1
|
Tenorio JCB, Heikal MF, Kafle A, Saichua P, Suttiprapa S. Benzimidazole Resistance-Associated Mutations in the β-tubulin Gene of Hookworms: A Systematic Review. Parasitol Res 2024; 123:405. [PMID: 39652258 DOI: 10.1007/s00436-024-08432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
There is a growing number of reports on the occurrence of benzimidazole resistance-associated single nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 gene of various helminths of veterinary, and public health concerns. However, a comprehensive analysis of their occurrence, and their contributions to conferring benzimidazole resistance among hookworms has yet to be done. The objectives of this systematic review are to summarize and synthesize peer-reviewed evidence on the occurrence of these resistance-associated mutations in hookworms, document their geographical distribution, and assess their contributions to conferring phenotypic resistance. Three databases were systematically searched using specific keywords. Research that assessed the occurrence of benzimidazole resistance-associated SNPs in hookworms, papers that reported the geographical distribution of these SNPs, and studies that investigated the SNPs' resistance-associated phenotypic effects were included in the review. Research that was not done in hookworms, papers not in the English language, and literature reviews and book chapters were excluded. Critical appraisal checklists were used to determine the risk of bias in the selected papers. Data were extracted from the selected studies and analyzed. PROSPERO Systematic Review Protocol Registration No.: CRD42024510924. A total of 29 studies were included and analyzed. Of these, four were conducted in a laboratory setting, eight described the development and validation of SNP detection methods, and the remaining 17 involved field research. Seven SNP-induced amino acid substitutions at four loci were reported among several hookworm species: Q134H, F167Y, E198A, E198K, E198V, F200Y, and F200L. SNPs have been reported in isolates occurring in the United States, Canada, Brazil, Haiti, Australia, New Zealand, Kenya, Ghana, Mozambique, and Tanzania. Resistance mutations have not been reported in Asia. E198A and F200L were reported in Ancylostoma ceylanicum with laboratory-induced resistance. F167Y and Q134H conferred resistance in A. caninum, as revealed by in vitro investigations and field assessments. There is insufficient peer-reviewed evidence to prove the association between SNP occurrence and resistance. Mutations in the β-tubulin isotype 1 gene confer benzimidazole resistance in A. caninum and A. ceylanicum, but similar evidence is lacking for other human hookworms. Understanding benzimidazole resistance through further research can better inform treatment, prevention, and control strategies.
Collapse
Affiliation(s)
- Jan Clyden B Tenorio
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Tenorio JCB, Heikal MF, Kafle A, Saichua P, Suttiprapa S. Benzimidazole resistance-associated mutations improve the in silico dimerization of hookworm tubulin: An additional resistance mechanism. Vet World 2024; 17:2736-2746. [PMID: 39897360 PMCID: PMC11784061 DOI: 10.14202/vetworld.2024.2736-2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/07/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Mutations in the β-tubulin genes of helminths confer benzimidazole (BZ) resistance by reducing the drug's binding efficiency to the expressed protein. However, the effects of these resistance-associated mutations on tubulin dimer formation in soil-transmitted helminths remain unknown. Therefore, this study aimed to investigate the impact of these mutations on the in silico dimerization of hookworm α- and β-tubulins using open-source bioinformatics tools. Materials and Methods Using AlphaFold 3, the α- and β-tubulin amino acid sequences of Ancylostoma ceylanicum were used to predict the structural fold of the hookworm tubulin heterodimer. The modeled complexes were subjected to several protein structure quality assurance checks. The binding free energies, overall binding affinity, dissociation constant, and interacting amino acids of the complex were determined. The dimer's structural flexibility and motion were simulated through molecular dynamics. Results BZ resistance-associated amino acid substitutions in the β-tubulin isotype 1 protein of hookworms altered tubulin dimerization. The E198K, E198V, and F200Y mutations conferred the strongest and most stable binding between the α and β subunits, surpassing that of the wild-type. In contrast, complexes with the Q134H and F200L mutations exhibited the opposite effect. Molecular dynamics simulations showed that wild-type and mutant tubulin dimers exhibited similar dynamic behavior, with slight deviations in those carrying the F200L and E198K mutations. Conclusion Resistance-associated mutations in hookworms impair BZ binding to β-tubulin and enhance tubulin dimer interactions, thereby increasing the parasite's ability to withstand treatment. Conversely, other mutations weaken these interactions, potentially compromising hookworm viability. These findings offer novel insights into helminth tubulin dimerization and provide a valuable foundation for developing anthelmintics targeting this crucial biological process.
Collapse
Affiliation(s)
- Jan Clyden B. Tenorio
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of Southern Mindanao, Kabacan 9407, Cotabato, Philippines
| | - Muhammad Fikri Heikal
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alok Kafle
- Tropical Medicine Graduate Program, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Furtado LFV, Alves WP, da Silva VJ, Rabelo ÉML. Hookworm infection as a model for deepen knowledge of iron metabolism and erythropoiesis in anemia. Cytokine 2024; 177:156559. [PMID: 38412767 DOI: 10.1016/j.cyto.2024.156559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Over the years, there has been progress in understanding the molecular aspects of iron metabolism and erythropoiesis. However, despite research conducted both in laboratories and living organisms, there are still unanswered questions due to the complex nature of these fields. In this study we investigated the effects of hookworm infection on iron metabolism and how the hosts response to anemia is affected using hamsters infected with Ancylostoma ceylanicum as a model. Our data revealed interesting relationships between infection-induced anemia, erythropoiesis, iron metabolism, and immune modulation, such that the elevated production of erythropoietin (EPO) in renal tissue indicated intensified erythropoiesis in response to anemia. Additionally, the increased expression of the erythroferrone (ERFE) gene in the spleen suggested its involvement in iron regulation and erythropoiesis. Gene expression patterns of genes related to iron metabolism varied in different tissues, indicating tissue-specific adaptations to hypoxia. The modulation of pro-inflammatory and anti-inflammatory cytokines highlighted the delicate balance between immune response and erythropoiesis. Data derived from the investigation of changes induced in iron metabolism and stress erythropoiesis following anemia aid in our understanding of mechanisms related to blood spoliation and anemia, which could potentially be extrapolated or compared to other types or causes of anemia. These findings also contribute to our understanding of the pathophysiology of erythropoiesis in the context of blood loss.
Collapse
Affiliation(s)
- Luis Fernando Viana Furtado
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - William Pereira Alves
- Universidade Federal de Minas Gerais, Hospital das Clínicas, Avenida Professor Alfredo Balena, 110, Santa Efigênia, CEP 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Vivian Jordania da Silva
- Prefeitura Municipal de Sabará, Centro de Controle de Zoonoses, Avenida Charles Gonort, CEP: 34505620, Rosario I, Sabará, Minas Gerais, Brazil
| | - Élida Mara Leite Rabelo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Stocker T, Ward MP, Šlapeta J. Nationwide USA re-analysis of amplicon metabarcoding targeting β-tubulin isoform-1 reveals absence of benzimidazole resistant SNPs in Ancylostoma braziliense, Ancylostoma tubaeforme and Uncinaria stenocephala. Vet Parasitol 2024; 327:110118. [PMID: 38278035 DOI: 10.1016/j.vetpar.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Nationwide sampling by Venkatesan and colleagues (2023) described the resistance status of the canine hookworm, Ancylostoma caninum, to benzimidazoles across the USA via β-tubulin isotype-1 amplicon metabarcoding. In this study, we aimed to use the existing public amplicon metabarcoding data and mine it for the presence of β-tubulin isotype-1 sequences that belong to hookworm species other than A. caninum. Through bioinformatics analysis we assigned species to A. caninum, Ancylostoma braziliense, Ancylostoma tubaeforme and Uncinaria stenocephala. All non-A. caninum sequences contained only the benzimidazole susceptible residues of β-tubulin isotype-1. Using two β-tubulin isotype-1 metabarcoding sequence data (assay targeting 134 and 167 codons, and assay targeting 198 and 200 codons), 2.0% (6/307) and 2.9% (9/310) individual samples had hookworms other than A. caninum (A. braziliense n = 5, A. tubaeforme n = 4 and U. stenocephala n = 2), respectively. We identified one sample containing A. braziliense in each of the Northeastern region and Midwestern region, and in three samples from the Southern region. Presence of A. tubaeforme in dog faeces is considered as pseudoparasitism. There were no statistically significant regional differences for the distribution of each species, for either of the two assays independently or combined (χ2 tests, P > 0.05). Our work demonstrates the utility of the amplicon metabarcoding for the identification of species through antemortem assays, thus resolving the dilemma of assigning hookworm species based on either post-mortem or egg sizes for the identification of hookworms.
Collapse
Affiliation(s)
- Thomas Stocker
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia; The University of Sydney Institute for Infectious Diseases, New South Wales 2006, Australia.
| |
Collapse
|
5
|
Furtado LFV, de Miranda RRC, Tennessen JA, Blouin MS, Rabelo ÉML. Molecular variability of the Ancylostoma secreted Protein-2 (Aca-asp-2) gene from Ancylostoma caninum contributes to expand information on population genetic studies of hookworms. Exp Parasitol 2023; 253:108590. [PMID: 37544398 DOI: 10.1016/j.exppara.2023.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Hookworm infection is a major public health problem in many regions of the world. Given the high levels of host morbidity and even mortality of the host caused by these infections, it is crucial to understand the genetic structure of hookworm populations. This understanding can provide insights into the ecology, transmission patterns, mechanisms of drug resistance, and the development of vaccines and immunotherapeutic strategies. Previously, we examined presumably neutral molecular markers, such as microsatellites and COI (Cytochrome C oxidase subunit 1) in Brazilian populations of Ancylostoma caninum. Here we analyze the molecular variability of a genomic fragment of the Aca-asp-2 (Ancylostoma secreted protein-2) gene from Ancylostoma caninum. This gene is a highly expressed and activated following the infection of the L3 larvae in the host. We obtained individuals of A. caninum from five different geographic locations in Brazil, sequenced and analyzed parts of the gene. The results revealed extensive polymorphism at this fragment, especially in the intronic region, indicating low selective pressure acting on these sequences. However, we also observed irregular distributions of nucleotides and polymorphisms in the coding region of this gene, resulting in the identification of 27 alleles. The data presented here contribute to expanding the understanding of population genetic studies of hookworms.
Collapse
Affiliation(s)
- Luis Fernando Viana Furtado
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodrigo Rodrigues Cambraia de Miranda
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Maranhão, 1783, Umuarama, CEP 38405-318, Uberlândia, Minas Gerais, Brazil
| | | | | | - Élida Mara Leite Rabelo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
da Silva Medeiros C, de Almeida LR, Rabelo ÉML, Furtado LFV. Phenotypic characterization and multiple resistance analysis in an experimentally selected albendazole-resistant hookworm isolate. Exp Parasitol 2022; 242:108393. [PMID: 36179854 DOI: 10.1016/j.exppara.2022.108393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
For some nematodes, alterations that leads to a resistance genotype may be accompanied by other modifications, causing changes in the biology of the parasite, although the exact mechanisms of this relationship are still not very clear. These alterations can have deleterious effects on their survival or even potentiate their pathogenicity. In this study a phenotypic characterization was carried out to compare two Ancylostoma ceylanicum isolates, a wild type one, kept in the laboratory and an albendazole selected resistant isolate (AceyBZR2). Differences in some analyzed parameters, between the two strains, were registered, as patency period, number and size of the recovered worms, including differences in the body structures. The AceyBZR2 isolate showed to be less adapted to the host, leading to a smaller number of recovered worms. However, no difference on the female egg content was observed between the two isolates. Concerning blood evaluation, no differences were found between the wild type and AceyBZR2 isolates, related to hemoglobin and hematocrit levels. However, animals in the group infected with the wild type isolate had lower serum iron concentrations than animals in the AceyBZR2 group. The possibility that the AceyBZR2 isolate might be resistant to other drugs was evaluated and it was demonstrated that it does not present cross-resistance to ivermectin and nitazoxanide. However, when animals infected with the AceyBZR2 were treated with another drug from the benzimidazoles group (mebendazole), the cross-resistance effect was observed. Morphometric analyses were performed comparing female and male adult worms from the two isolates. The results presented here allow a better understanding of the parasite-host relationship and may constitute a useful basis for establishing future control strategies for soil-transmitted helminths.
Collapse
Affiliation(s)
- Celi da Silva Medeiros
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Lara Ribeiro de Almeida
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Élida Mara Leite Rabelo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Luis Fernando Viana Furtado
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|