1
|
Carrasco-Escobar G, Villa D, Barja A, Lowe R, Llanos-Cuentas A, Benmarhnia T. The role of connectivity on malaria dynamics across areas with contrasting control coverage in the Peruvian Amazon. PLoS Negl Trop Dis 2024; 18:e0012560. [PMID: 39495715 PMCID: PMC11534198 DOI: 10.1371/journal.pntd.0012560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024] Open
Abstract
Network analysis may improve the understanding of malaria epidemiology in rural areas of the Amazon region by explicitly representing the relationships between villages as a proxy for human population mobility. This study tests a comprehensive set of connectivity metrics and their relationship with malaria incidence across villages with contrasting PAMAFRO (a malaria control initiative) coverage levels in the Loreto department of Peru using data from the passive case detection reports from the Peruvian Ministry of Health between 2011 and 2018 at the village level. A total of 24 centrality metrics were computed and tested on 1608 nodes (i.e., villages/cities). Based on its consistency and stability, the betweenness centrality type outperformed other metrics. No appreciable differences in the distributions of malaria incidence were found when using different weights, including population, deforested area, Euclidian distance, or travel time. Overall, villages in the top quintile of centrality have a higher malaria incidence in comparison with villages in the bottom quintile of centrality (Mean Difference in cases per 1000 population; P. vivax = 165.78 and P. falciparum = 76.14). The mean difference between villages at the top and bottom centrality quintiles increases as PAMAFRO coverage increases for both P. vivax (Tier 1 = 155.36; Tier 2 = 176.22; Tier 3 = 326.08) and P. falciparum (Tier 1 = 48.11; Tier 2 = 95.16; Tier 3 = 139.07). The findings of this study support the shift in current malaria control strategies from targeting specific locations based on malaria metrics to strategies based on connectivity neighborhoods that include influential connected villages.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States of America
- Health Innovation Laboratory, Institute of Tropical Medicine “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Diego Villa
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States of America
| | - Antony Barja
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States of America
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- ICREA Barcelona Supercomputing Center—Centro Nacional de Supercomputación (BSC-CNS), Life & Medical Sciences, Barcelona, Spain
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, California, United States of America
| |
Collapse
|
2
|
Sanna A, Lambert Y, Jimeno Maroto I, Galindo MS, Plessis L, Bardon T, Carboni C, Bordalo J, Hiwat H, Cairo H, Musset L, Lazrek Y, Pelleau S, White M, Suárez Mutis M, Vreden S, Douine M. CUREMA project: a further step towards malaria elimination among hard-to-reach and mobile populations. Malar J 2024; 23:271. [PMID: 39256842 PMCID: PMC11385508 DOI: 10.1186/s12936-024-05040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND In most countries engaged on the last mile towards malaria elimination, residual transmission mainly persists among vulnerable populations represented by isolated and mobile (often cross-border) communities. These populations are sometimes involved in informal or even illegal activities. In regions with Plasmodium vivax transmission, the specific biology of this parasite poses additional difficulties related to the need for a radical treatment against hypnozoites to prevent relapses. Among hard-to-reach communities, case management, a pillar of elimination strategy, is deficient: acute malaria attacks often occur in remote areas, where there is limited access to care, and drugs acquired outside formal healthcare are often inadequately used for treatment, which typically does not include radical treatment against P. vivax. For these reasons, P. vivax circulation among these communities represents one of the main challenges for malaria elimination in many non-African countries. The objective of this article is to describe the protocol of the CUREMA study, which aims to meet the challenge of targeting malaria in hard-to-reach populations with a focus on P. vivax. RESULTS CUREMA is a multi-centre, international public health intervention research project. The study population is represented by persons involved in artisanal and small-scale gold mining who are active and mobile in the Guiana Shield, deep inside the Amazon Forest. The CUREMA project includes a complex intervention composed of a package of actions: (1) health education activities; (2) targeted administration of treatment against P. vivax after screening against G6PD deficiency to asymptomatic persons considered at risk of silently carrying the parasite; (3) distribution of a self-testing and self-treatment kit (malakit) associated with user training for self-management of malaria symptoms occurring while in extreme isolation. These actions are offered by community health workers at settlements and neighbourhoods (often cross-border) that represent transit and logistic bases of gold miners. The study relies on hybrid design, aiming to evaluate both the effectiveness of the intervention on malaria transmission with a pre/post quasi-experimental design, and its implementation with a mixed methods approach. CONCLUSIONS The purpose of this study is to experiment an intervention that addresses both Plasmodium falciparum and P. vivax malaria elimination in a mobile and isolated population and to produce results that can be transferred to many contexts facing the same challenges around the world.
Collapse
Affiliation(s)
- Alice Sanna
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France.
| | - Yann Lambert
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Irene Jimeno Maroto
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Muriel Suzanne Galindo
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Lorraine Plessis
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Teddy Bardon
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Carlotta Carboni
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| | - Jane Bordalo
- Associação Desenvolvimento, Prevenção, Acompanhamento e Cooperação de Fronteiras (DPAC), Oiapoque, Brazil
| | - Helene Hiwat
- National Malaria Programme, Ministry of Health, Paramaribo, Suriname
| | - Hedley Cairo
- National Malaria Programme, Ministry of Health, Paramaribo, Suriname
| | - Lise Musset
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Centre National de Référence du Paludisme, Cayenne, French Guiana, France
| | - Yassamine Lazrek
- Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Centre National de Référence du Paludisme, Cayenne, French Guiana, France
| | - Stéphane Pelleau
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michael White
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Martha Suárez Mutis
- Laboratory of Parasitic Diseases, Graduate Program in Tropical Medicine, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Stephen Vreden
- Foundation for the Advancement of Scientific Research in Suriname (SWOS), Paramaribo, Suriname
| | - Maylis Douine
- French West Indies-French Guiana Center for Clinical Investigation (CIC Inserm 1424), Department of Research, Innovation, and Public Health, Cayenne Hospital, Cayenne, French Guiana, France
| |
Collapse
|
3
|
Janko MM, Araujo AL, Ascencio EJ, Guedes GR, Vasco LE, Santos RO, Damasceno CP, Medrano PG, Chacón-Uscamaita PR, Gunderson AK, O'Malley S, Kansara PH, Narvaez MB, Coombes C, Pizzitutti F, Salmon-Mulanovich G, Zaitchik BF, Mena CF, Lescano AG, Barbieri AF, Pan WK. Study protocol: improving response to malaria in the Amazon through identification of inter-community networks and human mobility in border regions of Ecuador, Peru and Brazil. BMJ Open 2024; 14:e078911. [PMID: 38626977 PMCID: PMC11029361 DOI: 10.1136/bmjopen-2023-078911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Understanding human mobility's role in malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. METHODS We measure community connectivity across the study area using a respondent driven sampling design among key informants who are at least 18 years of age. 45 initial communities will be selected: 10 in Brazil, 10 in Ecuador and 25 in Peru. Participants will be recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses will be ranked and the 2-3 most connected communities will then be selected and surveyed. This process will be repeated for a third round of data collection. Community network matrices will be linked with each country's malaria surveillance system to test the effects of mobility on disease risk. ETHICS AND DISSEMINATION This study protocol has been approved by the institutional review boards of Duke University (USA), Universidad San Francisco de Quito (Ecuador), Universidad Peruana Cayetano Heredia (Peru) and Universidade Federal Minas Gerais (Brazil). Results will be disseminated in communities by the end of the study.
Collapse
Affiliation(s)
- Mark M Janko
- Duke Global Health Institute, Durham, North Carolina, USA
| | - Andrea L Araujo
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Edson J Ascencio
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gilvan R Guedes
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luis E Vasco
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Reinaldo O Santos
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Camila P Damasceno
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Pamela R Chacón-Uscamaita
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annika K Gunderson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sara O'Malley
- Duke University Nicholas School of the Environment, Durham, North Carolina, USA
| | - Prakrut H Kansara
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manuel B Narvaez
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carolina Coombes
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Benjamin F Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carlos F Mena
- Instituto de Geografia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andres G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alisson F Barbieri
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - William K Pan
- Duke Global Health Institute, Durham, North Carolina, USA
- Duke University Nicholas School of the Environment, Durham, North Carolina, USA
| |
Collapse
|
4
|
Gunderson AK, Recalde-Coronel C, Zaitchick BF, Yori PP, Rengifo Pinedo S, Paredes Olortegui M, Kosek M, Vinetz JM, Pan WK. A prospective cohort study linking migration, climate, and malaria risk in the Peruvian Amazon. Epidemiol Infect 2023; 151:e202. [PMID: 38031496 PMCID: PMC10753477 DOI: 10.1017/s0950268823001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Migration is an important risk factor for malaria transmission for malaria transmission, creating networks that connect Plasmodium between communities. This study aims to understand the timing of why people in the Peruvian Amazon migrated and how characteristics of these migrants are associated with malaria risk. A cohort of 2,202 participants was followed for three years (July 2006 - October 2009), with thrice-weekly active surveillance to record infection and recent travel, which included travel destination(s) and duration away. Migration occurred more frequently in the dry season, but the 7-day rolling mean (7DRM) streamflow was positively correlated with migration events (OR 1.25 (95% CI: 1.138, 1.368)). High-frequency and low-frequency migrant populations reported 9.7 (IRR 7.59 (95% CI:.381, 13.160)) and 4.1 (IRR 2.89 (95% CI: 1.636, 5.099)) times more P. vivax cases than those considered non-migrants and 30.7 (IRR 32.42 (95% CI: 7.977, 131.765)) and 7.4 (IRR 7.44 (95% CI: 1.783, 31.066)) times more P. falciparum cases, respectively. High-frequency migrants employed in manual labour within their community were at 2.45 (95% CI: 1.113, 5.416) times higher risk than non-employed low-frequency migrants. This study confirms the importance of migration for malaria risk as well as factors increasing risk among the migratory community, including, sex, occupation, and educational status.
Collapse
Affiliation(s)
- Annika K. Gunderson
- Department of Epidemiology, Gilling School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Cristina Recalde-Coronel
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
- Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Benjamin F. Zaitchick
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo Peñataro Yori
- Asociación Benéfica Prisma, Iquitos, Peru
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Margaret Kosek
- Asociación Benéfica Prisma, Iquitos, Peru
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, USA
- International Centers of Excellence for Malaria Research – Amazonia, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- VA Connecticut Healthcare System, West Haven, CT, USA
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - William K. Pan
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Janko MM, Araujo AL, Ascencio EJ, Guedes GR, Vasco LE, Santos RA, Damasceno CP, Medrano PG, Chacón-Uscamaita PR, Gunderson AK, O’Malley S, Kansara PH, Narvaez MB, Coombes CS, Pizzitutti F, Salmon-Mulanovich G, Zaitchik BF, Mena CF, Lescano AG, Barbieri AF, Pan WK. Network Profile: Improving Response to Malaria in the Amazon through Identification of Inter-Community Networks and Human Mobility in Border Regions of Ecuador, Peru, and Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299202. [PMID: 38076857 PMCID: PMC10705622 DOI: 10.1101/2023.11.29.23299202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Objectives Understanding human mobility's role on malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. Design A community-level network survey. Setting We collect data on community connectivity along three river systems in the Amazon basin: the Pastaza river corridor spanning the Ecuador-Peru border; and the Amazon and Javari river corridors spanning the Brazil-Peru border. Participants We interviewed key informants in Brazil, Ecuador, and Peru, including from indigenous communities: Shuar, Achuar, Shiwiar, Kichwa, Ticuna, and Yagua. Key informants are at least 18 years of age and are considered community leaders. Primary outcome Weekly, community-level malaria incidence during the study period. Methods We measure community connectivity across the study area using a respondent driven sampling design. Forty-five communities were initially selected: 10 in Brazil, 10 in Ecuador, and 25 in Peru. Participants were recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses were ranked and the 2-3 most connected communities were then selected and surveyed. This process was repeated for a third round of data collection. Community network matrices will be linked with eadch country's malaria surveillance system to test the effects of mobility on disease risk. Findings To date, 586 key informants were surveyed from 126 communities along the Pastaza river corridor. Data collection along the Amazon and Javari river corridors is ongoing. Initial results indicate that network sampling is a superior method to delineate migration flows between communities. Conclusions Our study provides measures of mobility and connectivity in rural settings where traditional approaches are insufficient, and will allow us to understand mobility's effect on malaria transmission.
Collapse
Affiliation(s)
- Mark M. Janko
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Andrea L. Araujo
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Edson J. Ascencio
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gilvan R. Guedes
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luis E. Vasco
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Reinaldo A. Santos
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Camila P. Damasceno
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Perla G. Medrano
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Pamela R. Chacón-Uscamaita
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annika K. Gunderson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sara O’Malley
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Prakrut H. Kansara
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manuel B. Narvaez
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carolina S. Coombes
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Benjamin F. Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carlos F. Mena
- Instituto de Geografía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andres G. Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alisson F. Barbieri
- Center for Regional Development and Planning (Cedeplar), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - William K. Pan
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Agaba BB, Rugera SP, Mpirirwe R, Atekat M, Okubal S, Masereka K, Erionu M, Adranya B, Nabirwa G, Odong PB, Mukiibi Y, Ssewanyana I, Nabadda S, Muwanguzi E. Asymptomatic malaria infection, associated factors and accuracy of diagnostic tests in a historically high transmission setting in Northern Uganda. Malar J 2022; 21:392. [PMID: 36550492 PMCID: PMC9783970 DOI: 10.1186/s12936-022-04421-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Asymptomatic malaria infections are important parasite reservoirs and could sustain transmission in the population, but they are often unreported. A community-based survey was conducted to investigate the prevalence and factors associated with asymptomatic malaria infections in a historically high transmission setting in northern Uganda. METHODS Using a cross-sectional design, 288 children aged 2-15 years were enrolled and tested for the presence of malaria parasites using rapid diagnostic tests (RDTs) and blood smear microscopy between January to May 2022. Statistical analysis was performed using the exact binomial and Fisher's exact test with p ≤ 0.05 indicating significance. The logistic regression was used to explore factors associated with asymptomatic malaria infections. RESULTS Overall, the prevalence of asymptomatic infection was 34.7% (95% CI 29.2-40.5) with the highest observed in children 5-10 years 45.9% (95% CI 35.0-57.0). Gweri village accounted for 39.1% (95% CI 27.6-51.6) of malaria infections. Median parasite density was 1500 parasites/µl of blood. Plasmodium falciparum was the dominant species (86%) followed by Plasmodium malariae (5%). Factors associated with asymptomatic malaria infection were sleeping under mosquito net (Adjusted Odds Ratio (aOR) 0.27; 95% CI 0.13-0.56), p = 0.001 and presence of village health teams (VHTs) (aOR 0.02; 95% CI 0.01-0.45), p = 0.001. Sensitivity and specificity were higher for the P. falciparum/pLDH RDTs compared to HRP2-only RDTs, 90% (95% CI 86.5-93.5) and 95.2% (95% CI 92.8-97.7), p = 0.001, respectively. CONCLUSION Asymptomatic malaria infections were present in the study population and this varied with place and person in the different age groups. Plasmodium falciparum was the dominant parasite species however the presence of P. malariae and Plasmodium ovale was observed, which may have implication for the choice and deployment of diagnostic tools. Individuals who slept under mosquito net or had presence of functional VHTs were less likely to have asymptomatic malaria infection. P.f/pLDH RDTs performed better than the routinely used HRP2 RDTs. In view of these findings, investigation and reporting of asymptomatic malaria reservoirs through community surveys is recommended for accurate disease burden estimate and better targeting of control.
Collapse
Affiliation(s)
- Bosco B. Agaba
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda ,grid.415705.2National Malaria Control Division, Ministry of Health, Kampala, Uganda ,National Malaria Reference Laboratory, Central Public Health Laboratory Services, Kampala, Uganda ,grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Simon P. Rugera
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ruth Mpirirwe
- grid.11194.3c0000 0004 0620 0548Department of Statistics, Makerere University, Kampala, Uganda
| | - Martha Atekat
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Samuel Okubal
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Khalid Masereka
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Miseal Erionu
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Bosco Adranya
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Gertrude Nabirwa
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick B. Odong
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Yasin Mukiibi
- Uganda Institute of Allied and Management Sciences, Kampala, Uganda
| | - Isaac Ssewanyana
- National Malaria Reference Laboratory, Central Public Health Laboratory Services, Kampala, Uganda ,grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Susan Nabadda
- National Malaria Reference Laboratory, Central Public Health Laboratory Services, Kampala, Uganda
| | - Enoch Muwanguzi
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda ,Uganda Institute of Allied and Management Sciences, Kampala, Uganda
| |
Collapse
|
7
|
Neta G, Pan W, Ebi K, Buss DF, Castranio T, Lowe R, Ryan SJ, Stewart-Ibarra AM, Hapairai LK, Sehgal M, Wimberly MC, Rollock L, Lichtveld M, Balbus J. Advancing climate change health adaptation through implementation science. Lancet Planet Health 2022; 6:e909-e918. [PMID: 36370729 PMCID: PMC9669460 DOI: 10.1016/s2542-5196(22)00199-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 05/17/2023]
Abstract
To date, there are few examples of implementation science studies that help guide climate-related health adaptation. Implementation science is the study of methods to promote the adoption and integration of evidence-based tools, interventions, and policies into practice to improve population health. These studies can provide the needed empirical evidence to prioritise and inform implementation of health adaptation efforts. This Personal View discusses five case studies that deployed disease early warning systems around the world. These cases studies illustrate challenges to deploying early warning systems and guide recommendations for implementation science approaches to enhance future research. We propose theory-informed approaches to understand multilevel barriers, design strategies to overcome those barriers, and analyse the ability of those strategies to advance the uptake and scale-up of climate-related health interventions. These findings build upon previous theoretical work by grounding implementation science recommendations and guidance in the context of real-world practice, as detailed in the case studies.
Collapse
Affiliation(s)
- Gila Neta
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA.
| | - William Pan
- Duke Global Health Institute and Environmental Science and Policy, Duke University, Durham, NC, USA
| | - Kristie Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Daniel F Buss
- Climate Change and Health, Pan American Health Organization, Washington, DC, USA
| | - Trisha Castranio
- Global Environmental Health Program, National Institute of Environmental Health Science, Durham, NC, USA
| | - Rachel Lowe
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centre on Climate Change and Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sadie J Ryan
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Limb K Hapairai
- Pacific Island Health Officers Association, Honolulu, HI, USA
| | - Meena Sehgal
- Environment and Health, The Energy and Resources Institute, New Delhi, India
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK, USA
| | | | - Maureen Lichtveld
- Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - John Balbus
- Global Environmental Health Program, National Institute of Environmental Health Science, Washington, DC, USA
| |
Collapse
|
8
|
Impact of environmental changes on infectious diseases: Key findings from an international conference in Trieste, Italy in May 2017. Acta Trop 2021; 213:105165. [PMID: 31518573 DOI: 10.1016/j.actatropica.2019.105165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elsevier's 2nd conference on "Impact of Environmental Changes on Infectious Diseases" (IECID), convened in May 2017 in Trieste, Italy, brought together some 120 researchers from more than 20 countries. They presented the latest findings and discussed the impact of current and predicted future environmental changes on infectious disease dynamics in humans, livestock and wildlife in different parts of the world. Particular emphasis was placed on food-, vector- and water-borne diseases within the general theme of infectious diseases of poverty and emerging and re-emerging diseases. The potential impact of mobility, travel, population growth, trade and globalization on infectious disease dynamics against the background of a changing climate, land use, air quality and urbanization on individual, population, ecosystem and planetary health were addressed. Speakers at the conference were encouraged to put forth their talks into stand-alone manuscripts, which resulted in a unique collection of 13 articles, now brought together into a thematic issue of Acta Tropica. In this umbrella piece, we synthesize key findings from the published articles and highlight potential actions that might be taken forward to prevent and mitigate the impact of environmental change on infectious diseases. The work presented is salient in the current era of the Sustainable Development Goals.
Collapse
|
9
|
Malaria Transmission and Spillover across the Peru-Ecuador Border: A Spatiotemporal Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207434. [PMID: 33066022 PMCID: PMC7600436 DOI: 10.3390/ijerph17207434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022]
Abstract
Border regions have been implicated as important hot spots of malaria transmission, particularly in Latin America, where free movement rights mean that residents can cross borders using just a national ID. Additionally, rural livelihoods largely depend on short-term migrants traveling across borders via the Amazon’s river networks to work in extractive industries, such as logging. As a result, there is likely considerable spillover across country borders, particularly along the border between Peru and Ecuador. This border region exhibits a steep gradient of transmission intensity, with Peru having a much higher incidence of malaria than Ecuador. In this paper, we integrate 13 years of weekly malaria surveillance data collected at the district level in Peru and the canton level in Ecuador, and leverage hierarchical Bayesian spatiotemporal regression models to identify the degree to which malaria transmission in Ecuador is influenced by transmission in Peru. We find that increased case incidence in Peruvian districts that border the Ecuadorian Amazon is associated with increased incidence in Ecuador. Our results highlight the importance of coordinated malaria control across borders.
Collapse
|
10
|
Carrasco-Escobar G, Fornace K, Wong D, Padilla-Huamantinco PG, Saldaña-Lopez JA, Castillo-Meza OE, Caballero-Andrade AE, Manrique E, Ruiz-Cabrejos J, Barboza JL, Rodriguez H, Henostroza G, Gamboa D, Castro MC, Vinetz JM, Llanos-Cuentas A. Open-Source 3D Printable GPS Tracker to Characterize the Role of Human Population Movement on Malaria Epidemiology in River Networks: A Proof-of-Concept Study in the Peruvian Amazon. Front Public Health 2020; 8:526468. [PMID: 33072692 PMCID: PMC7542225 DOI: 10.3389/fpubh.2020.526468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Human movement affects malaria epidemiology at multiple geographical levels; however, few studies measure the role of human movement in the Amazon Region due to the challenging conditions and cost of movement tracking technologies. We developed an open-source low-cost 3D printable GPS-tracker and used this technology in a cohort study to characterize the role of human population movement in malaria epidemiology in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants (mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month. Characteristic movement patterns were observed relative to the infection status and occupation of the participants. Applying two analytical animal movement ecology methods, utilization distributions (UDs) and integrated step selection functions (iSSF), we showed contrasting environmental selection and space use patterns according to infection status. These data suggested an important role of human movement in the epidemiology of malaria in the Peruvian Amazon due to high connectivity between villages of the same riverine network, suggesting limitations of current community-based control strategies. We additionally demonstrate the utility of this low-cost technology with movement ecology analysis to characterize human movement in resource-poor environments.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel Wong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pierre G Padilla-Huamantinco
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose A Saldaña-Lopez
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ober E Castillo-Meza
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Armando E Caballero-Andrade
- Departamento de Ingenieria, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Luis Barboza
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - German Henostroza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Joseph M Vinetz
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|