1
|
Nefjodovs V, Andze L, Andzs M, Filipova I, Tupciauskas R, Vecbiskena L, Kapickis M. Wood as Possible Renewable Material for Bone Implants-Literature Review. J Funct Biomater 2023; 14:266. [PMID: 37233376 PMCID: PMC10219062 DOI: 10.3390/jfb14050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Bone fractures and bone defects affect millions of people every year. Metal implants for bone fracture fixation and autologous bone for defect reconstruction are used extensively in treatment of these pathologies. Simultaneously, alternative, sustainable, and biocompatible materials are being researched to improve existing practice. Wood as a biomaterial for bone repair has not been considered until the last 50 years. Even nowadays there is not much research on solid wood as a biomaterial in bone implants. A few species of wood have been investigated. Different techniques of wood preparation have been proposed. Simple pre-treatments such as boiling in water or preheating of ash, birch and juniper woods have been used initially. Later researchers have tried using carbonized wood and wood derived cellulose scaffold. Manufacturing implants from carbonized wood and cellulose requires more extensive wood processing-heat above 800 °C and chemicals to extract cellulose. Carbonized wood and cellulose scaffolds can be combined with other materials, such as silicon carbide, hydroxyapatite, and bioactive glass to improve biocompatibility and mechanical durability. Throughout the publications wood implants have provided good biocompatibility and osteoconductivity thanks to wood's porous structure.
Collapse
Affiliation(s)
- Vadims Nefjodovs
- Faculty of Residency, Riga Stradins University, Dzirciema iela 16, LV-1007 Riga, Latvia
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| | - Laura Andze
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Andzs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Inese Filipova
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Ramunas Tupciauskas
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Linda Vecbiskena
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Kapickis
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| |
Collapse
|
2
|
Garibay-Alvarado JA, Herrera-Ríos EB, Vargas-Requena CL, de Jesús Ruíz-Baltazar Á, Reyes-López SY. Cell behavior on silica-hydroxyapatite coaxial composite. PLoS One 2021; 16:e0246256. [PMID: 33974626 PMCID: PMC8112647 DOI: 10.1371/journal.pone.0246256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Progress in the manufacture of scaffolds in tissue engineering lies in the successful combination of materials such as bioceramics having properties as porosity, biocompatibility, water retention, protein adsorption, mechanical strength and biomineralization. Hydroxyapatite (HA) is a ceramic material with lots of potential in tissue regeneration, however, its structural characteristics need to be improved for better performance. In this study, silica-hydroxyapatite (SiO2-HA) non-woven ceramic electrospunned membranes were prepared through the sol-gel method. Infrared spectra, scanning electron microscopy and XRD confirmed the structure and composition of composite. The obtained SiO2-HA polymeric fibers had approximately 230±20 nm in diameter and were then sintered at 800°C average diameter decreased to 110±17 nm. Three configurations of the membranes were obtained and tested in vitro, showing that the composite of SiO2-HA fibers showed a high percentage of viability on a fibroblast cell line. It is concluded that the fibers of SiO2-HA set in a coaxial configuration may be helpful to develop materials for bone regeneration.
Collapse
Affiliation(s)
| | - Ericka Berenice Herrera-Ríos
- Departamento de Estudios de Posgrado e Investigación, Tecnológico Nacional de México campus Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | | | - Álvaro de Jesús Ruíz-Baltazar
- CONACYT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Simón Yobanny Reyes-López
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
- * E-mail:
| |
Collapse
|
3
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020; 12:E905. [PMID: 32295115 PMCID: PMC7240703 DOI: 10.3390/polym12040905] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Bone tissue is the structural component of the body, which allows locomotion, protects vital internal organs, and provides the maintenance of mineral homeostasis. Several bone-related pathologies generate critical-size bone defects that our organism is not able to heal spontaneously and require a therapeutic action. Conventional therapies span from pharmacological to interventional methodologies, all of them characterized by several drawbacks. To circumvent these effects, tissue engineering and regenerative medicine are innovative and promising approaches that exploit the capability of bone progenitors, especially mesenchymal stem cells, to differentiate into functional bone cells. So far, several materials have been tested in order to guarantee the specific requirements for bone tissue regeneration, ranging from the material biocompatibility to the ideal 3D bone-like architectural structure. In this review, we analyse the state-of-the-art of the most widespread polymeric scaffold materials and their application in in vitro and in vivo models, in order to evaluate their usability in the field of bone tissue engineering. Here, we will present several adopted strategies in scaffold production, from the different combination of materials, to chemical factor inclusion, embedding of cells, and manufacturing technology improvement.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| |
Collapse
|
4
|
Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 2019; 8:223-237. [PMID: 31768895 PMCID: PMC6930319 DOI: 10.1007/s40204-019-00125-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Nowadays, bone diseases and defects as a result of trauma, cancers, infections and degenerative and inflammatory conditions are increasing. Consequently, bone repair and replacement have been developed with improvement of orthopedic technologies and biomaterials of superior properties. This review paper is intended to sum up and discuss the most relevant studies performed in the field of bone biology and bone regeneration approaches. Therefore, the bone tissue regeneration was investigated by synthetic substitutes, scaffolds incorporating active molecules, nanomedicine, cell-based products, biomimetic fibrous and nonfibrous substitutes, biomaterial-based three-dimensional (3D) cell-printing substitutes, bioactive porous polymer/inorganic composites, magnetic field and nano-scaffolds with stem cells and bone-biomaterials interface studies.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| |
Collapse
|
5
|
Wang D, Jang J, Kim K, Kim J, Park CB. "Tree to Bone": Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Biomacromolecules 2019; 20:2684-2693. [PMID: 31117353 DOI: 10.1021/acs.biomac.9b00451] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone contains an organic matrix composed of aligned collagen fibers embedded with nanosized inorganic hydroxyapatite (HAp). Many efforts are being made to mimic the natural mineralization process and create artificial bone scaffolds that show elaborate morphologies, excellent mechanical properties, and vital biological functions. This study reports a newly discovered function of lignin mediating the formation of human bone-like HAp. Lignin is the second most abundant organic material in nature, and it exhibits many attractive properties for medical applications, such as high durability, stability, antioxidant and antibacterial activities, and biocompatibility. Numerous phenolic and aliphatic hydroxyl moieties exist in the side chains of lignin, which donate adequate reactive sites for chelation with Ca2+ and the subsequent nucleation of HAp through coprecipitation of Ca2+ and PO43-. The growth of HAp crystals was facilitated by simple incubation of the electrospun lignin/polycaprolactone (PCL) matrix in a simulated body fluid. Multiple analyses revealed that HAp crystals were structurally and mechanically similar to the native bone. Furthermore, the mineralized lignin/PCL nanofibrous films facilitated efficient adhesion and proliferation of osteoblasts by directing filopodial extension. Our results underpin the expectations for this lignin-based biomaterial in future biointerfaces and hard-tissue engineering.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Kayoung Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| |
Collapse
|
6
|
Rashad A, Suliman S, Mustafa M, Pedersen TØ, Campodoni E, Sandri M, Syverud K, Mustafa K. Inflammatory responses and tissue reactions to wood-Based nanocellulose scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:208-221. [PMID: 30678905 DOI: 10.1016/j.msec.2018.11.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023]
Abstract
Two wood-derived cellulose nanofibril (CNF) porous scaffolds were prepared by TEMPO-oxidation and carboxymethylation. The effects of these scaffolds on the production of inflammatory cytokines by human macrophage-like cells (U937) was profiled in vitro after 1 and 3 days and in subcutaneous tissues of rats after 4 and 30 days, using PCR and Multiplex arrays. Tissue culture plates (TCP) and gelatin scaffolds served as controls in vitro and in vivo respectively. After 3 days in vitro, there was no significant difference between the effects of CNF scaffolds and TCP on the production of chemokines/growth factors and pro-inflammatory cytokines. At day 4 in vivo there was significantly higher gene expression of the anti-inflammatory IL-1Ra in the CNF scaffolds than the gelatin scaffold. Production of IL-1β, IL-6, MCP-1, MIP-1α CXCL-1 and M-CSF was significantly less than in the gelatin, demonstrating an early mild inflammatory response. At day 30, both CNF scaffolds significantly stimulated the production of the anti-inflammatory cytokine IL-10. Unlike gelatin, neither CNF scaffold had degraded 180 days post-implantation. The slow degradation of CNF scaffolds resulted in a foreign body reaction, with high production of IL-1β, IL-2, TNF-α, IFN-ϒ, MCP-1, MIP-1α, M-CSF, VEGF cytokines and expression of MMP-9 gene. The surface chemistry of the CNF scaffolds elicited a modest effect on cytokine production and did not shift the inflammatory profile in vitro or in vivo. The decisive role in development of the foreign body reaction was the slow degradation of the CNF scaffolds.
Collapse
Affiliation(s)
- Ahmad Rashad
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway.
| | - Salwa Suliman
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| | | | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Kristin Syverud
- RISE PFI, Trondheim, Norway; Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Liu X, Shen H, Song S, Chen W, Zhang Z. Accelerated biomineralization of graphene oxide – incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloids Surf B Biointerfaces 2017; 159:251-258. [DOI: 10.1016/j.colsurfb.2017.07.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 01/31/2023]
|
8
|
Dermutz H, Thompson-Steckel G, Forró C, de Lange V, Dorwling-Carter L, Vörös J, Demkó L. Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Adv 2017. [DOI: 10.1039/c7ra00971b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput platform targeting activity patterns of 3D neural cultures with arbitrary topology, by combining network-wide intracellular and local extracellular signals.
Collapse
Affiliation(s)
- Harald Dermutz
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Victoria de Lange
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - László Demkó
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| |
Collapse
|
9
|
Atila D, Keskin D, Tezcaner A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1103-15. [PMID: 27612808 DOI: 10.1016/j.msec.2016.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 07/23/2016] [Accepted: 08/07/2016] [Indexed: 11/25/2022]
Abstract
Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P80/CA20, P50/CA50, and P20/CA80%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve the mechanical properties and to delay fast weight loss. The lowest weight loss was observed for the groups that were crosslinked with P/STMP 2/1 for 10min. Fiber morphologies of P50/CA50 were more uniform without phase separation and this group was crosslinked most efficiently among groups. It was found that mechanical properties of P20/CA80 and P50/CA50 were higher than that of P80/CA20. After crosslinking strain values of P50/CA50 scaffolds were improved and these scaffolds became more stable. Unlike P80/CA20, uncrosslinked P50/CA50 and P20/CA80 were not lost in PBS. Among all groups, crosslinked P50/CA50 scaffolds had more uniform pores; therefore this group was used for bioactivity and cell culture studies. Apatite-like structures were observed on fibers after SBF incubation. Human Osteogenic Sarcoma Cell Line (Saos-2) seeded onto crosslinked P50/CA50 scaffolds adhered and proliferated. The functionality of cells was tested by measuring ALP activity of the cells and the results indicated their osteoblastic differentiation. In vitro tests showed that scaffolds were cytocompatible. To sum up, crosslinked P50/CA50 scaffolds were proposed as candidate cell carriers for bone tissue engineering applications.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Turkey
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, Turkey; Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Turkey; Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University, Turkey.
| |
Collapse
|
10
|
Heterogeneity of Scaffold Biomaterials in Tissue Engineering. MATERIALS 2016; 9:ma9050332. [PMID: 28773457 PMCID: PMC5503070 DOI: 10.3390/ma9050332] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Tissue engineering (TE) offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.
Collapse
|
11
|
Khayrullin AR, Severin AV, Khripunov AK, Tkachenko AA, Pautov VD. Composites based on Gluconacetobacter xylinus bacterial cellulose and calcium phosphates and their dielectric properties. RUSS J APPL CHEM+ 2013. [DOI: 10.1134/s1070427213080247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Lalk M, Reifenrath J, Angrisani N, Bondarenko A, Seitz JM, Mueller PP, Meyer-Lindenberg A. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:417-436. [PMID: 23160911 DOI: 10.1007/s10856-012-4812-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.
Collapse
Affiliation(s)
- Mareike Lalk
- Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen X, Sun X, Yang X, Zhang L, Lin M, Yang G, Gao C, Feng Y, Yu J, Gou Z. Biomimetic preparation of trace element-codoped calcium phosphate for promoting osteoporotic bone defect repair. J Mater Chem B 2013; 1:1316-1325. [PMID: 32260805 DOI: 10.1039/c2tb00138a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Specific implants to speedily regenerate critical-sized osteoporotic bone defects (COBDs) are a major clinical need. However, little progress in methods focusing on biological repair has been reported. We developed a biomimetic mineralization method to prepare trace element-codoped calcium phosphate (CaP) particles via hydrothermal treatment of modified simulated body fluid (SBF) with the addition of binary to quaternary trace elements. The morphology, structure, and composition of the particles were characterized by a combination of SEM, TEM, XRD, and FTIR measurements. The quantitative analysis shows that the dopant contents in the solid phase can be regulated by the trace ion concentrations in the aqueous medium. The conditioned cell culture medium from the quaternary Mg/Zn/Sr/Si-co-doped CaP (qCaP) could significantly enhance cell activity and osteogenic differentiation of ovariectomized rat-derived bone marrow mesenchymal stem cells. After injecting the qCaP-loaded chitosan/hyaluronic acid hydrogel into the COBDs, histology and computed tomography scanning revealed that the new bone regeneration was significantly enhanced, and the quantity of mature bone was substantially increased in the rats implanted with qCaP 12 weeks post-operatively in comparison with the defects filled with the CaP obtained from SBF. These results suggest that the biomimetic mineralization of the trace ion-added SBF allows the preparation of highly bioactive trace element-codoped CaP biomaterials and these materials are potential candidates for the biological repair of COBDs.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310029, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Adawy A, Abdel-Fattah WI. An efficient biomimetic coating methodology for a prosthetic alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 33:1813-8. [PMID: 23827641 DOI: 10.1016/j.msec.2012.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/09/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6h of the whole soaking process.
Collapse
Affiliation(s)
- Alaa Adawy
- Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.
| | | |
Collapse
|
15
|
Meretoja VV, Tirri T, Malin M, Seppälä JV, Närhi TO. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Clin Oral Implants Res 2012; 25:159-64. [DOI: 10.1111/clr.12051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Ville V. Meretoja
- Department of Prosthetic Dentistry; Institute of Dentistry; University of Turku; Turku Finland
- Turku Clinical Biomaterials Center; Turku Finland
| | - Teemu Tirri
- Department of Prosthetic Dentistry; Institute of Dentistry; University of Turku; Turku Finland
- Turku Clinical Biomaterials Center; Turku Finland
| | - Minna Malin
- Aalto University; School of Chemical Technology; Polymer Technology AALTO, Finland
| | - Jukka V. Seppälä
- Aalto University; School of Chemical Technology; Polymer Technology AALTO, Finland
| | - Timo O. Närhi
- Department of Prosthetic Dentistry; Institute of Dentistry; University of Turku; Turku Finland
- Turku Clinical Biomaterials Center; Turku Finland
- Clinic of Oral Diseases; Turku University Central Hospital; Turku Finland
| |
Collapse
|
16
|
Berner A, Boerckel JD, Saifzadeh S, Steck R, Ren J, Vaquette C, Zhang JQ, Nerlich M, Guldberg RE, Hutmacher DW, Woodruff MA. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res 2012; 347:603-12. [DOI: 10.1007/s00441-011-1298-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/07/2011] [Indexed: 10/25/2022]
|
17
|
PON-ON WEERAPHAT, MEEJOO SIWAPORN, TANG IMING. INCORPORATION OF IRON INTO NANO HYDROXYAPATITE PARTICLES SYNTHESIZED BY THE MICROWAVE PROCESS. INTERNATIONAL JOURNAL OF NANOSCIENCE 2011. [DOI: 10.1142/s0219581x07004262] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This research focuses on understanding the nature of the Fe ions substituted in hydroxyapatite ((HAP) Ca 10-x Fe x( PO 4)6( OH )2-xÿx: x = 0, 0.2 and 0.4) powder synthesized at temperatures between 500°C and 1000°C and their crystallization. The DSC scan indicates a solid state phase transition at about 757°C for the as-prepared powder HAP. The transformation of HAP to β-tricalcium phosphate (β- TCP , β- Ca 3( PO 4)2) is seen when the powder were heated to 750°C. The sizes of the crystallites were determined to be about 46–51 nm, 33–40 nm and 33–59 nm for Fe content of 0, 0.2 and 0.4 mol%, respectively. The ESR parameters for the Fe 3+ ions, g = 4.23 and 8.93 indicated that the ions were subjected to a rhombic ion crystal field within the HAP structures. The g values of ~2.01 indicated that the particles were super-paramagnetic and ferromagnetic iron nanoparticles, having an average size about 0.2–0.5 μm in length.
Collapse
Affiliation(s)
- WEERAPHAT PON-ON
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - SIWAPORN MEEJOO
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - I-MING TANG
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Institute of Science and Technology for Research and Development, Salaya Campus, Mahidol University, Nakhon Pathom 71730, Thailand
| |
Collapse
|
18
|
Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011; 2011:175362. [PMID: 21961004 PMCID: PMC3180784 DOI: 10.1155/2011/175362] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/01/2011] [Accepted: 07/07/2011] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.
Collapse
|
19
|
Tommila M, Stark C, Jokilammi A, Peltonen V, Penttinen R, Ekholm E. Hemoglobin expression in rat experimental granulation tissue. J Mol Cell Biol 2010; 3:190-6. [PMID: 21059732 DOI: 10.1093/jmcb/mjq036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The general opinion that hemoglobin is only a carrier protein for oxygen and carbon dioxide has been challenged by several recent studies showing hemoglobin expression in other cells than those of the erythroid series, for example, in macrophages. We discovered β-globin expression in rat experimental granulation tissue induced by subcutaneously implanted cellulose sponges. Closer investigation revealed also α-globin expression. The first peak of the biphasic globin expression noticed during granulation tissue formation correlated with the invasion of monocytes/macrophages, whereas the second one seemed to be connected to the appearance of hematopoietic progenitors. Data presented in this study indicate globin expression both in macrophages and in immature erythroid cells as validated by erythroid-specific markers.
Collapse
Affiliation(s)
- Miretta Tommila
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Wilson T, Stark C, Holmbom J, Rosling A, Kuusilehto A, Tirri T, Penttinen R, Ekholm E. Fate of bone marrow-derived stromal cells after intraperitoneal infusion or implantation into femoral bone defects in the host animal. J Tissue Eng 2010; 2010:345806. [PMID: 21350643 PMCID: PMC3042670 DOI: 10.4061/2010/345806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/26/2010] [Accepted: 06/02/2010] [Indexed: 01/16/2023] Open
Abstract
The fate of intraperitoneally injected or implanted male rat bone marrow-derived stromal cells inside female sibling host animals was traced using Y-chromosome-sensitive PCR. When injected intraperitoneally, Y-chromosome-positive cells were found in all studied organs: heart muscle, lung, thymus, liver, spleen, kidney, skin, and femoral bone marrow with a few exceptions regardless of whether they had gone through osteogenic differentiation or not. In the implant experiments, expanded donor cells were seeded on poly(lactide-co-glycolide) scaffolds and grown under three different conditions (no additives, in osteogenic media for one or two weeks) prior to implantation into corticomedullar femoral defects. Although the impact of osteogenic in vitro cell differentiation on cell migration was more obvious in the implantation experiments than in the intraperitoneal experiments, the donor cells stay alive when injected intraperitoneally or grown in an implant and migrate inside the host. However, when the implants contained bioactive glass, no signs of Y-chromosomal DNA were observed in all studied organs including the implants indicating that the cells had been eliminated.
Collapse
Affiliation(s)
- Timothy Wilson
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
He F, Yang G, Wang X, Zhao S. Bone responses to rough titanium implants coated with biomimetic Ca-P in rabbit tibia. J Biomed Mater Res B Appl Biomater 2009; 90:857-63. [DOI: 10.1002/jbm.b.31355] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Tommila M, Jokilammi A, Terho P, Wilson T, Penttinen R, Ekholm E. Hydroxyapatite coating of cellulose sponges attracts bone-marrow-derived stem cells in rat subcutaneous tissue. J R Soc Interface 2009; 6:873-80. [PMID: 19324666 DOI: 10.1098/rsif.2009.0020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The presence of bone-marrow-derived stem cells was investigated in a wound-healing model where subcutaneously implanted cellulose sponges were used to induce granulation tissue formation. When cellulose was coated with hydroxyapatite (HA), the sponges attracted circulating haemopoietic and mesenchymal progenitor cells more efficiently than uncoated cellulose. We hypothesized that the giant cells/macrophages of HA-coated sponges recognize HA as foreign material, phagocyte or hydrolyse it and release calcium ions, which are recognized by the calcium-sensing receptors (CaRs) expressed on many cells including haemopoietic progenitors. Our results showed, indeed, that the HA-coated sponges contained more CaR-positive cells than untreated sponges. The stem cells are, most probably, responsible for the richly vascularized granulation tissue formed in HA-coated sponges. This cell-guiding property of HA-coated cellulose might be useful in clinical situations involving impaired wound repair.
Collapse
Affiliation(s)
- Miretta Tommila
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, Turku, Finland
| | | | | | | | | | | |
Collapse
|
23
|
Luo LH, Zhang YF, Wang XM, Wan Y, Chang PR, Anderson DP, Chen Y. Preparation, Characterization, and In Vitro and In Vivo Evaluation of Cellulose/Soy Protein Isolate Composite Sponges. J Biomater Appl 2008; 24:503-26. [DOI: 10.1177/0885328208099337] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of cellulose/soy protein isolate (SPI) sponges was prepared using a freeze-drying process. The effect of the SPI content on the structure of the sponges was characterized by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). It showed that the sponges were porous in structure, and that the size of the pores increased and the thickness of the pore walls decreased as the SPI content of the sponges increased. The biocompatibility and biodegradability of the sponges were evaluated in vitro and in vivo. The cell culture experiment and SEM observations showed that L929 fibroblast cells grew and spread well on the surface and cross-section of the composite sponges. The results from MTT (3-[4,5-dimethyl-2-thiazoly1]-2,5-diphenyl-2H-tetrazolium bromide) assay indicated that the cell viability of L929 cultured in extracts from SPI-containing sponges was higher than that from the pure cellulose sponge. The historical analysis and SEM observation revealed that the SPI-containing sponges implanted from 1 to 8 months in rats exhibited better in vivo biocompatibility and biodegradability than the pure cellulose sponge. This was due to the incorporation of SPI into cellulose and to the freeze-drying process which formed large pores and thin pore walls in the composite sponges, promoting the migration of cells and tissue into the sponges, leading to gradual fusing with the implants. The new cellulose/SPI sponges thus have potential applications as biomaterials with good biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Li-Hua Luo
- Research Center for Medical and Structural Biology School of Basic Medical Science, Wuhan University Wuhan 430071, China, Department of Biomedical Engineering, School of Basic Medical Science Wuhan University, Wuhan 430071, China
| | - Yu-Feng Zhang
- Ministry of Education Key Laboratory for Oral Biomedical Engineering School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiao-Mei Wang
- Research Center for Medical and Structural Biology School of Basic Medical Science, Wuhan University Wuhan 430071, China, Department of Biomedical Engineering, School of Basic Medical Science Wuhan University, Wuhan 430071, China
| | - Yu Wan
- Research Center for Medical and Structural Biology School of Basic Medical Science, Wuhan University Wuhan 430071, China
| | - Peter R. Chang
- Bioproducts and Bioprocesses National Science Program Agriculture and Agri-Food Canada, 107 Science Place Saskatoon S7N 0X2, SK, Canada
| | - Debbie P. Anderson
- Bioproducts and Bioprocesses National Science Program Agriculture and Agri-Food Canada, 107 Science Place Saskatoon S7N 0X2, SK, Canada
| | - Yun Chen
- Research Center for Medical and Structural Biology School of Basic Medical Science, Wuhan University Wuhan 430071, China, Department of Biomedical Engineering, School of Basic Medical Science Wuhan University, Wuhan 430071, China,
| |
Collapse
|
24
|
Tommila M, Jokinen J, Wilson T, Forsback AP, Saukko P, Penttinen R, Ekholm E. Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats. Acta Biomater 2008; 4:354-61. [PMID: 17845867 DOI: 10.1016/j.actbio.2007.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/19/2007] [Accepted: 07/08/2007] [Indexed: 11/18/2022]
Abstract
Granulation tissue was induced in hydroxyapatite-coated cellulose sponges with subcutaneous implantation in rats. A massive inflammatory reaction with an intense foreign body reaction and an increased invasion of fibrovascular tissue was observed by days 1-3 post-operation, whereas tissue growth into the uncoated control implants was much slower and took place mainly on their surfaces. The foreign body reaction in apatite-coated sponges declined after post-operative day 14, and no obvious differences were seen between the two cellulose sponges from 1 month up to 1 year after implantation. The apatite-coated implants attracted macrophages and fibroblasts, and favored angiogenesis. The excessive connective tissue formation was histologically normal, synthesized the major extracellular matrix molecules in a normal ratio and did not seem to disturb the animals in any way. These results warrant further investigations on clinical applicability of hydroxyapatite-coated cellulose sponges, when fast proliferation of connective tissue is desirable.
Collapse
Affiliation(s)
- Miretta Tommila
- Departments of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
25
|
Soares LP, Oliveira MGD, Pinheiro ALB, Fronza BR, Maciel MES. Effects of Laser Therapy on Experimental Wound Healing Using Oxidized Regenerated Cellulose Hemostat. Photomed Laser Surg 2008; 26:10-3. [DOI: 10.1089/pho.2007.2115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lívia Prates Soares
- Laser Center, Faculty of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Marília Gerhardt De Oliveira
- Oral and Maxillofacial Surgery Department, Pontiff University Catholic of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Bruna Rodrigues Fronza
- Oral and Maxillofacial Surgery Department, Pontiff University Catholic of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marconi Eduardo Souza Maciel
- Oral and Maxillofacial Surgery Department, Pontiff University Catholic of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
26
|
Calcification of synthetic polymers functionalized with negatively ionizable groups: A critical review. REACT FUNCT POLYM 2007. [DOI: 10.1016/j.reactfunctpolym.2006.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Chirila TV, Hill DJT, Whittaker AK, Kemp A. Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels. Acta Biomater 2007; 3:95-102. [PMID: 17071146 DOI: 10.1016/j.actbio.2006.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/14/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
The incorporation of negatively charged groups into the structure of synthetic polymers is frequently advocated as a method for enhancing their calcification capacity required in orthopedic and dental applications. However, the results reported by various research groups are rather contentious, since inhibitory effects have also been observed in some studies. In the present study, phosphate groups were introduced in poly(2-hydroxyethyl methacrylate) (PHEMA) by copolymerization with 10% mol of either mono(2-acryloyloxyethyl) phosphate (MAEP) or mono(2-methacryloyloxyethyl) phosphate (MMEP). Incubation of these hydrogels for determined durations (1-9 weeks) in a simulated body fluid (SBF) solution induced deposition of calcium phosphate (CaP) deposits of whitlockite type. After 9 weeks, the amount of calcium deposited on the phosphate-containing polymers was four times lower than that found on PHEMA, as determined by X-ray photoelectron spectroscopy (XPS). Samples of copolymer HEMA-MAEP were implanted subcutaneously in rats and evaluated after 9 weeks. No CaP deposits could be detected on the copolymer by XPS or energy dispersive X-ray spectroscopy, while PHEMA samples were massively calcified. It was concluded that the presence of phosphate groups decreased the calcification capacity of the hydrogels, and that in the conditions of this study, the phosphate groups had an inhibitory effect on the deposition of CaP phases on HEMA-based hydrogels.
Collapse
Affiliation(s)
- Traian V Chirila
- Queensland Eye Institute, University of Queensland, 41 Annerley Road, South Brisbane, Queensland 4101, Australia.
| | | | | | | |
Collapse
|