1
|
Vojtíšek J, Janssen N, Šikutová S, Šebesta O, Kampen H, Rudolf I. Emergence of the invasive Asian bush mosquito Aedes (Hulecoeteomyia) japonicus (Theobald, 1901) in the Czech Republic. Parasit Vectors 2022; 15:250. [PMID: 35820942 PMCID: PMC9277878 DOI: 10.1186/s13071-022-05332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/20/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Aedes japonicus is a mosquito species native to North-East Asia that was first found established outside its original geographic distribution range in 1998 and has since spread massively through North America and Europe. In the Czech Republic, the species was not reported before 2021. METHODS Aedes invasive mosquitoes (AIM) are routinely surveyed in the Czech Republic by ovitrapping at potential entry ports. This surveillance is supported by appeals to the population to report uncommon mosquitoes. The submission of an Ae. japonicus specimen by a citizen in 2021 was followed by local search for aquatic mosquito stages in the submitter's garden and short-term adult monitoring with encephalitis virus surveillance (EVS) traps in its surroundings. Collected Ae. japonicus specimens were subjected to nad4 haplotype and microsatellite analyses. RESULTS Aedes japonicus was detected for the first time in the Czech Republic in 2021. Aquatic stages and adults were collected in Prachatice, close to the Czech-German border, and eggs in Mikulov, on the Czech-Austrian border. Morphological identification was confirmed by molecular taxonomy. Genetic analysis of specimens and comparison of genetic data with those of other European populations, particularly from Germany, showed the Prachatice specimens to be most closely related to a German population. The Mikulov specimens were more distantly related to those, with no close relatives identifiable. CONCLUSIONS Aedes japonicus is already widely distributed in Germany and Austria, two countries neighbouring the Czech Republic, and continues to spread rapidly in Central Europe. It must therefore be assumed that the species is already present at more than the two described localities in the Czech Republic and will further spread in this country. These findings highlight the need for more comprehensive AIM surveillance in the Czech Republic.
Collapse
Affiliation(s)
- Jakub Vojtíšek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Nele Janssen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | - Silvie Šikutová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Šebesta
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany.
| | - Ivo Rudolf
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Bakran-Lebl K, Pree S, Brenner T, Daroglou E, Eigner B, Griesbacher A, Gunczy J, Hufnagl P, Jäger S, Jerrentrup H, Klocker L, Paill W, Petermann JS, Barogh BS, Schwerte T, Suchentrunk C, Wieser C, Wortha LN, Zechmeister T, Zezula D, Zimmermann K, Zittra C, Allerberger F, Fuehrer HP. First Nationwide Monitoring Program for the Detection of Potentially Invasive Mosquito Species in Austria. INSECTS 2022; 13:276. [PMID: 35323574 PMCID: PMC8949374 DOI: 10.3390/insects13030276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
In Austria, only fragmented information on the occurrence of alien and potentially invasive mosquito species exists. The aim of this study is a nationwide overview on the situation of those mosquitoes in Austria. Using a nationwide uniform protocol for the first time, mosquito eggs were sampled with ovitraps at 45 locations in Austria at weekly intervals from May to October 2020. The sampled eggs were counted and the species were identified by genetic analysis. The Asian tiger mosquito Aedes albopictus was found at two sites, once in Tyrol, where this species has been reported before, and for the first time in the province of Lower Austria, at a motorway rest stop. The Asian bush mosquito Aedes japonicus was widespread in Austria. It was found in all provinces and was the most abundant species in the ovitraps by far. Aedes japonicus was more abundant in the South than in the North and more eggs were found in habitats with artificial surfaces than in (semi-) natural areas. Further, the number of Ae. japonicus eggs increased with higher ambient temperature and decreased with higher wind speed. The results of this study will contribute to a better estimation of the risk of mosquito-borne disease in Austria and will be a useful baseline for a future documentation of changes in the distribution of those species.
Collapse
Affiliation(s)
- Karin Bakran-Lebl
- Institute for Medical Microbiology & Hygiene, AGES—Austrian Agency for Health and Food Safety Ltd., 1096 Vienna, Austria; (P.H.); (F.A.)
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Stefanie Pree
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Thomas Brenner
- GEBL—Gelsenbekaempfung in den Leithaauen, 2452 Mannersdorf, Austria;
| | - Eleni Daroglou
- Verein Biologische Gelsenregulierung March-Thaya Auen, 2273 Hohenau an der March, Austria; (E.D.); (H.J.)
| | - Barbara Eigner
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Antonia Griesbacher
- Data, Statistics & Risk Assessment, AGES—Austrian Agency for Health and Food Safety Ltd., 8010 Graz, Austria;
| | - Johanna Gunczy
- Universalmuseum Joanneum, Studienzentrum Naturkunde, 8045 Graz, Austria; (J.G.); (W.P.)
| | - Peter Hufnagl
- Institute for Medical Microbiology & Hygiene, AGES—Austrian Agency for Health and Food Safety Ltd., 1096 Vienna, Austria; (P.H.); (F.A.)
| | - Stefanie Jäger
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria; (S.J.); (T.S.)
| | - Hans Jerrentrup
- Verein Biologische Gelsenregulierung March-Thaya Auen, 2273 Hohenau an der March, Austria; (E.D.); (H.J.)
| | | | - Wolfgang Paill
- Universalmuseum Joanneum, Studienzentrum Naturkunde, 8045 Graz, Austria; (J.G.); (W.P.)
| | - Jana S. Petermann
- Environment and Biodiversity, University of Salzburg, 5020 Salzburg, Austria; (J.S.P.); (D.Z.)
| | - Bita Shahi Barogh
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | - Thorsten Schwerte
- Department of Zoology, University of Innsbruck, 6020 Innsbruck, Austria; (S.J.); (T.S.)
| | | | | | - Licha N. Wortha
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| | | | - David Zezula
- Environment and Biodiversity, University of Salzburg, 5020 Salzburg, Austria; (J.S.P.); (D.Z.)
| | | | - Carina Zittra
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| | - Franz Allerberger
- Institute for Medical Microbiology & Hygiene, AGES—Austrian Agency for Health and Food Safety Ltd., 1096 Vienna, Austria; (P.H.); (F.A.)
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Vetmeduni Vienna, 1210 Vienna, Austria; (S.P.); (B.E.); (B.S.B.); (L.N.W.); (H.-P.F.)
| |
Collapse
|
3
|
Caputo B, Manica M. Mosquito surveillance and disease outbreak risk models to inform mosquito-control operations in Europe. CURRENT OPINION IN INSECT SCIENCE 2020; 39:101-108. [PMID: 32403040 DOI: 10.1016/j.cois.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Surveillance programs are needed to guide mosquito-control operations to reduce both nuisance and the spread of mosquito-borne diseases. Understanding the thresholds for action to reduce both nuisance and the risk of arbovirus transmission is becoming critical. To date, mosquito surveillance is mainly implemented to inform about pathogen transmission risks rather than to reduce mosquito nuisance even though lots of control efforts are aimed at the latter. Passive surveillance, such as digital monitoring (validated by entomological trapping), is a powerful tool to record biting rates in real time. High-quality data are essential to model the risk of arbovirus diseases. For invasive pathogens, efforts are needed to predict the arrival of infected hosts linked to the small-scale vector to host contact ratio, while for endemic pathogens efforts are needed to set up region-wide highly structured surveillance measures to understand seasonal re-activation and pathogen transmission in order to carry out effective control operations.
Collapse
Affiliation(s)
- Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Piazzale A. Moro 5, 38010, 00185 Rome, Italy.
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all' Adige, Italy
| |
Collapse
|
4
|
Pasquali S, Mariani L, Calvitti M, Moretti R, Ponti L, Chiari M, Sperandio G, Gilioli G. Development and calibration of a model for the potential establishment and impact of Aedes albopictus in Europe. Acta Trop 2020; 202:105228. [PMID: 31678121 DOI: 10.1016/j.actatropica.2019.105228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
The Asian tiger mosquito (Aedes albopictus) is one of the most invasive disease vectors worldwide. The species is a competent vector of dengue, chikungunya, Zika viruses and other severe parasites and pathogens threatening human health. The capacity of this mosquito to colonize and establish in new areas (including temperate regions) is enhanced by its ability of producing diapausing eggs that survive relatively cold winters. The main drivers of population dynamics for this mosquito are water and air temperature and photoperiod. In this paper, we present a mechanistic model that predicts the potential distribution, abundance and activity of Asian tiger mosquito in Europe. The model includes a comprehensive description of: i) the individual life-history strategies, including diapause, ii) the influence of weather-driven individual physiological responses on population dynamics and iii) the density-dependent regulation of larval mortality rate. The model is calibrated using field data from several locations along an altitudinal gradient in the Italian Alps, which enabled accurate prediction of cold temperature effects on population abundance, including identification of conditions that prevent overwintering of the species. Model predictions are consistent with the most updated information on species' presence and absence. Predicted population abundance shows a clear south-north decreasing gradient. A similar yet less evident pattern in the activity of the species is also predicted. The model represents a valuable tool for the development of strategies aimed at the management of Ae. albopictus and for the implementation of effective control measures against vector-borne diseases in Europe.
Collapse
Affiliation(s)
- S Pasquali
- CNR-IMATI "Enrico Magenes", Via A. Corti 12, 20133 Milano, Italy.
| | - L Mariani
- Lombard Museum of Agricultural History, Via Celoria, 2, 20133 Milano, Italy; DiSAA, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - M Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, via Anguillarese 301, 00123 Rome, Italy
| | - R Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, via Anguillarese 301, 00123 Rome, Italy
| | - L Ponti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, via Anguillarese 301, 00123 Rome, Italy; Center for the Analysis of Sustainable Agricultural Systems (www.casasglobal.org), Kensington CA 94707, USA
| | - M Chiari
- UO Veterinaria, DG Welfare, Regione Lombardia, P.zza Città di Lombardia 1, 20124 Milano, Italy
| | - G Sperandio
- DMMT, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola 2, 42122 Reggio Emilia, Italy
| | - G Gilioli
- DMMT, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
5
|
Zhang M, Zhang D, Li Y, Sun Q, Li Q, Fan Y, Wu Y, Xi Z, Zheng X. Water-induced strong protection against acute exposure to low subzero temperature of adult Aedes albopictus. PLoS Negl Trop Dis 2019; 13:e0007139. [PMID: 30716071 PMCID: PMC6382212 DOI: 10.1371/journal.pntd.0007139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/20/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
As an important vector of dengue and Zika, Aedes albopictus has been the fastest spreading invasive mosquitoes in the world over the last 3–4 decades. Cold tolerance is important for survival and expansion of insects. Ae. albopictus adults are generally considered to be cold-intolerant that cannot survive at subzero temperature. However, we found that Ae. albopictus could survive for several hours’ exposure to -9 to -19 oC so long as it was exposed with water. Median lethal time (LT50) of Ae. albopictus exposed to -15 and -19 oC with water increased by more than 100 times compared to those exposed to the same subzero temperature without water. This phenomenon also existed in adult Aedes aegypti and Culex quinquefasciatus. Ae. albopictus female adults which exposed to low subzero temperature at -9 oC with water had similar longevity and reproductive capacity to those of females without cold exposure. Cold exposure after a blood meal also have no detrimental impact on survival capacity of female adult Ae. albopictus compared with those cold exposed without a blood meal. Moreover, our results showed that rapid cold hardening (RCH) was induced in Ae. albopictus during exposing to low subzero temperature with water. Both the RCH and the relative high subzero temperature of water immediate after cold exposure might provide this strong protection against low subzero temperature. The molecular basis of water-induced protection for Ae. albopictus might refer to the increased glycerol during cold exposure, as well as the increased glucose and hsp70 during recovery from cold exposure. Our results suggested that the water-induced strong protection against acute decrease of air temperature for adult mosquitoes might be important for the survival and rapid expansion of Ae. albopictus. Aedes albopictus is one of two most important vectors for dengue and zika. During the last 3–4 decades, this mosquito has spread from native Asian area to all continents except Antarctica, becoming the most invasive mosquitoes which imposed extensive public health threat to human beings throughout the world. Cold tolerance is important for distribution and survival of insects. During the expansion of Ae. albopictus, especially a spatial expansion to cooler climate areas, it needs to cope with cold temperatures. Moreover, because of such widespread distribution adult Ae. albopictus will certainly often encounter sudden drops in air temperature even below subzero that often happens in early spring and winter, and late autumn. Thus far, adult Ae. albopictus are generally considered to be cold-intolerant that can not survive at subzero temperature. In this study, we found that water can provide strong protection against low subzero temperature even below -10 oC. Cold exposure of adult female Ae. albopictus to low subzero temperature with water either before or after a blood meal have no detrimental impact on fitness costs of these adult mosquitoes. Considering water is common in nature, our results indicated that during the expansion of Ae. albopictus especially when adult mosquitoes encounter a sudden drop in air temperature water could be a good shelter for cope with such cold temperature below subzero.
Collapse
Affiliation(s)
- Meichun Zhang
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Dongjing Zhang
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Qiang Sun
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qin Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States of America
| | - Yali Fan
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Xi
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States of America
- * E-mail: (ZX); (XZ)
| | - Xiaoying Zheng
- Sun Yat-sen University—Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-sen University, Guangzhou, China
- * E-mail: (ZX); (XZ)
| |
Collapse
|