ORs) comparing drug levels between cases and controls. RESULTS Compared to SMC-eligible controls, children with malaria were less likely to have any detectable SP or AQ (OR, 0.33 [95% confidence interval, .16-.67]; P = .002) and have lower drug levels (P < .05). Prevalences of mutations mediating high-level SP resistance were rare (0%-1%) and similar between cases and SMC-ineligible controls (P > .05). CONCLUSIONS Incident malaria among SMC-eligible children was likely due to suboptimal levels of SP-AQ, resulting from missed cycles rather than increased antimalarial resistance to SP-AQ.
Collapse
Affiliation(s)
- Michelle E Roh
- Institute for Global Health Sciences, Malaria Elimination Initiative, University of California, San Francisco
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Alassane Haro
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Liusheng Huang
- Department of Clinical Pharmacy, University of California, San Francisco
| | | | | | | | - Erika Wallender
- Department of Clinical Pharmacy, University of California, San Francisco
| | - Jennifer Legac
- Department of Medicine, University of California, San Francisco
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California, San Francisco
| | - Jean-Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | | |
Collapse
|
6
|
Nuwa A, Baker K, Bonnington C, Odongo M, Kyagulanyi T, Bwanika JB, Richardson S, Nabakooza J, Achan J, Kajubi R, Odong DS, Nakirunda M, Magumba G, Beinomugisha G, Marasciulo-Rice M, Abio H, Rassi C, Rutazaana D, Rubahika D, Tibenderana J, Opigo J. A non-randomized controlled trial to assess the protective effect of SMC in the context of high parasite resistance in Uganda. Malar J 2023; 22:63. [PMID: 36814301 PMCID: PMC9945593 DOI: 10.1186/s12936-023-04488-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Until recently, due to widespread prevalence of molecular markers associated with sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) resistance in east and southern Africa, seasonal malaria chemoprevention (SMC) has not been used at scale in this region. This study assessed the protective effectiveness of monthly administration of SP + AQ (SPAQ) to children aged 3-59 months in Karamoja sub-region, Uganda, where parasite resistance is assumed to be high and malaria transmission is seasonal. METHODS A two-arm quasi-experimental, open-label prospective non-randomized control trial (nRCT) was conducted in three districts. In two intervention districts, 85,000 children aged 3-59 months were targeted to receive monthly courses of SMC using SPAQ during the peak transmission season (May to September) 2021. A third district served as a control, where SMC was not implemented. Communities with comparable malaria attack rates were selected from the three districts, and households with at least one SMC-eligible child were purposively selected. A total cohort of 600 children (200 children per district) were selected and followed using passive surveillance for breakthrough confirmed malaria episodes during the five-month peak transmission season. Malaria incidence rate per person-months and number of malaria episodes among children in the two arms were compared. Kaplan-Meier failure estimates were used to compare the probability of a positive malaria test. Other factors that may influence malaria transmission and infection among children in the two arms were also assessed using multivariable cox proportional hazards regression model. RESULTS The malaria incidence rate was 3.0 and 38.8 per 100 person-months in the intervention and control groups, respectively. In the intervention areas 90.0% (361/400) of children did not experience any malaria episodes during the study period, compared to 15% (29/200) in the control area. The incidence rate ratio was 0.078 (95% CI 0.063-0.096), which corresponds to a protective effectiveness of 92% (95% CI 90.0-94.0) among children in the intervention area. CONCLUSION SMC using SPAQ provided high protective effect against malaria during the peak transmission season in children aged 3-59 months in the Karamoja sub-region of Uganda.
Collapse
Affiliation(s)
| | - Kevin Baker
- grid.475304.10000 0004 6479 3388Malaria Consortium, London, UK ,grid.4714.60000 0004 1937 0626Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | | | - Musa Odongo
- grid.452563.3Malaria Consortium Uganda, Kampala, Uganda
| | | | | | - Sol Richardson
- grid.475304.10000 0004 6479 3388Malaria Consortium, London, UK ,grid.12527.330000 0001 0662 3178Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Jane Nabakooza
- grid.415705.2National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Jane Achan
- grid.475304.10000 0004 6479 3388Malaria Consortium, London, UK
| | | | | | | | | | | | | | - Hilda Abio
- grid.452563.3Malaria Consortium Uganda, Kampala, Uganda
| | - Christian Rassi
- grid.475304.10000 0004 6479 3388Malaria Consortium, London, UK
| | - Damian Rutazaana
- grid.415705.2National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Denis Rubahika
- grid.415705.2National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | | | - Jimmy Opigo
- grid.415705.2National Malaria Control Division, Ministry of Health, Kampala, Uganda
| |
Collapse
|
7
|
Kajubi R, Ainsworth J, Baker K, Richardson S, Bonnington C, Rassi C, Achan J, Magumba G, Rubahika D, Nabakooza J, Tibenderana J, Nuwa A, Opigo J. A hybrid effectiveness-implementation study protocol to assess the effectiveness and chemoprevention efficacy of implementing seasonal malaria chemoprevention in five districts in Karamoja region, Uganda. Gates Open Res 2023. [DOI: 10.12688/gatesopenres.14287.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: The World Health Organization (WHO) recommends seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine for children aged 3 to 59 months, living in areas where malaria transmission is highly seasonal. However, due to widespread prevalence of resistance markers, SMC has not been implemented at scale in East and Southern Africa. An initial study in Uganda showed that SMC with SPAQ was feasible, acceptable, and protective against malaria in eligible children in Karamoja region. Nonetheless, exploration of alternative regimens is warranted since parasite resistance threats persist. Objective: The study aims to test the effectiveness of SMC with DP or SPAQ (DP-SMC & SPAQ-SMC), chemoprevention efficacy as well as the safety and tolerability of DP compared to that of SPAQ among 3-59 months old children in Karamoja region, an area of Uganda where malaria transmission is highly seasonal. Methods: A Type II hybrid effectiveness-implementation study design consisting of four components: 1) a cluster randomized controlled trial (cRCT) using passive surveillance to establish confirmed malaria cases in children using both SPAQ and DP; 2a) a prospective cohort study to determine the chemoprevention efficacy of SPAQ and DP (if SPAQ or DP clears sub-patent infection and provides 28 days of protection from new infection) and whether drug concentrations and/or resistance influence the ability to clear and prevent infection; 2b) a sub study examining pharmacokinetics of DP in children between 3 to <6 months; 3) a resistance markers study in children 3–59 months in the research districts plus the standard intervention districts to measure changes in resistance marker prevalence over time and finally; 4) a process evaluation. Discussion: This study evaluates the effects of a clinical intervention on relevant outcomes whilst collecting information on implementation. Conclusion: This study will inform malaria policy in high-burden countries and contribute to progress in malaria control.
Collapse
|
8
|
Wang X, Zhang X, Chen H, Lu Q, Ruan W, Chen Z. Molecular Determinants of Sulfadoxine-Pyrimethamine Resistance in Plasmodium falciparum Isolates from Central Africa between 2016 and 2021: Wide Geographic Spread of Highly Mutated Pfdhfr and Pfdhps Alleles. Microbiol Spectr 2022; 10:e0200522. [PMID: 36121226 PMCID: PMC9602997 DOI: 10.1128/spectrum.02005-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/27/2022] [Indexed: 12/31/2022] Open
Abstract
Sulfadoxine-pyrimethamine (SP) resistance impairs the efficacy of antimalarial drugs. Monitoring molecular markers in exported malaria infections provides an efficient way to trace the emergence of drug resistance in countries where malaria is endemic. Molecular markers in Pfdhfr and Pfdhps of 237 Plasmodium falciparum infections imported from central Africa between 2016 and 2021 were detected. The spatial and temporal distributions of Pfdhfr and Pfdhps mutations were analyzed. A high prevalence of Pfdhfr single-nucleotide polymorphisms (SNPs) (~92.34% to 99.10%) and a high frequency of the triple mutation haplotype I51R59N108 were observed. Cameroon, Equatorial Guinea, and Gabon showed a higher frequency (~96.61% to 100.00%) of I51R59N108 than other countries (~71.11% to 88.10%). The prevalence of C59R and I51R59N108 increased while that of other SNPs or haplotypes did not fluctuate greatly from 2016 to 2021. Large proportions of Pfdhps SNPs (A437G and K540E) were demonstrated. The SNP distribution of Pfdhps differed between countries, with S436A dominating in northern countries and A437G dominating in others. The proportions of I431V, A437G, and the triple mutant haplotype declined between 2016 and 2021, whereas the prevalence of the single mutant haplotype rose from 61.60% to 73.68%. Combinations of Pfdhfr-Pfdhps alleles conferring partial resistance, full resistance, and superresistance to SP, as defined in the text, were detected in 63.64%, 8.64%, and 0.91% of the samples, respectively. The octuple Pfdhfr-Pfdhps allele (I51R59N108-V431A436G437K540G581S613) was seen in 5.00% of the samples. We demonstrated the wide geographic spread and increasing trends in highly SP-resistant Pfdhfr genes and varying spatial patterns of Pfdhps mutants across countries in central Africa. The high prevalences of partially resistant, fully resistant, and superresistant Pfdhfr-Pfdhps combinations observed here indicated impaired SP efficacy. Increased molecular surveillance is required to monitor the changing status of the Pfdhfr and Pfdhps genes. IMPORTANCE Monitoring drug resistance is important for malaria control because its early detection enables timely action to prevent its spread and mitigate its impact. The wide geographic spread and the increasing trend of highly resistant Pfdhfr genes between 2016 and 2021 found in our study are worrisome and emphasize the urgency to monitor their updated status in central Africa. This study also illustrated the wide spread of the novel mutant Pfdhps I431V as well as the high prevalence of "partially resistant," "fully resistant," and "superresistant" Pfdhfr-Pfdhps combinations, indicating the urgent concern for SP efficacy in central Africa. These findings are alarming in central African countries where malaria is endemic, where SP was is widely used for the intermittent preventive treatment of malaria in pregnancy (IPTp) and the intermittent preventive treatment of malaria in infants below 5 years of age (IPTi), and urge enhanced molecular surveillance and responses to the threat of drug resistance.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Xuan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Hualiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Qiaoyi Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Wei Ruan
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| | - Zhiping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People’s Republic of China
| |
Collapse
|
9
|
Temporal trends in molecular markers of drug resistance in Plasmodium falciparum in human blood and profiles of corresponding resistant markers in mosquito oocysts in Asembo, western Kenya. Malar J 2022; 21:265. [PMID: 36100912 PMCID: PMC9472345 DOI: 10.1186/s12936-022-04284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points. METHODS Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13). Temporal trends in the prevalence of these markers, including data from 2012 to 2017 as well as published data from 1996, 2001, 2007 from same area, were analysed. The same markers from mosquito oocysts collected in 2012 were compared with results from human blood samples. RESULTS The prevalence of SP dhfr/dhps quintuple mutant haplotype C50I51R59N108I164/S436G437E540A581A613 increased from 19.7% in 1996 to 86.0% in 2012, while an increase in the sextuple mutant haplotype C50I51R59N108I164/H436G437E540A581A613 containing Pfdhps-436H was found from 10.5% in 2012 to 34.6% in 2017. Resistant Pfcrt-76 T declined from 94.6% in 2007 to 18.3% in 2012 and 0.9% in 2017. Mutant Pfmdr1-86Y decreased across years from 74.8% in 1996 to zero in 2017, mutant Pfmdr1-184F and wild Pfmdr1-D1246 increased from 17.9% to 58.9% in 2007 to 55.9% and 90.1% in 2017, respectively. Pfmdr1 haplotype N86F184S1034N1042D1246 increased from 11.0% in 2007 to 49.6% in 2017. No resistant mutations in Pfk13 were found. Prevalence of Pfdhps-436H was lower while prevalence of Pfcrt-76 T was higher in mosquitoes than in human blood samples. CONCLUSION This study showed an increased prevalence of dhfr/dhps resistant markers over 20 years with the emergence of Pfdhps-436H mutant a decade ago in Asembo. The reversal of Pfcrt from CQ-resistant to CQ-sensitive genotype occurred following 19 years of CQ withdrawal. No Pfk13 markers associated with artemisinin resistance were detected, but the increased haplotype of Pfmdr1 N86F184S1034N1042D1246 was observed. The differences in prevalence of Pfdhps-436H and Pfcrt-76 T SNPs between two hosts and the role of mosquitoes in the transmission of drug resistant parasites require further investigation.
Collapse
|
10
|
Njiro BJ, Mutagonda RF, Chamani AT, Mwakyandile T, Sabas D, Bwire GM. Molecular surveillance of chloroquine-resistant Plasmodium falciparum in sub-Saharan African countries after withdrawal of chloroquine for treatment of uncomplicated malaria: a systematic review. J Infect Public Health 2022; 15:550-557. [DOI: 10.1016/j.jiph.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
|
11
|
Omedo I, Bartilol B, Kimani D, Gonçalves S, Drury E, Rono MK, Abdi AI, Almagro-Garcia J, Amato R, Pearson RD, Ochola-Oyier LI, Kwiatkowski D, Bejon P. Spatio-temporal distribution of antimalarial drug resistant gene mutations in a Plasmodium falciparum parasite population from Kilifi, Kenya: A 25-year retrospective study. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17656.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Antimalarial drug resistance is a major obstacle to sustainable malaria control. Here we use amplicon sequencing to describe molecular markers of drug resistance in Plasmodium falciparum parasites from Kilifi county in the coastal region of Kenya over a 25-year period. Methods: We performed P. falciparum amplicon sequencing on 1162 malaria-infected blood samples collected between 1994 and 2018 to identify markers of antimalarial drug resistance in the Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, Pfexo, Pfkelch13, plasmepsin 2/3, Pfarps10, Pffd, and Pfmdr2 genes. We further interrogated parasite population structure using a genetic barcode of 101 drug resistance-unrelated single nucleotide polymorphisms (SNPs) distributed across the genomes of 1245 P. falciparum parasites. Results: Two major changes occurred in the parasite population over the 25 years studied. In 1994, approximately 75% of parasites carried the marker of chloroquine resistance, CVIET. This increased to 100% in 1999 and then declined steadily, reaching 6.7% in 2018. Conversely, the quintuple mutation form of sulfadoxine-pyrimethamine resistance increased from 16.7% in 1994 to 83.6% in 2018. Several non-synonymous mutations were identified in the Kelch13 gene, although none of them are currently associated with artemisinin resistance. We observed a temporal increase in the Pfmdr1 NFD haplotype associated with lumefantrine resistance, but observed no evidence of piperaquine resistance. SNPs in other parts of the genome showed no significant temporal changes despite the marked changes in drug resistance loci over this period. Conclusions: We identified substantial changes in molecular markers of P. falciparum drug resistance over 25 years in coastal Kenya, but no associated changes in the parasite population structure.
Collapse
|
12
|
In silico studies of semi-synthetic benzo[a]phenazines as inhibitors of dihydrofolate reductase from Plasmodium falciparum. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Mulenga MC, Sitali L, Ciubotariu II, Hawela MB, Hamainza B, Chipeta J, Mharakurwa S. Decreased prevalence of the Plasmodium falciparum Pfcrt K76T and Pfmdr1 and N86Y mutations post-chloroquine treatment withdrawal in Katete District, Eastern Zambia. Malar J 2021; 20:329. [PMID: 34320992 PMCID: PMC8317340 DOI: 10.1186/s12936-021-03859-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Background In 2002, Zambia withdrew chloroquine as first-line treatment for Plasmodium falciparum malaria due to increased treatment failure and worldwide spread of chloroquine resistance. The artemisinin combination regimen, artemether–lumefantrine, replaced chloroquine (CQ) as first choice malaria treatment. The present study determined the prevalence of CQ resistance molecular markers in the Pfcrt and Pfmdr1 genes in Eastern Zambia at 9 and 13 years after the removal of drug pressure. Methods Samples collected from Katete District during the drug therapeutic efficacy assessments conducted in 2012 and 2016 were assayed by polymerase chain reaction (PCR) and restriction fragment length polymorphisms (RFLP) to determine the prevalence of genetic mutations, K76T on the Pfcrt gene and N86Y on the Pfmdr1 gene. A total of 204 P. falciparum-positive DBS samples collected at these two time points were further analysed. Results Among the samples analysed for Pfcrt K76T and Pfmdr1 N86Y in the present study, 112 (82.4%) P. falciparum-infected samples collected in 2012 were successfully amplified for Pfcrt and 94 (69.1%) for Pfmdr1, while 69 (65.7%) and 72 (68.6%) samples from 2016 were successfully amplified for Pfcrt and Pfmdr1, respectively. In 2012, the prevalence of Pfcrt 76K (sensitive) was 97.3%, 76T (resistant) was 1.8%, and 0.8% had both 76K and 76T codons (mixed). Similarly in 2012, the prevalence of Pfmdr1 86N (sensitive) was 97.9% and 86Y (resistant) was 2.1%. In the 2016 samples, the prevalence of the respective samples was 100% Pfcrt 76K and Pfmdr1 86N. Conclusion This study shows that there was a complete recovery of chloroquine-sensitive parasites by 2016 in Katete District, Eastern Zambia, 13 years following the withdrawal of CQ in the country. These findings add to the body of evidence for a fitness cost in CQ-resistant P. falciparum in Zambia and elsewhere. Further studies are recommended to monitor resistance countrywide and explore the feasibility of integration of the former best anti-malarial in combination therapy in the future.
Collapse
Affiliation(s)
- Mwenda C Mulenga
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Ministry of Health, Chainama Grounds, Lusaka, Zambia.
| | - Lungowe Sitali
- School of Health Sciences, Biomedical Sciences Department, Ridgeway campus, Lusaka, Zambia.,School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Lusaka, Zambia
| | - Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Moonga B Hawela
- Malaria Elimination Centre, Ministry of Health, Chainama Hospital and College Grounds, Lusaka, Zambia
| | - Busiku Hamainza
- Malaria Elimination Centre, Ministry of Health, Chainama Hospital and College Grounds, Lusaka, Zambia
| | - James Chipeta
- School of Medicine, University Teaching Hospital Malaria Research Unit (SMUTH-MRU), Lusaka, Zambia
| | - Sungano Mharakurwa
- College of Health, Agriculture and Natural Sciences, Africa University, Mutare, Zimbabwe
| |
Collapse
|
14
|
Chaturvedi R, Chhibber-Goel J, Verma I, Gopinathan S, Parvez S, Sharma A. Geographical spread and structural basis of sulfadoxine-pyrimethamine drug-resistant malaria parasites. Int J Parasitol 2021; 51:505-525. [PMID: 33775670 DOI: 10.1016/j.ijpara.2020.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
The global spread of sulfadoxine (Sdx, S) and pyrimethamine (Pyr, P) resistance is attributed to increasing number of mutations in DHPS and DHFR enzymes encoded by malaria parasites. The association between drug resistance mutations and SP efficacy is complex. Here we provide an overview of the geographical spread of SP resistance mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) encoded dhps and dhfr genes. In addition, we have collated the mutation data and mapped it on to the three-dimensional structures of DHPS and DHFR which have become available. Data from genomic databases and 286 studies were collated to provide a comprehensive landscape of mutational data from 2005 to 2019. Our analyses show that the Pyr-resistant double mutations are widespread in Pf/PvDHFR (P. falciparum ∼61% in Asia and the Middle East, and in the Indian sub-continent; in P. vivax ∼33% globally) with triple mutations prevailing in Africa (∼66%) and South America (∼33%). For PfDHPS, triple mutations dominate South America (∼44%), Asia and the Middle East (∼34%) and the Indian sub-continent (∼27%), while single mutations are widespread in Africa (∼45%). Contrary to the status for P. falciparum, Sdx-resistant single point mutations in PvDHPS dominate globally. Alarmingly, highly resistant quintuple and sextuple mutations are rising in Africa (PfDHFR-DHPS) and Asia (Pf/PvDHFR-DHPS). Structural analyses of DHFR and DHPS proteins in complexes with substrates/drugs have revealed that resistance mutations map proximal to Sdx and Pyr binding sites. Thus new studies can focus on discovery of novel inhibitors that target the non-substrate binding grooves in these two validated malaria parasite drug targets.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ishika Verma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sreehari Gopinathan
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; National Institute of Malaria Research, Dwarka, New Delhi, India.
| |
Collapse
|
15
|
Jiang T, Cheng W, Yao Y, Tan H, Wu K, Li J. Molecular surveillance of anti-malarial resistance Pfdhfr and Pfdhps polymorphisms in African and Southeast Asia Plasmodium falciparum imported parasites to Wuhan, China. Malar J 2020; 19:434. [PMID: 33238987 PMCID: PMC7691106 DOI: 10.1186/s12936-020-03509-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Anti-malarial drug resistance is a severe challenge for eventual control and global elimination of malaria. Resistance to sulfadoxine-pyrimethamine (SP) increases as mutations accumulate in the Pfdhfr and Pfdhps genes. This study aimed to assess the polymorphisms and prevalence of mutation in these genes in the Plasmodium falciparum infecting migrant workers returning to Wuhan, China. Methods Blood samples were collected for 9 years (2011–2019). Parasite genomic DNA was extracted from blood spots on filter paper. The mutations were evaluated by nested PCR and sequencing. The single-nucleotide polymorphisms (SNPs) and haplotypes of the Pfdhfr and Pfdhps genes were analysed. Results Pfdhfr codon 108 showed a 94.7% mutation rate, while for Pfdhps, the rate for codon 437 was 79.0%. In total, five unique haplotypes at the Pfdhfr locus and 11 haplotypes at the Pfdhps locus were found while the Pfdhfr-Pfdhps combined loci revealed 28 unique haplotypes. A triple mutant (IRNI) of Pfdhfr was the most prevalent haplotype (84.4%). For Pfdhps, a single mutant (SGKAA) and a double mutant (SGEAA) were detected at frequencies of 37.8 and 22.3%, respectively. Among the combined haplotypes, a quadruple mutant (IRNI-SGKAA) was the most common, with a 30.0% frequency, followed by a quintuplet mutant (IRNI-SGEAA) with a frequency of 20.4%. Conclusion The high prevalence and saturation of Pfdhfr haplotypes and the medium prevalence of Pfdhps haplotypes demonstrated in the present data will provide support for predicting the status and progression of antifolate resistance in malaria-endemic regions and imported malaria in nonendemic areas. Additional interventions to evaluate and prevent SP resistance should be continuously considered.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Weijia Cheng
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yi Yao
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Huabing Tan
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Kai Wu
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, 430015, China.
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
16
|
Ippolito MM, Pringle JC, Siame M, Katowa B, Aydemir O, Oluoch PO, Huang L, Aweeka FT, Bailey JA, Juliano JJ, Meshnick SR, Shapiro TA, Moss WJ, Thuma PE. Therapeutic Efficacy of Artemether-Lumefantrine for Uncomplicated Falciparum Malaria in Northern Zambia. Am J Trop Med Hyg 2020; 103:2224-2232. [PMID: 33078701 DOI: 10.4269/ajtmh.20-0852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Artemether-lumefantrine (AL) is a first-line agent for uncomplicated malaria caused by Plasmodium falciparum. The WHO recommends periodic therapeutic efficacy studies of antimalarial drugs for the detection of malaria parasite drug resistance and to inform national malaria treatment policies. We conducted a therapeutic efficacy study of AL in a high malaria transmission region of northern Zambia from December 2014 to July 2015. One hundred children of ages 6 to 59 months presenting to a rural health clinic with uncomplicated falciparum malaria were admitted for treatment with AL (standard 6-dose regimen) and followed weekly for 5 weeks. Parasite counts were taken every 6 hours during treatment to assess parasite clearance. Recurrent episodes during follow-up (n = 14) were genotyped to distinguish recrudescence from reinfection and to identify drug resistance single nucleotide polymorphisms (SNPs) and multidrug resistance protein 1 (mdr1) copy number variation. Day 7 lumefantrine concentrations were measured for correspondence with posttreatment reinfection. All children who completed the parasite clearance portion of the study (n = 94) were microscopy-negative by 72 hours. The median parasite elimination half-life was 2.7 hours (interquartile range: 2.1-3.3). Genotype-corrected therapeutic efficacy was 98.8% (95% CI: 97.6-100). Purported artemisinin and lumefantrine drug resistance SNPs in atp6, 3D7_1451200, and mdr1 were detected but did not correlate with parasite recurrence, nor did day 7 lumefantrine concentrations. In summary, AL was highly effective for the treatment of uncomplicated falciparum malaria in northern Zambia during the study period. The high incidence of recurrent parasitemia was consistent with reinfection due to high, perennial malaria transmission.
Collapse
Affiliation(s)
- Matthew M Ippolito
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia C Pringle
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Mwiche Siame
- Ministry of Health, Government of the Republic of Zambia, Lusaka, Zambia
| | | | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Peter O Oluoch
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Liusheng Huang
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Francesca T Aweeka
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Jonathan J Juliano
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Steven R Meshnick
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Theresa A Shapiro
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William J Moss
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Philip E Thuma
- Macha Research Trust, Macha, Zambia.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
17
|
Molecular surveillance of anti-malarial drug resistance in Democratic Republic of Congo: high variability of chloroquinoresistance and lack of amodiaquinoresistance. Malar J 2020; 19:121. [PMID: 32197607 PMCID: PMC7085146 DOI: 10.1186/s12936-020-03192-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background The loss of chloroquine (CQ) effectiveness has led to its withdrawal from national policies as a first-line treatment for uncomplicated malaria in several endemic countries, such as the Democratic Republic of Congo (DRC). The K76T mutation on the pfcrt gene has been identified as a marker of CQ resistance and the SVMNT haplotype in codons 72–76 on the same gene has been associated with resistance to amodiaquine (AQ). In the DRC, the prevalence of K76T has decreased from 100% in 2000 to 63.9% in 2014. The purpose of this study was to determine the prevalence of K76T mutations in circulating strains of Plasmodium falciparum, 16 years after CQ withdrawal in the DRC and to investigate the presence of the SVMNT haplotype. Methods In 2017, ten geographical sites across the DRC were selected. Dried blood samples were collected from patients attending health centres. Malaria was first detected by a rapid diagnostic test (RDT) available on site (SD Bioline Malaria Ag Pf or CareStart Malaria Pf) or thick blood smear and then confirmed by a P. falciparum species-specific real-time PCR assay. A pfcrt gene segment containing a fragment that encodes amino acids at positions 72–76 was amplified by conventional PCR before sequencing. Results A total of 1070 patients were enrolled. Of the 806 PCR-confirmed P. falciparum positive samples, 764 were successfully sequenced. The K76T mutation was detected in 218 samples (28.5%; 95% CI 25.4%–31.9%), mainly (96%) with the CVIET haplotype. Prevalence of CQ resistance marker was unequally distributed across the country, ranging from 1.5% in Fungurume to 89.5% in Katana. The SVMNT haplotype, related to AQ resistance, was not detected. Conclusion Overall, the frequency of the P. falciparum CQ resistance marker has decreased significantly and no resistance marker to AQ was detected in the DRC in 2017. However, the between regions variability of CQ resistance remains high in the country. Further studies are needed for continuous monitoring of the CQ resistance level for its prospective re-use in malaria management. The absence of the AQ resistance marker is in line with the use of this drug in the current DRC malaria treatment policy.
Collapse
|
18
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
19
|
Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, Obuku EA. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar J 2019; 18:76. [PMID: 30871535 PMCID: PMC6419488 DOI: 10.1186/s12936-019-2716-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chloroquine, a previous highly efficacious, easy to use and affordable anti-malarial agent was withdrawn from malaria endemic regions due to high levels of resistance. This review collated evidence from published-reviewed articles to establish prevalence of Pfcrt 76T and Pfmdr-1 86Y alleles in malaria affected countries following official discontinuation of chloroquine use. Methods A review protocol was developed, registered in PROSPERO (#CRD42018083957) and published in a peer-reviewed journal. Article search was done in PubMed, Scopus, Lilacs/Vhl and Embase databases by two experienced librarians (AK, RS) for the period 1990-to-Febuary 2018. Mesh terms and Boolean operators (AND, OR) were used. Data extraction form was designed in Excel spread sheet 2007. Data extraction was done by three reviewers (NL, BB and MO), discrepancies were resolved by discussion. Random effects analysis was done in Open Meta Analyst software. Heterogeneity was established using I2-statistic. Results A total of 4721 citations were retrieved from article search (Pubmed = 361, Lilac/vhl = 28, Science Direct = 944, Scopus = 3388). Additional targeted search resulted in three (03) eligible articles. After removal of duplicates (n = 523) and screening, 38 articles were included in the final review. Average genotyping success rate was 63.6% (18,343/28,820) for Pfcrt K76T and 93.5% (16,232/17,365) for Pfmdr-1 86Y mutations. Prevalence of Pfcrt 76T was as follows; East Africa 48.9% (2528/5242), Southern Africa 18.6% (373/2163), West Africa 58.3% (3321/6608), Asia 80.2% (1951/2436). Prevalence of Pfmdr-1 86Y was; East Africa 32.4% (1447/5722), Southern Africa 36.1% (544/1640), West Africa 52.2% (1986/4200), Asia 46.4% (1276/2217). Over half, 52.6% (20/38) of included studies reported continued unofficial chloroquine use following policy change. Studies done in Madagascar and Kenya reported re-emergence of chloroquine sensitive parasites (IC50 < 30.9 nM). The average time (years) since discontinuation of chloroquine use to data collection was 8.7 ± 7.4. There was high heterogeneity (I2 > 95%). Conclusion The prevalence of chloroquine resistance alleles among Plasmodium falciparum parasites have steadily declined since discontinuation of chloroquine use. However, Pfcrt K76T and Pfmdr-1 N86Y mutations still persist at moderate frequencies in most malaria affected countries.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072, Kampala, Uganda. .,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Dickens Akena
- Department of Psychiatry, Makerere University, P.O. Box 7072, Kampala, Uganda.,Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | - Sam Nsobya
- Department of Medical Microbiology, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Richard Senono
- Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- Albert Cook Library, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
20
|
Blanton RE. Population Genetics and Molecular Epidemiology of Eukaryotes. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0002-2018. [PMID: 30387414 PMCID: PMC6217834 DOI: 10.1128/microbiolspec.ame-0002-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 01/16/2023] Open
Abstract
Molecular epidemiology uses the distribution and organization of a pathogen's DNA to understand the distribution and determinants of disease. Since the biology of DNA for eukaryotic pathogens differs substantially from that of bacteria, the analytic approach to their molecular epidemiology can also differ. While many of the genotyping techniques presented earlier in this series, "Advances in Molecular Epidemiology of Infectious Diseases," can be applied to eukaryotes, the output must be interpreted in the light of how DNA is distributed from one generation to the next. In some cases, parasite populations can be evaluated in ways reminiscent of bacteria. They differ, however, when analyzed as sexually reproducing organisms, where all individuals are unique but the genetic composition of the population does not change unless a limited set of events occurs. It is these events (migration, mutation, nonrandom mating, selection, and genetic drift) that are of interest. At a given time, not all of them are likely to be equally important, so the list can easily be narrowed down to understand the driving forces behind the population as it is now and even what it will look like in the future. The main population characteristics measured to assess these events are differentiation and diversity, interpreted in the light of what is known about the population from observation. The population genetics of eukaryotes is important for planning and evaluation of control measures, surveillance, outbreak investigation, and monitoring of the development and spread of drug resistance. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ronald E Blanton
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
21
|
Osei M, Ansah F, Matrevi SA, Asante KP, Awandare GA, Quashie NB, Duah NO. Amplification of GTP-cyclohydrolase 1 gene in Plasmodium falciparum isolates with the quadruple mutant of dihydrofolate reductase and dihydropteroate synthase genes in Ghana. PLoS One 2018; 13:e0204871. [PMID: 30265714 PMCID: PMC6162080 DOI: 10.1371/journal.pone.0204871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Sulfadoxine-pyrimethamine (SP) is used as malaria chemoprophylaxis for pregnant women and children in Ghana. Plasmodium falciparum resistance to SP is linked to mutations in the dihydropteroate synthase gene (pfdhps), dihydrofolate reductase gene (pfdhfr) and amplification of GTP cyclohydrolase 1 (pfgch1) gene. The pfgch1 duplication is associated with pfdhfr L164, a crucial mutant for high level pyrimethamine resistance which is rare in Ghana. The presence of amplified pfgch1 in Ghanaian isolates could be an indicator of the evolution of the L164 mutant. This study therefore determined the pfgch1 copy number variations and SP resistance mutations in clinical isolates from Ghana. One hundred and ninety-two (192) blood samples collected from children aged ≤14 years with uncomplicated malaria in 2013-14 and 2015-16 were used. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the pfgch1 copy number and nested PCR-Sanger sequencing used to detect mutations in pfdhps and pfdhfr genes. Twelve parasites (6.3%) harbored double copies of the pfgch1 gene out of the 192 samples. Of the 12, 75% had the pfdhfr I51-R59-N108, 92% had the pfdhps G437 mutant, 8% had the pfdhps E540 and 67% had the SP resistance haplotype IRNG. No L164 was detected in samples with amplified pfgch1. The rare T108 mutant associated with cycloguanil resistance showed predominance (60%) over N108 in the 2015-16 isolates. The observation of parasites with increased copy number of pfgch1 gene is indicative of the future evolution of the rare quadruple pfdhfr mutant, I51-R59-N108-L164, in Ghanaian parasites. Mutant pfdhps isolates also had increased gch1 copy number suggestive that it may also facilitate sulphadoxine resistance. The selection of parasites with pfgch1 gene amplification will enhance the sustenance and persistence of parasites with SP resistance in the country. Policy makers need to begin the search for a replacement chemoprophylaxis drug for malaria vulnerable groups in Ghana.
Collapse
Affiliation(s)
- Musah Osei
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sena A. Matrevi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Neils B. Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nancy O. Duah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
22
|
Soliman RH, Garcia-Aranda P, Elzagawy SM, Hussein BES, Mayah WW, Martin Ramirez A, Ta-Tang TH, Rubio JM. Imported and autochthonous malaria in West Saudi Arabia: results from a reference hospital. Malar J 2018; 17:286. [PMID: 30086757 PMCID: PMC6081858 DOI: 10.1186/s12936-018-2438-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/01/2018] [Indexed: 01/12/2023] Open
Abstract
Background The Kingdom of Saudi Arabia is seeking malaria eradication. Malaria transmission has been very low over the last few years. Discovered cases of Plasmodium falciparum infection are assigned a treatment protocol of artemisinin-based combination therapy, which consists of artesunate in addition to sulfadoxine-pyrimethamine rather than the traditional chloroquine, which has high resistance rates worldwide. This study aims to investigate the presence of different gene mutations concerning anti-malarial drug resistance (pfdhfr, pfdhps, pfmdr1, pfcrt, pfcytb, pfketch13) to identify whether drug-resistant alleles are present in this area of the Kingdom and whether the country’s treatment protocol is still suitable for Plasmodium bearing a resistance mutation. Methods Blood samples were collected from patients suffering from symptoms suggesting malaria coming to King Faisal Hospital, Taif, from February to August 2016. Diagnosis was performed by Giemsa-stained thin and thick blood films, rapid diagnostic test and PCR. Positive P. falciparum samples were further subjected to series of PCR amplification reactions targeting genes related with drug resistance (pfdhfr, pfdhps, pfmdr1, pfcrt, pfcytb, pfketch13). Results Twenty-six cases were positives, 13 infected with P. falciparum, of those, 4 cases were autochthonous, and 13 with Plasmodium vivax. The results of the gene mutation detection confirmed that there was no mutation related to resistance to artemisinin or atovaquone, on the other hand chloroquine resistance alleles were detected in 31% of samples. Moreover, point mutations in the pfdhfr and pfdhps genes, related resistance to antifolate drugs, were detected in all characterized samples. Conclusions Haplotypes of P. falciparum in the western region of the Kingdom of Saudi Arabia exhibit high resistance against antifolate drugs. These results should be extensively discussed when planning to modify anti-malarial drug protocols in the future.
Collapse
Affiliation(s)
- Rasha Hassan Soliman
- Microbiology Department, Faculty of Medicine, Taif University, Al Hawiyah, Taif, Kingdom of Saudi Arabia.,Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Patricia Garcia-Aranda
- Malaria and Emerging Parasitic Diseases Laboratory, National Microbiology Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Sherine Mohamed Elzagawy
- Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Princes Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Boshra El-Sayed Hussein
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt.,King Faisal Medical Complex, Taif, Kingdom of Saudi Arabia
| | - Wael Wahid Mayah
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt.,Faculty of Dentisary, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Alexandra Martin Ramirez
- Malaria and Emerging Parasitic Diseases Laboratory, National Microbiology Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - Thuy-Huong Ta-Tang
- Malaria and Emerging Parasitic Diseases Laboratory, National Microbiology Centre, Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel Rubio
- Malaria and Emerging Parasitic Diseases Laboratory, National Microbiology Centre, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
23
|
Nkoli Mandoko P, Rouvier F, Matendo Kakina L, Moke Mbongi D, Latour C, Losimba Likwela J, Ngoyi Mumba D, Bi Shamamba SK, Tamfum Muyembe JJ, Muepu Tshilolo L, Parzy D, Sinou V. Prevalence of Plasmodium falciparum parasites resistant to sulfadoxine/pyrimethamine in the Democratic Republic of the Congo: emergence of highly resistant pfdhfr/pfdhps alleles. J Antimicrob Chemother 2018; 73:2704-2715. [DOI: 10.1093/jac/dky258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- Papy Nkoli Mandoko
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Florent Rouvier
- Department of Biology, K-Plan, Grand Luminy Technopôle, Marseille, France
| | - Lebon Matendo Kakina
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Destin Moke Mbongi
- Centre de Formation et d’Appui Sanitaire (CEFA)/Centre Hospitalier Monkole, Kinshasa, Democratic Republic of the Congo
| | - Christine Latour
- Department of Biology, K-Plan, Grand Luminy Technopôle, Marseille, France
| | - Joris Losimba Likwela
- Department of Public Health, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
- National Malaria Control Program, Kinshasa, Democratic Republic of the Congo
| | - Dieudonné Ngoyi Mumba
- National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | | | | | - Léon Muepu Tshilolo
- Centre de Formation et d’Appui Sanitaire (CEFA)/Centre Hospitalier Monkole, Kinshasa, Democratic Republic of the Congo
| | - Daniel Parzy
- Department of Biology, K-Plan, Grand Luminy Technopôle, Marseille, France
| | - Véronique Sinou
- UMR-MD3, University of Aix-Marseille, Faculty of Pharmacy, Marseille, France
| |
Collapse
|
24
|
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 2018; 11:415-430. [PMID: 29636796 PMCID: PMC5891050 DOI: 10.1111/eva.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Since 2000, the world has made significant progress in reducing malaria morbidity and mortality, and several countries in Africa, South America and South-East Asia are working hard to eliminate the disease. These elimination efforts continue to rely heavily on antimalarial drugs and insecticide-based interventions, which remain the cornerstones of malaria treatment and prevention. However, resistance has emerged against nearly every antimalarial drug and insecticide that is available. In this review we discuss the evolutionary consequences of the way we currently implement antimalarial interventions, which is leading to resistance and may ultimately lead to control failure, but also how evolutionary principles can be applied to extend the lifespan of current and novel interventions. A greater understanding of the general evolutionary principles that are at the core of emerging resistance is urgently needed if we are to develop improved resistance management strategies with the ultimate goal to achieve a malaria-free world.
Collapse
Affiliation(s)
- Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
| | - Krijn P. Paaijmans
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
- Centro de Investigação em Saúde de ManhiçaMaputoMozambique
| |
Collapse
|
25
|
Hemming-Schroeder E, Umukoro E, Lo E, Fung B, Tomás-Domingo P, Zhou G, Zhong D, Dixit A, Atieli H, Githeko A, Vardo-Zalik A, Yan G. Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003-2015. Am J Trop Med Hyg 2018; 98:692-699. [PMID: 29363453 PMCID: PMC5930917 DOI: 10.4269/ajtmh.17-0763] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Antimalarial drug resistance has threatened global malaria control since chloroquine (CQ)-resistant Plasmodium falciparum emerged in Asia in the 1950s. Understanding the impacts of changing antimalarial drug policy on resistance is critical for resistance management. Plasmodium falciparum isolates were collected from 2003 to 2015 in western Kenya and analyzed for genetic markers associated with resistance to CQ (Pfcrt), sulfadoxine-pyrimethamine (SP) (Pfdhfr/Pfdhps), and artemether-lumefantrine (AL) (PfKelch13/Pfmdr1) antimalarials. In addition, household antimalarial drug use surveys were administered. Pfcrt 76T prevalence decreased from 76% to 6% from 2003 to 2015. Pfdhfr/Pfdhps quintuple mutants decreased from 70% in 2003 to 14% in 2008, but increased to near fixation by 2015. SP "super resistant" alleles Pfdhps 581G and 613S/T were not detected in the 2015 samples that were assessed. The Pfmdr1 N86-184F-D1246 haplotype associated with decreased lumefantrine susceptibility increased significantly from 4% in 2005 to 51% in 2015. No PfKelch13 mutations that have been previously associated with artemisinin resistance were detected in the study populations. The increase in Pfdhfr/Pfdhps quintuple mutants that associates with SP resistance may have resulted from the increased usage of SP for intermittent preventative therapy in pregnancy (IPTp) and for malaria treatment in the community. Prevalent Pfdhfr/Pfdhps mutations call for careful monitoring of SP resistance and effectiveness of the current IPTp program in Kenya. In addition, the commonly occurring Pfmdr1 N86-184F-D1246 haplotype associated with increased lumefantrine tolerance calls for surveillance of AL efficacy in Kenya, as well as consideration for a rotating artemisinin-combination therapy regimen.
Collapse
Affiliation(s)
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina
| | - Becky Fung
- Program in Public Health, University of California, Irvine, California
| | | | - Guofa Zhou
- Program in Public Health, University of California, Irvine, California
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California
| | - Amruta Dixit
- Program in Public Health, University of California, Irvine, California
| | - Harrysone Atieli
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California
| |
Collapse
|
26
|
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23:917-928. [PMID: 28777791 DOI: 10.1038/nm.4381] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.
Collapse
Affiliation(s)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
27
|
Salman S, Baiwog F, Page-Sharp M, Kose K, Karunajeewa HA, Mueller I, Rogerson SJ, Siba PM, Ilett KF, Davis TME. Optimal antimalarial dose regimens for chloroquine in pregnancy based on population pharmacokinetic modelling. Int J Antimicrob Agents 2017; 50:542-551. [PMID: 28669839 DOI: 10.1016/j.ijantimicag.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/25/2022]
Abstract
Despite extensive use and accumulated evidence of safety, there have been few pharmacokinetic studies from which appropriate chloroquine (CQ) dosing regimens could be developed specifically for pregnant women. Such optimised CQ-based regimens, used as treatment for acute malaria or as intermittent preventive treatment in pregnancy (IPTp), may have a valuable role if parasite CQ sensitivity returns following reduced drug pressure. In this study, population pharmacokinetic/pharmacodynamic modelling was used to simultaneously analyse plasma concentration-time data for CQ and its active metabolite desethylchloroquine (DCQ) in 44 non-pregnant and 45 pregnant Papua New Guinean women treated with CQ and sulfadoxine/pyrimethamine or azithromycin (AZM). Pregnancy was associated with 16% and 49% increases in CQ and DCQ clearance, respectively, as well as a 24% reduction in CQ relative bioavailability. Clearance of DCQ was 22% lower in those who received AZM in both groups. Simulations based on the final multicompartmental model demonstrated that a 33% CQ dose increase may be suitable for acute treatment for malaria in pregnancy as it resulted in equivalent exposure to that in non-pregnant women receiving recommended doses, whilst a double dose would likely be required for an effective duration of post-treatment prophylaxis when used as IPTp especially in areas of CQ resistance. The impact of co-administered AZM was clinically insignificant in simulations. The results of past/ongoing trials employing recommended adult doses of CQ-based regimens in pregnant women should be interpreted in light of these findings, and consideration should be given to using increased doses in future trials.
Collapse
Affiliation(s)
- Sam Salman
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Francesca Baiwog
- Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Madang Province, Papua New Guinea
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University of Technology, Kent Street, Bentley, WA 6102, Australia
| | - Kay Kose
- Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Madang Province, Papua New Guinea
| | - Harin A Karunajeewa
- Population Health and Immunity, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia; Barcelona Institute for Global Health (ISGlobal), Carrer del Rosselló 132, 08036 Barcelona, Spain
| | - Stephen J Rogerson
- Department of Medicine (RMH), The University of Melbourne, 300 Grattan Street, Parkville, VIC 3050, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, P.O. Box 378, Madang, Madang Province, Papua New Guinea
| | - Kenneth F Ilett
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Timothy M E Davis
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| |
Collapse
|
28
|
Lynch CA, Pearce R, Pota H, Egwang C, Egwang T, Bhasin A, Cox J, Abeku TA, Roper C. Travel and the emergence of high-level drug resistance in Plasmodium falciparum in southwest Uganda: results from a population-based study. Malar J 2017; 16:150. [PMID: 28415996 PMCID: PMC5392983 DOI: 10.1186/s12936-017-1812-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/08/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The I164L mutation on the dhfr gene confers high level resistance to sulfadoxine-pyrimethamine (SP) but it is rare in Africa except in a cluster of reports where prevalence >10% in highland areas of southwest Uganda and eastern Rwanda. The occurrence of the dhfr I164L mutation was investigated in community surveys in this area and examined the relationship to migration. METHODS A cross-sectional prevalence survey was undertaken in among villages within the catchment areas of two health facilities in a highland site (Kabale) and a highland fringe site (Rukungiri) in 2007. Sociodemographic details, including recent migration, were collected for each person included in the study. A total of 206 Plasmodium falciparum positive subjects were detected by rapid diagnostic test; 203 in Rukungiri and 3 in Kabale. Bloodspot samples were taken and were screened for dhfr I164L. RESULTS Sequence analysis confirmed the presence of the I164L mutations in twelve P. falciparum positive samples giving an estimated prevalence of 8.6% in Rukungiri. Of the three parasite positive samples in Kabale, none had I164L mutations. Among the twelve I164L positives three were male, ages ranged from 5 to 90 years of age. None of those with the I164L mutation had travelled in the 8 weeks prior to the survey, although three were from households from which at least one household member had travelled during that period. Haplotypes were determined in non-mixed infections and showed the dhfr I164L mutation occurs in both as a N51I + S108N + I164L haplotype (n = 2) and N51I + C59R + S108N + I164L haplotype (n = 5). Genotyping of flanking microsatellite markers showed that the I164L occurred independently on the triple mutant (N51I, C59R + S108N) and double mutant (N51I + S108N) background. CONCLUSIONS There is sustained local transmission of parasites with the dhfr I164L mutation in Rukungiri and no evidence to indicate its occurrence is associated with recent travel to highly resistant neighbouring areas. The emergence of a regional cluster of I164L in SW Uganda and Rwanda indicates that transmission of I164L is facilitated by strong drug pressure in low transmission areas potentially catalysed in those areas by travel and the importation of parasites from relatively higher transmission settings.
Collapse
Affiliation(s)
- Caroline A Lynch
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Richard Pearce
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Hirva Pota
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Amit Bhasin
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jonathan Cox
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
29
|
Gil JP, Krishna S. pfmdr1 (Plasmodium falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Rev Anti Infect Ther 2017; 15:527-543. [DOI: 10.1080/14787210.2017.1313703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J. Pedro Gil
- Physiology and Pharmacology Department, Karolinska Institutet, Stockholm, Sweden
| | - S. Krishna
- St George’s University Hospital, Institute for Infection and Immunity, London, United Kingdom
| |
Collapse
|