1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Lüddecke T, Avella I, Damm M, Schulte L, Eichberg J, Hardes K, Schiffmann S, Henke M, Timm T, Lochnit G, Vilcinskas A. The Toxin Diversity, Cytotoxicity, and Enzymatic Activity of Cape Cobra ( Naja nivea) Venom. Toxins (Basel) 2024; 16:438. [PMID: 39453214 PMCID: PMC11511112 DOI: 10.3390/toxins16100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
"True" cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species' venom.
Collapse
Affiliation(s)
- Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Günter Lochnit
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| |
Collapse
|
3
|
Rajan K, Alangode A, Menon JC, Raveendran D, Nair SS, Reick M, Nair BG, Reick M, Vanuopadath M. Comparative functional characterization and in vitro immunological cross-reactivity studies on Daboia russelii and Craspedocephalus malabaricus venom. Trans R Soc Trop Med Hyg 2024; 118:682-696. [PMID: 38860309 DOI: 10.1093/trstmh/trae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Snake venom is a complex mixture of organic and inorganic constituents, including proteins and peptides. Several studies showed that antivenom efficacy differs due to intra- and inter-species venom variation. METHODS In the current study, comparative functional characterization of major enzymatic proteins present in Craspedocephalus malabaricus and Daboia russelii venom was investigated through various in vitro and immunological cross-reactivity assays. RESULTS The enzymatic assays revealed that hyaluronidase and phospholipase A2 activities were markedly higher in D. russelii. By contrast, fibrinogenolytic, fibrin clotting and L-amino acid oxidase activities were higher in C. malabaricus venom. ELISA results suggested that all the antivenoms had lower binding potential towards C. malabaricus venom. For D. russelii venom, the endpoint titration value was observed at 1:72 900 for all the antivenoms. In the case of C. malabaricus venom, the endpoint titration value was 1:2700, except for Biological E (1:8100). All these results, along with the avidity assays, indicate the strength of venom-antivenom interactions. Similarly, the western blot results suggest that all the antivenoms showed varied efficacies in binding and detecting the venom antigenic epitopes in both species. CONCLUSIONS The results highlight the need for species-specific antivenom to better manage snakebite victims.
Collapse
Affiliation(s)
- Karthika Rajan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Aswathy Alangode
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Jaideep C Menon
- Preventive Cardiology & Population Health Sciences, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682 041 , Kerala, India
| | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd, SCTIMST-TIMED, 5th Floor. M S Valiathan Building, BMT Wing - Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | - Sudarslal Sadasivan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Margaret Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Martin Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| |
Collapse
|
4
|
Menon JC, Nair B, Pati S, Pillay VV, Mahapatra A, Sreekrishnan TP, Vanuopadath M, John D, Nair SB, Sahoo PK, M S A, Sreedevi A, Jankiram C, Joseph JK. From neglect to equity in snakebite envenoming; what the ICMR-Collaborative Centre of Excellence (CCoE) targets. PLoS Negl Trop Dis 2024; 18:e0012425. [PMID: 39264864 PMCID: PMC11392331 DOI: 10.1371/journal.pntd.0012425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Affiliation(s)
- Jaideep C Menon
- Professor, Adult Cardiology and Public Health, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bipin Nair
- Professor & Dean, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Sanghamitra Pati
- Director, ICMR, Regional Medical Research Centre, Bhubaneswar, India
| | - Vijay V Pillay
- Head, Poison Control Centre and Department of Forensic Medicine & Toxicology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - T P Sreekrishnan
- Consultant, Emergency Medicine & Critical Care, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Denny John
- Professor, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Sabarish B Nair
- Consultant, Emergency Medicine & Critical Care, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Prakash K Sahoo
- Scientist D, ICMR, Regional Medical Research Centre, Bhubaneswar, India
| | - Aravind M S
- Research Associate, Department of Public Health, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Aswathy Sreedevi
- Professor & Head, Department of Community Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Chandrasekhar Jankiram
- Professor & Head, Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Joseph K Joseph
- Senior Consultant Nephrologist, Little Flower Hospital and Research Centre, Angamaly, India
| |
Collapse
|
5
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
6
|
Vanuopadath M, Rajan K, Alangode A, Nair SS, Nair BG. The Need for Next-Generation Antivenom for Snakebite Envenomation in India. Toxins (Basel) 2023; 15:510. [PMID: 37624267 PMCID: PMC10467155 DOI: 10.3390/toxins15080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
The limitations posed by currently available antivenoms have emphasized the need for alternative treatments to counteract snakebite envenomation. Even though exact epidemiological data are lacking, reports have indicated that most global snakebite deaths are reported in India. Among the many problems associated with snakebite envenomation, issues related to the availability of safer and more efficient antivenoms are of primary concern. Since India has the highest number of global snakebite deaths, efforts should be made to reduce the burden associated with snakebite envenoming. Alternative methods, including aptamers, camel antivenoms, phage display techniques for generating high-affinity antibodies and antibody fragments, small-molecule inhibitors, and natural products, are currently being investigated for their effectiveness. These alternative methods have shown promise in vitro, but their in vivo effectiveness should also be evaluated. In this review, the issues associated with Indian polyvalent antivenoms in neutralizing venom components from geographically distant species are discussed in detail. In a nutshell, this review gives an overview of the current drawbacks of using animal-derived antivenoms and several alternative strategies that are currently being widely explored.
Collapse
Affiliation(s)
| | | | | | | | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India; (M.V.); (K.R.); (A.A.); (S.S.N.)
| |
Collapse
|
7
|
Gopal G, Muralidar S, Prakash D, Kamalakkannan A, Indhuprakash ST, Thirumalai D, Ambi SV. The concept of Big Four: Road map from snakebite epidemiology to antivenom efficacy. Int J Biol Macromol 2023; 242:124771. [PMID: 37169043 DOI: 10.1016/j.ijbiomac.2023.124771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Snake envenomation is a life-threatening disease caused by the injection of venom toxins from the venomous snake bite. Snakebite is often defined as the occupational or domestic hazard mostly affecting the rural population. India experiences a high number of envenoming cases and fatality due to the nation's diversity in inhabiting venomous snakes. The Indian Big Four snakes namely Russell's viper (Daboia russelii), spectacled cobra (Naja naja), common krait (Bungarus caeruleus), and saw-scaled viper (Echis carinatus) are responsible for majority of the snake envenoming cases and death. The demographic characteristics including occupation, stringent snake habitat management, poor healthcare facilities and ignorance of the rural victims are the primary influencers of high mortality. Biogeographic venom variation greatly influences the clinical pathologies of snake envenomation. The current antivenoms against the Big Four snakes are found to be less immunogenic against the venom toxins emphasizing the necessity of alternative approaches for antivenom generation. This review summarizes the burden of snake envenomation in India by the Big Four snakes including the geographic distribution of snake species and biogeographic venom variation. We have provided comprehensive information on snake venom proteomics that has aided the better understanding of venom induced pathological features, summarized the impact of current polyvalent antivenom therapy highlighting the need for potential antivenom treatment for the effective management of snakebites.
Collapse
Affiliation(s)
- Gayathri Gopal
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Shibi Muralidar
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diwahar Prakash
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Abishek Kamalakkannan
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Srichandrasekar Thuthikkadu Indhuprakash
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- Biopharmaceutical Research Lab, Anusandhan Kendra-1, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
8
|
Abstract
The deleterious consequences of snake envenomation are due to the extreme protein complexity of snake venoms. Therefore, the identification of their components is crucial for understanding the clinical manifestations of envenomation pathophysiology and for the development of effective antivenoms. In addition, snake venoms are considered as libraries of bioactive molecules that can be used to develop innovative drugs. Numerous separation and analytical techniques are combined to study snake venom composition including chromatographic techniques such as size exclusion and RP-HPLC and electrophoretic techniques. Herein, we present in detail these existing techniques and their applications in snake venom research. In the first part, we discuss the different possible technical combinations that could be used to isolate and purify SV proteins using what is known as bioassay-guided fractionation. In the second part, we describe four different proteomic strategies that could be applied for venomics studies to evaluate whole venom composition, including the mostly used technique: RP-HPLC. Eventually, we show that to date, there is no standard technique used for the separation of all snake venoms. Thus, different combinations might be developed, taking into consideration the main objective of the study, the available resources, and the properties of the target molecules to be isolated.
Collapse
|