1
|
Tong Z, Ma Y, Liang Q, Lei T, Wu H, Zhang X, Chen Y, Pan X, Wang X, Li H, Lin J, Wei W, Teng C. An in situ forming cartilage matrix mimetic hydrogel scavenges ROS and ameliorates osteoarthritis after superficial cartilage injury. Acta Biomater 2024; 187:82-97. [PMID: 39178925 DOI: 10.1016/j.actbio.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in clinical settings, posing significant treatment challenges. Here, we fabricated a cartilage extracellular matrix mimic hydrogel (GHC, consisting of Gelatin, Hyaluronic acid, and Chondroitin sulfate) to avoid the exacerbation of cartilage deterioration, which is often driven by the accumulation of reactive oxygen species (ROS) and a pro-inflammatory microenvironment. The GHC hydrogel exhibited multifunctional properties, including in situ formation, tissue adhesiveness, anti-ROS capabilities, and the promotion of chondrogenesis. The enhancement of tissue adhesion was achieved by chemically modifying hyaluronic acid and chondroitin sulfate with o-nitrobenzene, enabling a covalent connection to the cartilage surface upon light irradiation. In vitro characterization revealed that GHC hydrogel facilitated chondrocyte adhesion, migration, and differentiation into cartilage. Additionally, GHC hydrogels demonstrated the ability to scavenge ROS in vitro and inhibit the production of inflammatory factors by chondrocytes. In the animal model of superficial cartilage injury, the hydrogel effectively promoted cartilage ECM regeneration and facilitated the interface integration between the host tissue and the material. These findings suggest that the multifunctional GHC hydrogels hold considerable promise as a strategy for cartilage defect repair. STATEMENT OF SIGNIFICANCE: Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in the clinic. Previous cartilage tissue engineering materials are only suitable for full-thickness cartilage defects or osteochondral defects. Here, we developed a multifunctional GHC hydrogel composed of gelatin, hyaluronic acid, and chondroitin sulfate, which are natural cartilage extracellular matrix components. The drug-free and cell-free hydrogel not only avoids immune rejection and drug toxicity, but also shows good mechanical properties and biocompatibility. More importantly, the GHC hydrogel could adhere tightly to the superficial cartilage defects and promote cartilage regeneration while protecting against oxidation. This natural ingredients and multifunctional hydrogel is a potential material for repairing superficial cartilage defects.
Collapse
Affiliation(s)
- Zhicheng Tong
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Yuanzhu Ma
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiushi Liang
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Tao Lei
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Hongwei Wu
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xianzhu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yishan Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang 314400, China
| | - Xihao Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang 314400, China
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang 314400, China
| | - Huimin Li
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Junxin Lin
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Wei Wei
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Chong Teng
- Department of Orthopedics, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Chen Z, Zhou T, Luo H, Wang Z, Wang Q, Shi R, Li Z, Pang R, Tan H. HWJMSC-EVs promote cartilage regeneration and repair via the ITGB1/TGF-β/Smad2/3 axis mediated by microfractures. J Nanobiotechnology 2024; 22:177. [PMID: 38609995 PMCID: PMC11015550 DOI: 10.1186/s12951-024-02451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The current first-line treatment for repairing cartilage defects in clinical practice is the creation of microfractures (MF) to stimulate the release of mesenchymal stem cells (MSCs); however, this method has many limitations. Recent studies have found that MSC-derived extracellular vesicles (MSC-EVs) play an important role in tissue regeneration. This study aimed to verify whether MSC-EVs promote cartilage damage repair mediated by MFs and to explore the repair mechanisms. In vitro experiments showed that human umbilical cord Wharton's jelly MSC-EVs (hWJMSC-EVs) promoted the vitality of chondrocytes and the proliferation and differentiation ability of bone marrow-derived MSCs. This was mainly because hWJMSC-EVs carry integrin beta-1 (ITGB1), and cartilage and bone marrow-derived MSCs overexpress ITGB1 after absorbing EVs, thereby activating the transforming growth factor-β/Smad2/3 axis. In a rabbit knee joint model of osteochondral defect repair, the injection of different concentrations of hWJMSC-EVs into the joint cavity showed that a concentration of 50 µg/ml significantly improved the formation of transparent cartilage after MF surgery. Extraction of regenerated cartilage revealed that the changes in ITGB1, transforming growth factor-β, and Smad2/3 were directly proportional to the repair of regenerated cartilage. In summary, this study showed that hWJMSC-EVs promoted cartilage repair after MF surgery.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Tianhua Zhou
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Huan Luo
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Zhen Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Qiang Wang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Rongmao Shi
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Zian Li
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China
| | - Rongqing Pang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Li S, Yuan Q, Yang M, Long X, Sun J, Yuan X, Liu L, Zhang W, Li Q, Deng Z, Tian R, Xu R, Xie L, Yuan J, He Y, Liu Y, Liu H, Yuan Z. Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102723. [PMID: 38007064 DOI: 10.1016/j.nano.2023.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs. MATERIALS AND METHODS MSC-EVs were isolated from sodium alginate (SA) and hyaluronic acid (HA) composite hydrogel (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo. RESULTS EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers. CONCLUSION The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.
Collapse
Affiliation(s)
- Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Minghui Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xin Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lang Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wanting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Quanjiang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Renhao Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, PR China.
| | - Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jingna Yuan
- Jinhang Bio-science and Biotechnology Co. Ltd, Guangzhou 510663, PR China.
| | - Yue He
- Jinhang Bio-science and Biotechnology Co. Ltd, Guangzhou 510663, PR China.
| | - Yi Liu
- Orthopedics Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, PR China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Fani N, Peshkova M, Bikmulina P, Golroo R, Timashev P, Vosough M. Fabricating the cartilage: recent achievements. Cytotechnology 2023; 75:269-292. [PMID: 37389132 PMCID: PMC10299965 DOI: 10.1007/s10616-023-00582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
This review aims to describe the most recent achievements and provide an insight into cartilage engineering and strategies to restore the cartilage defects. Here, we discuss cell types, biomaterials, and biochemical factors applied to form cartilage tissue equivalents and update the status of fabrication techniques, which are used at all stages of engineering the cartilage. The actualized concept to improve the cartilage tissue restoration is based on applying personalized products fabricated using a full cycle platform: a bioprinter, a bioink consisted of ECM-embedded autologous cell aggregates, and a bioreactor. Moreover, in situ platforms can help to skip some steps and enable adjusting the newly formed tissue in the place during the operation. Only some achievements described have passed first stages of clinical translation; nevertheless, the number of their preclinical and clinical trials is expected to grow in the nearest future.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Pearce HA, Swain JWR, Victor LH, Hogan KJ, Jiang EY, Bedell ML, Navara AM, Farsheed A, Kim YS, Guo JL, Hartgerink JD, Grande-Allen KJ, Mikos AG. Thermogelling hydrogel charge and lower critical solution temperature influence cellular infiltration and tissue integration in an ex vivo cartilage explant model. J Biomed Mater Res A 2023; 111:15-34. [PMID: 36053984 DOI: 10.1002/jbm.a.37441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
Abstract
Thermogelling hydrogels based on poly(N-isopropyl acrylamide) (p[NiPAAm]) and crosslinked with a peptide-bearing macromer poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) were fabricated to assess the role of hydrogel charge and lower critical solution temperature (LCST) over time in influencing cellular infiltration and tissue integration in an ex vivo cartilage explant model over 21 days. The p(NiPAAm)-based thermogelling polymer was synthesized to possess 0, 5, and 10 mol% dimethyl-γ-butyrolactone acrylate (DBA) to raise the LCST over time as the lactone rings hydrolyzed. Further, three peptides were designed to impart charge into the hydrogels via conjugation to the PdBT crosslinker. The positively, neutrally, and negatively charged peptides K4 (+), zwitterionic K2E2 (0), and E4 (-), respectively, were conjugated to the modular PdBT crosslinker and the hydrogels were evaluated for their thermogelation behavior in vitro before injection into the cartilage explant models. Samples were collected at days 0 and 21, and tissue integration and cellular infiltration were assessed via mechanical pushout testing and histology. Negatively charged hydrogels whose LCST changed over time (10 mol% DBA) were demonstrated to promote the greatest tissue integration when compared to the positive and neutral gels of the same thermogelling polymer formulation due to increased transport and diffusion across the hydrogel-tissue interface. Indeed, the negatively charged thermogelling polymer groups containing 5 and 10 mol% DBA demonstrated cellular infiltration and cartilage-like matrix deposition via histology. This study demonstrates the important role that material physicochemical properties play in dictating cell and tissue behavior and can inform future cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | - Katie J Hogan
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Matthew L Bedell
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Adam M Navara
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Adam Farsheed
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Depatment of Chemistry, Rice University, Houston, Texas, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jason L Guo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Depatment of Chemistry, Rice University, Houston, Texas, USA
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
7
|
Wu H, Shang Y, Sun W, Ouyang X, Zhou W, Lu J, Yang S, Wei W, Yao X, Wang X, Zhang X, Chen Y, He Q, Yang Z, Ouyang H. Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel. Bioact Mater 2023; 19:88-102. [PMID: 35441114 PMCID: PMC9005961 DOI: 10.1016/j.bioactmat.2022.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Autologous mosaicplasty is a common approach used to treat osteochondral defects in clinical practice. Gap integration between host and transplanted plugs requires bone tissue reservation and hyaline cartilage regeneration without uneven surface, graft necrosis and sclerosis. However, poor gap integration is a serious concern, which eventually leads to deterioration of joint function. To deal with such complications, this study has developed a strategy to effectively enhance integration of the gap region following mosaicplasty by applying injectable bioactive supramolecular nanofiber-enabled gelatin methacryloyl (GelMA) hydrogel (BSN-GelMA). A rabbit osteochondral defect model demonstrated that BSN-GelMA achieved seamless osteochondral healing in the gap region between plugs of osteochondral defects following mosaicplasty, as early as six weeks. Moreover, the International Cartilage Repair Society score, histology score, glycosaminoglycan content, subchondral bone volume, and collagen II expression were observed to be the highest in the gap region of BSN-GelMA treated group. This improved outcome was due to bio-interactive materials, which acted as tissue fillers to bridge the gap, prevent cartilage degeneration, and promote graft survival and migration of bone marrow mesenchymal stem cells by releasing bioactive supramolecular nanofibers from the GelMA hydrogel. This study provides a powerful and applicable approach to improve gap integration after autologous mosaicplasty. It is also a promising off-the-shelf bioactive material for cell-free in situ tissue regeneration. A novel strategy that can effectively enhance post-mosaicplasty interstitial integration was developed. The bioactive supramolecular nanofibers (BSN) exhibited comparable bioactivity to insulin-like growth factor-1 (IGF-1). The BSN-GelMA hydrogel is a promising off-the-shelf bioactive material for cell-free in situ tissue regeneration.
Collapse
|
8
|
Barui S, Ghosh D, Laurencin CT. Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives. Regen Biomater 2022; 10:rbac109. [PMID: 36683736 PMCID: PMC9845524 DOI: 10.1093/rb/rbac109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted. With rapid advancement in biomaterials science, biofabrication tools and strategies, the state-of-the-art in osteochondral regeneration since the last decade has expansively elaborated. This includes conventional and additive manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised biocompatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply. Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.
Collapse
Affiliation(s)
- Srimanta Barui
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
9
|
Peshkova M, Kosheleva N, Shpichka A, Radenska-Lopovok S, Telyshev D, Lychagin A, Li F, Timashev P, Liang XJ. Targeting Inflammation and Regeneration: Scaffolds, Extracellular Vesicles, and Nanotechnologies as Cell-Free Dual-Target Therapeutic Strategies. Int J Mol Sci 2022; 23:13796. [PMID: 36430272 PMCID: PMC9694395 DOI: 10.3390/ijms232213796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Osteoarthritis (OA) affects over 250 million people worldwide and despite various existing treatment strategies still has no cure. It is a multifactorial disease characterized by cartilage loss and low-grade synovial inflammation. Focusing on these two targets together could be the key to developing currently missing disease-modifying OA drugs (DMOADs). This review aims to discuss the latest cell-free techniques applied in cartilage tissue regeneration, since they can provide a more controllable approach to inflammation management than the cell-based ones. Scaffolds, extracellular vesicles, and nanocarriers can be used to suppress inflammation, but they can also act as immunomodulatory agents. This is consistent with the latest tissue engineering paradigm, postulating a moderate, controllable inflammatory reaction to be beneficial for tissue remodeling and successful regeneration.
Collapse
Affiliation(s)
- Maria Peshkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stefka Radenska-Lopovok
- Institute for Clinical Morphology and Digital Pathology, Sechenov University, 119991 Moscow, Russia
| | - Dmitry Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
- Institute of Bionic Technologies and Engineering, Sechenov University, 119991 Moscow, Russia
| | - Alexey Lychagin
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, 119991 Moscow, Russia
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xing-Jie Liang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Li Y, Zha Y, Hu W, Chen J, Liu S, Zhang S, Wang J. Monoporous Microsphere as a Dynamically Movable Drug Carrier for Osteoporotic Bone Remodeling. Adv Healthc Mater 2022:e2201242. [PMID: 35948299 DOI: 10.1002/adhm.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Indexed: 11/06/2022]
Abstract
To repair systematically osteoporotic bone defects, it is significant to take effort on both the diminishment of osteoporosis and the enhancement of bone regeneration. Herein, a specifically monoporous microsphere carrier encapsulating dosage-sensitive and short half-time parathyroid hormone (PTH) has been constructed to tackle the issue. Compared with conventional microsphere carriers involving compact, porous, and mesoporous microspheres, the monoporous microsphere is desirable to achieve precisely in-situ delivery and to minimize topical accumulation. Our findings show that the PTH loaded inside MPMs can be gradually released from the single hole of MPMs to improve the initial drug concentration. Also, the MPMs can self-shift with the daily movement of experimental animals to effectively reduce the topical aggregation of released drugs in vitro. In vivo evaluation further confirms that the implant of MPMs-PTH plays a dual role in stimulating the regenerative repair of the cranial defect and relieving osteoporosis in the whole body. Consequently, our current work develops a dynamically movable drug delivery system to achieve precisely in-situ delivery, minimize topical accumulation, and systematically repair osteoporotic bone defects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yawu Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Yao Zha
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Weikang Hu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jia Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shuaibing Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
11
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
12
|
Wei W, Ma Y, Zhang X, Zhou W, Wu H, Zhang J, Lin J, Tang C, Liao Y, Li C, Wang X, Yao X, Koh YW, Huang W, Ouyang H. Biomimetic Joint Paint for Efficient Cartilage Repair by Simultaneously Regulating Cartilage Degeneration and Regeneration in Pigs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54801-54816. [PMID: 34706537 DOI: 10.1021/acsami.1c17629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Irregular partial-thickness cartilage defect is a common pathogenesis of osteoarthritis (OA) with no available treatment in clinical practice. Currently, cartilage tissue engineering is only suitable for a limited area of full-thickness cartilage defect. Here, we design a biomimetic joint paint for the intractable partial-thickness cartilage defect repair. The joint paint, composed of a bridging layer of chondroitin sulfate and a surface layer of gelatin methacrylate with hyaluronic acid, can quickly and tightly adhere to the cartilage defect by light activation. Being treated by the joint paint, the group of rabbit and pig models with partial-thickness cartilage defects showed a restoration of a smooth cartilage surface and the preservation of normal glycosaminoglycan content, whereas the untreated control group exhibited serious progressive OA development. This paint treatment functions by prohibiting chondrocyte apoptosis, maintaining chondrocyte phenotype, and preserving the content of glycosaminoglycan in the partial-thickness cartilage defects. These findings illustrated that the biomimetic joint paint is an effective and revolutionary therapeutics for the patients with noncurable partial-thickness cartilage defects.
Collapse
Affiliation(s)
- Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chenqi Tang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Yi Wen Koh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Wenwen Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310000, Zhejiang, China
| |
Collapse
|
13
|
Chen Z, Xiao H, Zhang H, Xin Q, Zhang H, Liu H, Wu M, Zuo L, Luo J, Guo Q, Ding C, Tan H, Li J. Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J Mater Chem B 2021; 9:8646-8658. [PMID: 34595487 DOI: 10.1039/d1tb00518a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inspired by the intricate extracellular matrix (ECM) of natural cartilage and subchondral bone, a heterogenous bilayer hydrogel scaffold is fabricated. Gelatin methacrylate (GelMA) and acryloyl glucosamine (AGA) serve as the main components in the upper layer, mimicking the chondral ECM. Meanwhile, vinylphosphonic acid (VPA) as a non-collagen protein analogue is incorporated into the bottom layer to induce the in situ biomineralization of calcium phosphate. The two heterogenous layers are effectively sutured together by the inter-diffusion between the upper and bottom layer hydrogels, together with chelation between the calcium ions and alginate added to separate layers. The interfacial bonding between the two different layers was thoroughly investigated via rheological measurements. The incorporation of AGA promotes chondrocytes to produce collagen type II and glycosaminoglycans and upregulates the expression of chondrogenesis-related genes. In addition, the minerals induced by VPA facilitate the osteogenesis of bone marrow mesenchymal stem cells (BMSCs). In vivo evaluation confirms the biocompatibility of the scaffold with minor inflammation and confirms the best repair ability of the bilayer hydrogel. This cell-free, cost-effective and efficient hydrogel shows great potential for osteochondral repair and inspires the design of other tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Zhuoxin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu 610041, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haochen Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haixin Liu
- Department of Orthopedics, People's Hospital of Deyang City, No. 173, Taishan North Road, Deyang 618000, China
| | - Mingzhen Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Med-X Center for Materials, Sichuan University, 610041, China
| |
Collapse
|
14
|
Yang T, Tamaddon M, Jiang L, Wang J, Liu Z, Liu Z, Meng H, Hu Y, Gao J, Yang X, Zhao Y, Wang Y, Wang A, Wu Q, Liu C, Peng J, Sun X, Xue Q. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J Orthop Translat 2021; 30:112-121. [PMID: 34722154 PMCID: PMC8526903 DOI: 10.1016/j.jot.2021.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND/OBJECTIVE We seek to figure out the effect of stable and powerful mechanical microenvironment provided by Ti alloy as a part of subchondral bone scaffold on long-term cartilage regeneration.Methods: we developed a bilayered osteochondral scaffold based on the assumption that a stiff subchondral bony compartment would provide stable mechanical support for cartilage regeneration and enhance subchondral bone regeneration. The subchondral bony compartment was prepared from 3D printed Ti alloy, and the cartilage compartment was created from a freeze-dried collagen sponge, which was reinforced by poly-lactic-co-glycolic acid (PLGA). RESULTS In vitro evaluations confirmed the biocompatibility of the scaffold materials, while in vivo evaluations demonstrated that the mechanical support provided by 3D printed Ti alloy layer plays an important role in the long-term regeneration of cartilage by accelerating osteochondral formation and its integration with the adjacent host tissue in osteochondral defect model at rabbit femoral trochlea after 24 weeks. CONCLUSION Mechanical support provided by 3D printing Ti alloy promotes cartilage regeneration by promoting subchondral bone regeneration and providing mechanical support platform for cartilage synergistically. TRANSLATIONAL POTENTIAL STATEMENT The raw materials used in our double-layer osteochondral scaffolds are all FDA approved materials for clinical use. 3D printed titanium alloy scaffolds can promote bone regeneration and provide mechanical support for cartilage regeneration, which is very suitable for clinical scenes of osteochondral defects. In fact, we are conducting clinical trials based on our scaffolds. We believe that in the near future, the scaffold we designed and developed can be formally applied in clinical practice.
Collapse
Affiliation(s)
- Tao Yang
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jing Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
- Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, China
| | - Ziyu Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Haoye Meng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Hu
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jianming Gao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xuan Yang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanxu Zhao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanling Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Aiyuan Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Jiang Peng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qingyun Xue
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| |
Collapse
|
15
|
Heirani-Tabasi A, Hosseinzadeh S, Rabbani S, Ahmadi Tafti SH, Jamshidi K, Soufizomorrod M, Soleimani M. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Biomed Mater 2021; 16. [PMID: 34144542 DOI: 10.1088/1748-605x/ac0cbf] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) on injectable hydrogels are mostly used to regenerate articular cartilage, which would have a variety of outcomes. Chondrocyte extracellular vesicles (EVs) have attracted many attentions for their chondrogenic differentiation capacity; however, the roles of EVs in both chondrogenic differentiation of MSCs and cartilage regeneration are poorly understood yet. In the current study, to investigate the differentiation effects of human articular chondrocyte EVs on adipose-derived MSCs, they were cultured in injectable chitosan-hyaluronic acid (CS-HA) hydrogel and then treated with chondrocyte EVs for 21 days. The continuous treatment of EVs performed on MSCs increased chondrogenic genes' expressions ofSOX9andCOL2A1and induced expression of Col II protein. In addition, glycosaminoglycans secretion was detected in the EV-treated MSCs after about 14 days. The therapeutic efficiency of this hydrogel and EVs was studied in a rabbit osteochondral defect model. MRI results revealed that the cartilage regeneration capacity of EV-treated MSCs with CS-HA hydrogel was greater than the untreated MSCs or the EV-treated MSCs without hydrogel. Moreover, histological results showed hyaline-like cartilage in the CS-HA/MSC and CS-HA/EV/MSC groups in the cartilage defect sites. These findings suggested that the chondrocyte-EVs and CS-HA hydrogel could provide the preferable niche for chondrogenic differentiation of MSCs and cartilage regeneration in osteoarthritis cartilage injuries.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases, Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khodamorad Jamshidi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Soufizomorrod
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Pearce HA, Kim YS, Watson E, Bahrami K, Smoak MM, Jiang EY, Elder M, Shannon T, Mikos AG. Development of a modular, biocompatible thiolated gelatin microparticle platform for drug delivery and tissue engineering applications. Regen Biomater 2021; 8:rbab012. [PMID: 34211728 PMCID: PMC8240604 DOI: 10.1093/rb/rbab012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The field of biomaterials has advanced significantly in the past decade. With the growing need for high-throughput manufacturing and screening, the need for modular materials that enable streamlined fabrication and analysis of tissue engineering and drug delivery schema has emerged. Microparticles are a powerful platform that have demonstrated promise in enabling these technologies without the need to modify a bulk scaffold. This building block paradigm of using microparticles within larger scaffolds to control cell ratios, growth factors and drug release holds promise. Gelatin microparticles (GMPs) are a well-established platform for cell, drug and growth factor delivery. One of the challenges in using GMPs though is the limited ability to modify the gelatin post-fabrication. In the present work, we hypothesized that by thiolating gelatin before microparticle formation, a versatile platform would be created that preserves the cytocompatibility of gelatin, while enabling post-fabrication modification. The thiols were not found to significantly impact the physicochemical properties of the microparticles. Moreover, the thiolated GMPs were demonstrated to be a biocompatible and robust platform for mesenchymal stem cell attachment. Additionally, the thiolated particles were able to be covalently modified with a maleimide-bearing fluorescent dye and a peptide, demonstrating their promise as a modular platform for tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Hannah A Pearce
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emma Watson
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Kiana Bahrami
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Mollie M Smoak
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Michael Elder
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Tate Shannon
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| |
Collapse
|
17
|
Rush MN, Coombs KE, Denny CT, Santistevan D, Huynh QM, Cicotte KN, Hedberg-Dirk EL. Acid Scavenger Free Synthesis of Oligo(Poly(Ethylene Glycol) Fumarate) Utilizing Inert Gas Sparging. Tissue Eng Part C Methods 2021; 27:296-306. [PMID: 33765836 PMCID: PMC8147510 DOI: 10.1089/ten.tec.2021.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
The macromolecule oligo(poly(ethylene glycol) fumarate) (OPF) exhibits promising attributes for creating suitable three-dimensional hydrogel environments to study cell behavior, deliver therapeutics, and serve as a degradable, nonfouling material. However, traditional synthesis techniques are time consuming, contain salt contaminants, and generate significant waste. These issues have been overcome with an alternative, one-pot approach that utilizes inert gas sparging. Departing from previous synthetic schemes that require acid scavengers, inert gas sparging removes byproducts in situ, eliminating significant filtration and postprocessing steps, while allowing a more uniform product. Characterized by nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry, nitrogen sparge synthesis yields an OPF product with greater polymer length than traditional acid scavenger synthesis methods. Furthermore, nitrogen-sparged OPF readily crosslinks using either ultraviolet or thermal initiator methods with or without the addition of short-chain diacrylate units, allowing for greater tunability in hydrogel properties with little to no cytotoxicity. Overall, inert gas sparging provides a longer chain and cleaner polymer product for hydrogel material studies while maintaining degradable characteristics. Impact statement Using nitrogen sparging, we have demonstrated that oligo(poly(ethylene glycol) fumarate) (OPF) can be produced with decreased postprocessing, increased product purity, greater oligomerization, and cell viability. These properties lead to greater tunability in mechanical properties and a more versatile hydrogel for biomedical applications. The simplification of synthesis and elimination of impurities will expand the utility of OPF as a degradable hydrogel for cell culture, tissue engineering, regenerative medicine, and therapeutic delivery, among other applications.
Collapse
Affiliation(s)
- Matthew N. Rush
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
- Center for Integrated Nanotechnologies, Sandia National Laboratories/Los Alamos National Laboratory, Albuquerque, New Mexico, USA
| | - Kent E. Coombs
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Sciences Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christian T. Denny
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - David Santistevan
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - Quan M. Huynh
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - Kirsten N. Cicotte
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - Elizabeth L. Hedberg-Dirk
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
18
|
Zhang X, He J, Wang W. Progress in the use of mesenchymal stromal cells for osteoarthritis treatment. Cytotherapy 2021; 23:459-470. [PMID: 33736933 DOI: 10.1016/j.jcyt.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/20/2020] [Accepted: 01/29/2021] [Indexed: 12/26/2022]
Abstract
LITERATURE REVIEW OF MSCS IN THE TREATMENT OF OSTEOARTHRITIS IN THE PAST FIVE YEARS: Osteoarthritis (OA) is one of the most common chronic joint diseases, with prominent symptoms caused by many factors. However, current medical interventions for OA have resulted in poor clinical outcomes, demonstrating that there are huge unmet medical needs in this area. Cell therapy has opened new avenues of OA treatment. Different sources of mesenchymal stromal cells (MSCs) may have different phenotypes and cellular functions. Pre-clinical and clinical studies have demonstrated the feasibility, safety and efficacy of MSC therapy. Mitogen-activated protein kinase, Wnt and Notch signaling pathways are involved in the chondrogenesis of MSC-mediated treatments. MSCs may also exert effective immunoregulatory and paracrine effects to stimulate tissue repair. Therapy with extracellular vesicles containing cytokines, which are secreted by MSCs, might be a potential treatment for OA.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiyin He
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wen Wang
- Clinical Development, IASO Biotherapeutics Co., Ltd., Shanghai, China.
| |
Collapse
|
19
|
Morscheid YP, Venkatesan JK, Schmitt G, Orth P, Zurakowski D, Speicher-Mentges S, Menger MD, Laschke MW, Cucchiarini M, Madry H. rAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model Over Time In Vivo. Am J Sports Med 2021; 49:958-969. [PMID: 33606561 DOI: 10.1177/0363546521988941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral defects, if left untreated, do not heal and can potentially progress toward osteoarthritis. Direct gene transfer of basic fibroblast growth factor 2 (FGF-2) with the clinically adapted recombinant adeno-associated viral (rAAV) vectors is a powerful tool to durably activate osteochondral repair processes. PURPOSE To examine the ability of an rAAV-FGF-2 construct to target the healing processes of focal osteochondral injury over time in a large translational model in vivo versus a control gene transfer condition. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with an rAAV human FGF-2 (hFGF-2) vector by direct administration into the defect relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair was monitored using macroscopic, histological, immunohistological, and biochemical methods and by micro-computed tomography after 6 months. RESULTS Effective, localized prolonged FGF-2 overexpression was achieved for 6 months in vivo relative to the control condition without undesirable leakage of the vectors outside the defects. Such rAAV-mediated hFGF-2 overexpression significantly increased the individual histological parameter "percentage of new subchondral bone" versus lacZ treatment, reflected in a volume of mineralized bone per unit volume of the subchondral bone plate that was equal to a normal osteochondral unit. Also, rAAV-FGF-2 significantly improved the individual histological parameters "defect filling,""matrix staining," and "cellular morphology" and the overall cartilage repair score versus the lacZ treatment and led to significantly higher cell densities and significantly higher type II collagen deposition versus lacZ treatment. Likewise, rAAV-FGF-2 significantly decreased type I collagen expression within the cartilaginous repair tissue. CONCLUSION The current work shows the potential of direct rAAV-mediated FGF-2 gene therapy to enhance osteochondral repair in a large, clinically relevant animal model over time in vivo. CLINICAL RELEVANCE Delivery of therapeutic (hFGF-2) rAAV vectors in sites of focal injury may offer novel, convenient tools to enhance osteochondral repair in the near future.
Collapse
Affiliation(s)
- Yannik P Morscheid
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
20
|
Jiang S, Tian G, Yang Z, Gao X, Wang F, Li J, Tian Z, Huang B, Wei F, Sang X, Shao L, Zhou J, Wang Z, Liu S, Sui X, Guo Q, Guo W, Li X. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater 2021; 6:2711-2728. [PMID: 33665503 PMCID: PMC7895679 DOI: 10.1016/j.bioactmat.2021.01.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defect repair is a problem that has long plagued clinicians. Although mesenchymal stem cells (MSCs) have the potential to regenerate articular cartilage, they also have many limitations. Recent studies have found that MSC-derived exosomes (MSC-Exos) play an important role in tissue regeneration. The purpose of this study was to verify whether MSC-Exos can enhance the reparative effect of the acellular cartilage extracellular matrix (ACECM) scaffold and to explore the underlying mechanism. The results of in vitro experiments show that human umbilical cord Wharton's jelly MSC-Exos (hWJMSC-Exos) can promote the migration and proliferation of bone marrow-derived MSCs (BMSCs) and the proliferation of chondrocytes. We also found that hWJMSC-Exos can promote the polarization of macrophages toward the M2 phenotype. The results of a rabbit knee osteochondral defect repair model confirmed that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. We demonstrated that hWJMSC-Exos can regulate the microenvironment of the articular cavity using a rat knee joint osteochondral defect model. This effect was mainly manifested in promoting the polarization of macrophages toward the M2 phenotype and inhibiting the inflammatory response, which may be a promoting factor for osteochondral regeneration. In addition, microRNA (miRNA) sequencing confirmed that hWJMSC-Exos contain many miRNAs that can promote the regeneration of hyaline cartilage. We further clarified the role of hWJMSC-Exos in osteochondral regeneration through target gene prediction and pathway enrichment analysis. In summary, this study confirms that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. hWJMSC-Exos can promote cell proliferation, migration and polarization in vitro. hWJMSC-Exos can enhance the repair effect of ACECM scaffold in vivo. hWJMSC-Exos can inhibit inflammation in the joint cavity. hWJMSC-Exos contain a variety of miRNAs that promote osteochondral regeneration.
Collapse
Affiliation(s)
- Shuangpeng Jiang
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Gao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Fuxin Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhuang Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Bo Huang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fu Wei
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinyu Sang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Liuqi Shao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jian Zhou
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhenyong Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weimin Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
21
|
Wu Y, Kennedy P, Bonazza N, Yu Y, Dhawan A, Ozbolat I. Three-Dimensional Bioprinting of Articular Cartilage: A Systematic Review. Cartilage 2021; 12:76-92. [PMID: 30373384 PMCID: PMC7755962 DOI: 10.1177/1947603518809410] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Treatment of chondral injury is clinically challenging. Available chondral repair/regeneration techniques have significant shortcomings. A viable and durable tissue engineering strategy for articular cartilage repair remains an unmet need. Our objective was to systematically evaluate the published data on bioprinted articular cartilage with regards to scaffold-based, scaffold-free and in situ cartilage bioprinting. DESIGN We performed a systematic review of studies using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed and ScienceDirect databases were searched and all articles evaluating the use of 3-dimensional (3D) bioprinting in articular cartilage were included. Inclusion criteria included studies written in or translated to English, published in a peer-reviewed journal, and specifically discussing bioinks and/or bioprinting of living cells related to articular cartilage applications. Review papers, articles in a foreign language, and studies not involving bioprinting of living cells related to articular cartilage applications were excluded. RESULTS Twenty-seven studies for articular cartilage bioprinting were identified that met inclusion and exclusion criteria. The technologies, materials, cell types used in these studies, and the biological and physical properties of the created constructs have been demonstrated. CONCLUSION These 27 studies have demonstrated 3D bioprinting of articular cartilage to be a tissue engineering strategy that has tremendous potential translational value. The unique abilities of the varied techniques allow replication of mechanical properties and advances toward zonal differentiation. This review demonstrates that bioprinting has great capacity for clinical cartilage reconstruction and future in vivo implantation.
Collapse
Affiliation(s)
- Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA,The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Patrick Kennedy
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Nicholas Bonazza
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yin Yu
- Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Aman Dhawan
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Ibrahim Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA,The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA,Biomedical Engineering Department, Penn State University, University Park, PA, USA,Materials Research Institute, Penn State University, University Park, PA, USA,Ibrahim Tarik Ozbolat, Penn State University, W313 Millennium Science Complex, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Groen WMGAC, Utomo L, Castilho M, Gawlitta D, Malda J, van Weeren PR, Levato R, Korthagen NM. Impact of Endotoxins in Gelatine Hydrogels on Chondrogenic Differentiation and Inflammatory Cytokine Secretion In Vitro. Int J Mol Sci 2020; 21:E8571. [PMID: 33202964 PMCID: PMC7696312 DOI: 10.3390/ijms21228571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Gelatine methacryloyl (GelMA) hydrogels are widely used in studies aimed at cartilage regeneration. However, the endotoxin content of commercially available GelMAs and gelatines used in these studies is often overlooked, even though endotoxins may influence several cellular functions. Moreover, regulations for clinical use of biomaterials dictate a stringent endotoxin limit. We determined the endotoxin level of five different GelMAs and evaluated the effect on the chondrogenic differentiation of equine mesenchymal stromal cells (MSCs). Cartilage-like matrix production was evaluated by biochemical assays and immunohistochemistry. Furthermore, equine peripheral blood mononuclear cells (PBMCs) were cultured on the hydrogels for 24 h, followed by the assessment of tumour necrosis factor (TNF)-α and C-C motif chemokine ligand (CCL)2 as inflammatory markers. The GelMAs were found to have widely varying endotoxin content (two with >1000 EU/mL and three with <10 EU/mL), however, this was not a critical factor determining in vitro cartilage-like matrix production of embedded MSCs. PBMCs did produce significantly higher TNF-α and CCL2 in response to the GelMA with the highest endotoxin level compared to the other GelMAs. Although limited effects on chondrogenic differentiation were found in this study, caution with the use of commercial hydrogels is warranted in the translation from in vitro to in vivo studies because of regulatory constraints and potential inflammatory effects of the content of these hydrogels.
Collapse
Affiliation(s)
- Wilhelmina M. G. A. C. Groen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Lizette Utomo
- Department of Oral and Maxillofacial Surgery and Special Dental Care, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (L.U.); (D.G.)
| | - Miguel Castilho
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; (L.U.); (D.G.)
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.M.); (R.L.); (N.M.K.)
- Department of Orthopaedics, Regenerative Medicine Center, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| |
Collapse
|
23
|
Ma K, Zhu B, Wang Z, Cai P, He M, Ye D, Yan G, Zheng L, Yang L, Zhao J. Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J Nanobiotechnology 2020; 18:163. [PMID: 33167997 PMCID: PMC7653755 DOI: 10.1186/s12951-020-00708-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/09/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Umbilical cord mesenchymal stem cell (HUCMSC)-based therapies were previously utilised for cartilage regeneration because of the chondrogenic potential of MSCs. However, chondrogenic differentiation of HUCMSCs is limited by the administration of growth factors like TGF-β that may cause cartilage hypertrophy. It has been reported that extracellular vesicles (EVs) could modulate the phenotypic expression of stem cells. However, the role of human chondrogenic-derived EVs (C-EVs) in chondrogenic differentiation of HUCMSCs has not been reported. RESULTS We successfully isolated C-EVs from human multi-finger cartilage and found that C-EVs efficiently promoted the proliferation and chondrogenic differentiation of HUCMSCs, evidenced by highly expressed aggrecan (ACAN), COL2A, and SOX-9. Moreover, the expression of the fibrotic marker COL1A and hypertrophic marker COL10 was significantly lower than that induced by TGF-β. In vivo, C-EVs induced HUCMSCs accelerated the repair of the rabbit model of knee cartilage defect. Furthermore, C-EVs led to an increase in autophagosomes during the process of chondrogenic differentiation, indicating that C-EVs promote cartilage regeneration through the activation of autophagy. CONCLUSIONS C-EVs play an essential role in fostering chondrogenic differentiation and proliferation of HUCMSCs, which may be beneficial for articular cartilage repair.
Collapse
Affiliation(s)
- Ke Ma
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zetao Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Peian Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingwei He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danyan Ye
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Research Centre for Translational Medicine, Shantou University Medical College, Shantou, China
| | - Guohua Yan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lujun Yang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Research Centre for Translational Medicine, Shantou University Medical College, Shantou, China
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Guo JL, Kim YS, Orchard EA, van den Beucken JJ, Jansen JA, Wong ME, Mikos AG. A Rabbit Femoral Condyle Defect Model for Assessment of Osteochondral Tissue Regeneration. Tissue Eng Part C Methods 2020; 26:554-564. [PMID: 33050806 PMCID: PMC7698983 DOI: 10.1089/ten.tec.2020.0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Osteochondral tissue repair represents a common clinical need, with multiple approaches in tissue engineering and regenerative medicine being investigated for the repair of defects of articular cartilage and subchondral bone. A full thickness rabbit femoral condyle defect is a clinically relevant model of an articulating and load bearing joint surface for the investigation of osteochondral tissue repair by various cell-, biomolecule-, and biomaterial-based implants. In this protocol, we describe the methodology and 1.5- to 2-h surgical procedure for the generation of a reproducible, full thickness defect for construct implantation in the rabbit medial femoral condyle. Furthermore, we describe a step-by-step procedure for osteochondral tissue collection and the assessment of tissue formation using standardized histological, radiological, mechanical, and biochemical analytical techniques. This protocol illustrates the critical steps for reproducibility and minimally invasive surgery as well as applications to evaluate the efficacy of cartilage and bone tissue engineering implants, with emphasis on the usage of histological and radiological measures of tissue growth. Impact statement Although multiple surgical techniques have been developed for the treatment of osteochondral defects, repairing the tissues to their original state remains an unmet need. Such limitations have thus prompted the development of various constructs for osteochondral tissue regeneration. An in vivo model that is both clinically relevant and economically practical is necessary to evaluate the efficacy of different tissue engineered constructs. In this article, we present a full thickness rabbit femoral condyle defect model and describe the analytical techniques to assess the regeneration of osteochondral tissue.
Collapse
Affiliation(s)
- Jason L. Guo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Mark E. Wong
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
25
|
Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering. Int J Nanomedicine 2020; 15:6097-6111. [PMID: 32884266 PMCID: PMC7434569 DOI: 10.2147/ijn.s249829] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023] Open
Abstract
The development of biomaterials, stem cells and bioactive factors has led to cartilage tissue engineering becoming a promising tactic to repair cartilage defects. Various polymer three-dimensional scaffolds that provide an extracellular matrix (ECM) mimicking environment play an important role in promoting cartilage regeneration. In addition, numerous growth factors have been found in the regenerative process. However, it has been elucidated that the uncontrolled delivery of these factors cannot fully exert regenerative potential and can also elicit undesired side effects. Considering the complexity of the ECM, neither scaffolds nor growth factors can independently obtain successful outcomes in cartilage tissue engineering. Therefore, collectively, an appropriate combination of growth factors and scaffolds have great potential to promote cartilage repair effectively; this approach has become an area of considerable interest in recent investigations. Of late, an increasing trend was observed in cartilage tissue engineering towards this combination to develop a controlled delivery system that provides adequate physical support for neo-cartilage formation and also enables spatiotemporally delivery of growth factors to precisely and fully exert their chondrogenic potential. This review will discuss the role of polymer scaffolds and various growth factors involved in cartilage tissue engineering. Several growth factor delivery strategies based on the polymer scaffolds will also be discussed, with examples from recent studies highlighting the importance of spatiotemporal strategies for the controlled delivery of single or multiple growth factors in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiaxin Liu
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Guan
- School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tongqing Zhou
- School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xin Duan
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhou Xiang
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
26
|
Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release 2020; 327:284-295. [PMID: 32763434 DOI: 10.1016/j.jconrel.2020.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022]
Abstract
Exogenous dual delivery of progenitor cell population and therapeutic growth factors (GFs) is one of alternative tissue engineering strategies for osteochondral tissue regeneration. In the present study, an implantable dual delivery platform was developed using coacervates (Coa) (i.e., a tertiary complex of poly(ethylene argininylaspartate diglyceride) (PEAD) polycation, heparin, and cargo insulin-like growth factor-1 (IGF-1), in thiolated gelatin (gelatin-SH)/ poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels. Since Coa is able to protect cargo GF and maintain its long-term bioactivity, it is speculated that Coa-mediated delivery of chondrogenic factor IGF-1 with the aid of adipose-derived stem cells (ADSCs) would synergistically facilitate osteochondral tissue repair during physiological regeneration process. Our results indicate that gelatin-SH/PEGDA IPN hydrogels demonstrated biocompatibility and mechanical properties for a possible long-term transplantation, and PEAD-base Coa exhibited a sustained release of bioactive IGF-1 over 3 weeks. Subsequently, released IGF-1 from Coa could effectively induce chondrogenic differentiation of embedded ADSCs in the hydrogel, by showing enhanced glycosaminoglycan deposition and expression of chondrogenesis-associated genes. More importantly, at 12 weeks post-implantation in a rabbit full thickness osteochondral defect model, the quality of regenerative tissues in both chondral and subchondral layers was significantly improved in dual delivery of ADSC and IGF-1 in Coa encapsulated in gelatin-SH/PEGDA IPN hydrogels, as compared with a single delivery of ADSC only and a dual delivery without Coa. Therefore, we conclude that our Coa-embedded composite hydrogel platform could effectively augment osteochondral tissue regeneration holds promise for a feasible osteoarthritis therapeutic application.
Collapse
|
27
|
Zhang J, Zhang X, Hong Y, Fu Q, He Q, Mechakra A, Zhu Q, Zhou F, Liang R, Li C, Hu Y, Zou Y, Zhang S, Ouyang H. Tissue-Adhesive Paint of Silk Microparticles for Articular Surface Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22467-22478. [PMID: 32394696 DOI: 10.1021/acsami.0c01776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current biomaterials and tissue engineering techniques have shown a promising efficacy on full-thickness articular cartilage defect repair in clinical practice. However, due to the difficulty of implanting biomaterials or tissue engineering constructs into a partial-thickness cartilage defect, it remains a challenge to provide a satisfactory cure in joint surface regeneration in the early and middle stages of osteoarthritis. In this study, we focused on a ready-to-use tissue-adhesive joint surface paint (JS-Paint) capable of promoting and enhancing articular surface cartilage regeneration. The JS-Paint is mainly composed of N-(2-aminoethyl)-4-(4-(hydroxymethyl)-2-methoxy-5-nitrosophenoxy) butanamide (NB)-coated silk fibroin microparticles and possess optimal cell adhesion, migration, and proliferation properties. NB-modified silk fibroin microparticles can directly adhere to the cartilage and form a smooth layer on the surface via the photogenerated aldehyde group of NB reacting with the -NH2 groups of the cartilage tissue. JS-Paint treatment showed a significant promotion of cartilage regeneration and restored the smooth joint surface at 6 weeks postsurgery in a rabbit model of a partial-thickness cartilage defect. These findings revealed that silk fibroin can be utilized to bring about a tissue-adhesive paint. Thus, the JS-Paint strategy has some great potential to enhance joint surface regeneration and revolutionize future therapeutics of early and middle stages of osteoarthritis joint ailments.
Collapse
Affiliation(s)
- Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianbao Fu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Asma Mechakra
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuwen Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feifei Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yejun Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiwei Zou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - HongWei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
28
|
Chen J, Chin A, Almarza AJ, Taboas JM. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues. ACTA ACUST UNITED AC 2020; 15:045006. [PMID: 31470441 DOI: 10.1088/1748-605x/ab401f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ideal combination of hydrogel components for regeneration of cartilage and cartilaginous interfaces is a significant challenge because control over differentiation into multiple lineages is necessary. Stabilization of the phenotype of stem cell derived chondrocytes is needed to avoid undesired progression to terminal hypertrophy and tissue mineralization. A novel ternary blend hydrogel composed of methacrylated poly(ethylene glycol) (PEG), gelatin, and heparin (PGH) was designed to guide chondrogenesis by bone marrow derived mesenchymal stem cells (BMSCs) and maintenance of their cartilaginous phenotype. The hydrogel material effects on chondrogenic and osteogenic differentiation by BMSCs were evaluated in comparison to methacrylated gelatin hydrogel (GEL), a conventional bioink used for both chondrogenic and osteogenic applications. PGH and GEL hydrogels were loaded with goat BMSCs and cultured in chondrogenic and osteogenic mediums in vitro over six weeks. The PGH showed no sign of mineral deposition in an osteogenic environment in vitro. To further evaluate material effects, the hydrogels were loaded with adult human BMSCs (hBMSCs) and transforming growth factor β-3 and grown in subcutaneous pockets in mice over eight weeks. Consistent with the in vitro results, the PGH had greater potential to induce chondrogenesis by BMSCs in vivo compared to the GEL as evidenced by elevated gene expression of chondrogenic markers, supporting its potential for stable cartilage engineering. The PGH also showed a greater percentage of GAG positive cells compared to the GEL. Unlike the GEL, the PGH hydrogel exhibited anti-osteogenic effects in vivo as evidenced by negative Von Kossa staining and suppressed gene expression of hypertrophic and osteogenic markers. By nature of their polymer composition alone, the PGH and GEL regulated BMSC differentiation down different osteochondral lineages. Thus, the PGH and GEL are promising hydrogels to regenerate stratified cartilaginous interfacial tissues in situ, such as the mandibular condyle surface, using undifferentiated BMSCs and a stratified scaffold design.
Collapse
Affiliation(s)
- Jingming Chen
- Department of Bioengineering; University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Center for Craniofacial Regeneration; University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | | | | | | |
Collapse
|
29
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Xu B, Ye J, Yuan FZ, Zhang JY, Chen YR, Fan BS, Jiang D, Jiang WB, Wang X, Yu JK. Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Front Bioeng Biotechnol 2020; 8:247. [PMID: 32296692 PMCID: PMC7136426 DOI: 10.3389/fbioe.2020.00247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Osteochondral damage from trauma or osteoarthritis is a general joint disease that can lead to an increased social and economic burden in the modern society. The inefficiency of osteochondral defects is mainly due to the absence of suitable tissue-engineered substrates promoting tissue regeneration and replacing damaged areas. The hydrogels are becoming a promising kind of biomaterials for tissue regeneration. The biomimetic hydrogel microenvironment can be tightly controlled by modulating a number of biophysical and biochemical properties, including matrix mechanics, degradation, microstructure, cell adhesion, and intercellular interactions. In particular, advances in stem cell-laden hydrogels have offered new ideas for the cell therapy and osteochondral repair. Herein, the aim of this review is to underpin the importance of stem cell-laden hydrogels on promoting the development of osteochondral regeneration, especially in the field of manipulation of biomimetic microenvironment and utilization growth factors with various delivery methods.
Collapse
Affiliation(s)
- Bingbing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Wen-Bo Jiang
- Clinical Translational R&D Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Mahmoud EE, Adachi N, Mawas AS, Gaarour OS, Ochi M. Coculturing of mesenchymal stem cells of different sources improved regenerative capability of osteochondral defect in the mature rabbit: An in vivo study. J Orthop Surg (Hong Kong) 2020; 27:2309499019839850. [PMID: 30955439 DOI: 10.1177/2309499019839850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Choosing a therapeutic cell source for osteochondral repair remains a challenge. The present study investigated coculturing mesenchymal stem cells (MSCs) from different sources to provide an improved therapeutic cell option for osteochondral repair. METHODS Dutch and Japanese white rabbits were used in this study, the first for isolating MSCs and the second for creating an osteochondral model in the medial femoral condyle. The 26 rabbit knees were divided randomly into four groups: control ( n = 6), bone marrow-derived MSCs (BMSCs) ( n = 7), synovial tissue MSCs (SMSCs) ( n = 7), and cocultured MSCs ( n = 6). Tissue repair was assessed using the Fortier scale, and colony-forming assay was performed. RESULTS At different cell densities, cocultured and SMSCs formed larger colonies than BMSCs, indicating their high proliferative potential. After 2 months, complete filling of the defect with smooth surface regularity was detected in the cocultured MSC group, although there was no significant difference among the therapeutic groups macroscopically. Also, tissue repair was histologically better in the cocultured MSC group than in the control and SMSC groups, due to repair of the subchondral bone and coverage with hyaline cartilage. Additionally, toluidine blue and collagen-II staining intensity in the repaired tissue was better in the cocultured MSC group than in the remaining groups. CONCLUSION Our results suggest that cocultured MSCs are a suitable option for the regeneration capability of osteochondral defects due to their enhanced osteochondrogenic potential.
Collapse
Affiliation(s)
| | - Nobuo Adachi
- 2 Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Amany Sayed Mawas
- 3 Department of Pathology & Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Osama Samir Gaarour
- 4 Department of orthopaedic Surgery, Faculty of Medicine, Mansoura University, Egypt
| | - Mitsuo Ochi
- 2 Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
32
|
Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Kumar GS, Sharma GT. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regen Med 2020; 15:1261-1275. [PMID: 32154762 DOI: 10.2217/rme-2018-0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: An attempt was made to improve osteochondral healing with allogeneic mesenchymal stem cells (MSCs) along with certain growth factors. Materials & methods: Induced knee osteochondral defects were filled as: phosphate buffer saline (group A); MSCs in collagen gel (group B); group B plus insulin like growth factor-1 (group C); group C plus transforming growth factor β-1 (group D). Results: Gross and scanning electron microscopy showed superior morphology and surface architecture of the healed tissue in groups D and C. Histologically, group D revealed hyaline cartilage characteristic features followed in order by group C and group B. In all treatment groups, chondrogenic matrix, collagen II2B (col II 2B) and aggrecan were secreted. Conclusion: Combined use of MSCs and growth factors could accelerate osteochondral healing.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute (IVRI), Izzatnagar, India.,Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Shuhama, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Radiology & Anesthesiology Department, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia, Zagazig, Egypt
| | - Hari Prasad Aithal
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Prakash Kinjavdekar
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Gutulla Sai Kumar
- Division of Pathology, Indian Veterinary Research Institute, Izzatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Izzatnagar, India
| |
Collapse
|
33
|
Cai H, Wang P, Xu Y, Yao Y, Liu J, Li T, Sun Y, Liang J, Fan Y, Zhang X. BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage. Regen Biomater 2020; 7:35-45. [PMID: 32153990 PMCID: PMC7053261 DOI: 10.1093/rb/rbz028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/20/2019] [Accepted: 08/10/2019] [Indexed: 12/27/2022] Open
Abstract
The self-healing capacity of cartilage was limited due to absence of vascular, nervous and lymphatic systems. Although many clinical treatments have been used in cartilage defect repair and shown a promising repair result in short term, however, regeneration of complete zonal structure with physiological function, reconstruction cartilage homeostasis and maintaining long-term repair was still an unbridgeable chasm. Cartilage has complex zonal structure and multiple physiological functions, especially, superficial and calcified cartilage played an important role in keeping homeostasis. To address this hurdle of regenerating superficial and calcified cartilage, injectable tissue-induced type I collagen (Col I) hydrogel-encapsulated BMSCs was chosen to repair cartilage damage. After 1 month implantation, the results demonstrated that Col I gel was able to induce BMSCs differentiation into chondrocytes, and formed hyaline-like cartilage and the superficial layer with lubrication function. After 3 months post-surgery, chondrocytes at the bottom of the cartilage layer would undergo hypertrophy and promote the regeneration of calcified cartilage. Six months later, a continuous anatomical tidemark and complete calcified interface were restored. The regeneration of neo-hyaline cartilage was similar with adjacent normal tissue on the thickness of the cartilage, matrix secretion, collagen type and arrangement. Complete multilayer zonal structure with physiological function remodeling indicated that BMSCs-assisted injectable Col I hydrogel could reconstruct cartilage homeostasis and maintain long-term therapeutic effect.
Collapse
Affiliation(s)
- Hanxu Cai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Ya Yao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jia Liu
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 20 Renmin South Road, Chengdu 610041, P. R. China
| | - Tao Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 20 Renmin South Road, Chengdu 610041, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
34
|
Setayeshmehr M, Esfandiari E, Rafieinia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A, Kaplan DL, Moroni L, Joghataei MT. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:202-224. [PMID: 30648478 DOI: 10.1089/ten.teb.2018.0245] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPACT STATEMENT Scaffolds fabricated from extracellular matrix (ECM) derivatives are composed of conducive structures for cell attachment, proliferation, and differentiation, but generally do not have proper mechanical properties and load-bearing capacity. In contrast, scaffolds based on synthetic biomaterials demonstrate appropriate mechanical strength, but the absence of desirable biological properties is one of their main disadvantages. To integrate mechanical strength and biological cues, these ECM derivatives can be conjugated with synthetic biomaterials. Hence, hybrid scaffolds comprising both advantages of synthetic polymers and ECM derivatives can be considered a robust vehicle for tissue engineering applications.
Collapse
Affiliation(s)
- Mohsen Setayeshmehr
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Ebrahim Esfandiari
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafieinia
- 2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Taheri-Kafrani
- 5 Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Samadikuchaksaraei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - David L Kaplan
- 7 Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lorenzo Moroni
- 3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands.,8 CNR Nanotec-Institute of Nanotechnology, c/o Campus Ecotekne, Università del Salento, Lecce, Italy
| | - Mohammad T Joghataei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
35
|
Zheng P, Hu X, Lou Y, Tang K. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Med Sci Monit 2019; 25:7361-7369. [PMID: 31570688 PMCID: PMC6784681 DOI: 10.12659/msm.915441] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/01/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aimed to investigate a rabbit model of osteochondral regeneration using three-dimensional (3-D) printed polycaprolactone-hydroxyapatite (PCL-HA) scaffolds coated with umbilical cord blood mesenchymal stem cells (UCB-MSCs) and chondrocytes. MATERIAL AND METHODS Nine female New Zealand white rabbits were included in the study. The 3-D PCL-HA scaffolds were prepared using fused deposition modeling 3-D printing technology. Seeding cells were prepared by co-culture of rabbit UCB-MSCs and chondrocytes with a ratio of 3: 1. A total of 4×10⁶ cells were seeded on 3-D PCL-HA scaffolds and implanted into rabbits with femoral trochlear defects. After 8 weeks of in vivo implantation, 12 specimens were sampled and examined using histology and scanning electron microscopy (SEM). The International Cartilage Repair Society (ICRS) macroscopic scores and histological results were recorded and compared with those of the unseeded PCL-HA scaffolds. RESULTS Mean ICRS scores for the UCB-MSCs and chondrocyte-seeded PCL-HA scaffolds (group A) were significantly higher than the normal unseeded control (NC) PCL-HA scaffold group (group B) (P<0.05). Histology with safranin-O and fast-green staining showed that the UCB chondrocyte-seeded PCL-HA scaffolds significantly promoted bone and cartilage regeneration. CONCLUSIONS In a rabbit model of osteochondral regeneration using 3-D printed PCL-HA scaffolds, the UCB chondrocyte-seeded PCL-HA scaffold promoted articular cartilage repair when compared with the control or non-seeded PCL-HA scaffolds.
Collapse
|
36
|
Schafrum Macedo A, Cezaretti Feitosa C, Yoiti Kitamura Kawamoto F, Vinicius Tertuliano Marinho P, dos Santos Dal‐Bó Í, Fiuza Monteiro B, Prado L, Bregadioli T, Antonio Covino Diamante G, Ricardo Auada Ferrigno C. Animal modeling in bone research-Should we follow the White Rabbit? Animal Model Exp Med 2019; 2:162-168. [PMID: 31773091 PMCID: PMC6762042 DOI: 10.1002/ame2.12083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/30/2023] Open
Abstract
Animal models are live subjects applied to translational research. They provide insights into human diseases and enhance biomedical knowledge. Livestock production has favored the pace of human social development over millennia. Today's society is more aware of animal welfare than past generations. The general public has marked objections to animal research and many species are falling into disuse. The search for an ideal methodology to replace animal use is on, but animal modeling still holds great importance to human health. Bone research, in particular, has unmet requirements that in vitro technologies cannot yet fully address. In that sense, standardizing novel models remains necessary and rabbits are gaining in popularity as potential bone models. Our aim here is to provide a broad overview of animal modeling and its ethical implications, followed by a narrower focus on bone research and the role rabbits are playing in the current scenario.
Collapse
Affiliation(s)
- Aline Schafrum Macedo
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Caroline Cezaretti Feitosa
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Fernando Yoiti Kitamura Kawamoto
- Department of Veterinary SurgerySchool of Agricultural and Veterinarian SciencesSão Paulo State UniversityUNESPJaboticabalSPBrazil
| | - Paulo Vinicius Tertuliano Marinho
- Department of Veterinary SurgeryFederal Institute of Education, Science, and Technology of Southern Minas GeraisIFSULDEMINASMuzambinhoMGBrazil
| | - Ísis dos Santos Dal‐Bó
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Bianca Fiuza Monteiro
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Leonardo Prado
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Thales Bregadioli
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Gabriel Antonio Covino Diamante
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| | - Cassio Ricardo Auada Ferrigno
- Department of Veterinary SurgerySchool of Veterinary Medicine and Animal SciencesUniversity of São Paulo, USPSão PauloSPBrazil
| |
Collapse
|
37
|
Lin H, Beck AM, Shimomura K, Sohn J, Fritch MR, Deng Y, Kilroy EJ, Tang Y, Alexander PG, Tuan RS. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. J Tissue Eng Regen Med 2019; 13:1418-1429. [PMID: 31066519 PMCID: PMC6739828 DOI: 10.1002/term.2883] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
Abstract
There is no therapy currently available for fully repairing articular cartilage lesions. Our laboratory has recently developed a visible light-activatable methacrylated gelatin (mGL) hydrogel, with the potential for cartilage regeneration. In this study, we further optimized mGL scaffolds by supplementing methacrylated hyaluronic acid (mHA), which has been shown to stimulate chondrogenesis via activation of critical cellular signalling pathways. We hypothesized that the introduction of an optimal ratio of mHA would enhance the biological properties of mGL scaffolds and augment chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs). To test this hypothesis, hybrid scaffolds consisting of mGL and mHA at different weight ratios were fabricated with hBMSCs encapsulated at 20 × 106 cells/ml and maintained in a chondrogenesis-promoting medium. The chondrogenenic differentiation of hBMSCs, within different scaffolds, was estimated after 8 weeks of culture. Our results showed that mGL/mHA at a 9:1 (%, w/v) ratio resulted in the lowest hBMSC hypertrophy and highest glycosaminoglycan production, with a slightly increased volume of the entire construct. The applicability of this optimally designed mGL/mHA hybrid scaffold for cartilage repair was then examined in vivo. A full-thickness cylindrical osteochondral defect was surgically created in the rabbit femoral condyle, and a three-dimensional cell-biomaterial construct was fabricated by in situ photocrosslinking to fully fill the lesion site. The results showed that implantation of the mGL/mHA (9:1) construct resulted in both cartilage and subchondral bone regeneration after 12 weeks, supporting its use as a promising scaffold for repair and resurfacing of articular cartilage defects, in the clinical setting.
Collapse
Affiliation(s)
- Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, Pennsylvania
| | - Angela M. Beck
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kazunori Shimomura
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Madalyn R. Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuhao Deng
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Evan J. Kilroy
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Tang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Zhang J, Zhang D, Wu C, Liu A, Zhang C, Jiao J, Shang M. Icariin-conditioned serum engineered with hyaluronic acid promote repair of articular cartilage defects in rabbit knees. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:155. [PMID: 31269947 PMCID: PMC6610878 DOI: 10.1186/s12906-019-2570-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/19/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Osteochondral defects mostly occur as a result of trauma or articular degeneration. The poor regenerative ability of articular cartilage remains osteochondral defects are a tricky problem to deal with. The modern treatment strategies mainly focus on cartilage tissue engineering with bioactive materials. In this study, we aimed to develop icariin conditioned serum (ICS) together with hyaluronic acid (HA) and determine their ability in reparing osteochondral tissue in a critical-sized defect in rabbit knees. METHODS Primary chondrocytes were incubated with serum conditioned with icariin at different concentrations, then cell proliferation rates and glycosaminoglycan (GAG) secretion were detected. Rabbits were treated with intra-articular injection of 0.5 mL normal saline (NS), ICS, HA and ICS + HA in the right knee joint, respectively. ICRS scores were used to assess the macroscopic cartilage regeneration. Histological and immunohistochemical analysis including H&E, Safranin O, toluidine blue and collagen II staining were used to determine the repair of cartilage and the regeneration of chondrocytes. RESULTS Icariin at a low dose of 0.94 g/kg was identified to have significantly promoted the proliferation of chondrocytes and enhance the secretion of GAG. Femoral condyle from rabbits treated by ICS together with HA was observed to be integrated with native cartilage and more subchondral bone regeneration. ICS together with HA could promote repair of the cartilage defect and increase the neoformation of cartilage. CONCLUSIONS These results demonstrated the potential of ICS combined with HA to promote reparative response in cartilage defects and the possible application in bioactive material based cartilage regeneration therapies.
Collapse
Affiliation(s)
- Juntao Zhang
- Department of orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Donglin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaochao Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aifeng Liu
- Department of orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zhang
- Department of orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianjie Jiao
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22# Qixiangtai Road, Heping District, Tianjin, China
| | - Man Shang
- Department of pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22# Qixiangtai Road, Heping District, Tianjin, China
| |
Collapse
|
39
|
Cipriani F, Ariño Palao B, Gonzalez de Torre I, Vega Castrillo A, Aguado Hernández HJ, Alonso Rodrigo M, Àlvarez Barcia AJ, Sanchez A, García Diaz V, Lopez Peña M, Rodriguez-Cabello JC. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair. Regen Biomater 2019; 6:335-347. [PMID: 31827887 PMCID: PMC6897338 DOI: 10.1093/rb/rbz023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to evaluate injectable, in situ cross-linkable elastin-like recombinamers (ELRs) for osteochondral repair. Both the ELR-based hydrogel alone and the ELR-based hydrogel embedded with rabbit mesenchymal stromal cells (rMSCs) were tested for the regeneration of critical subchondral defects in 10 New Zealand rabbits. Thus, cylindrical osteochondral defects were filled with an aqueous solution of ELRs and the animals sacrificed at 4 months for histological and gross evaluation of features of biomaterial performance, including integration, cellular infiltration, surrounding matrix quality and the new matrix in the defects. Although both approaches helped cartilage regeneration, the results suggest that the specific composition of the rMSC-containing hydrogel permitted adequate bone regeneration, whereas the ELR-based hydrogel alone led to an excellent regeneration of hyaline cartilage. In conclusion, the ELR cross-linker solution can be easily delivered and forms a stable well-integrated hydrogel that supports infiltration and de novo matrix synthesis.
Collapse
Affiliation(s)
- Filippo Cipriani
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain
| | - Blanca Ariño Palao
- Departamento de traumatología, Hospital Clínico de Valladolid, Av. Ramón y Cajal 3, Valladolid 47003, Spain
| | - Israel Gonzalez de Torre
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| | - Aurelio Vega Castrillo
- Departamento de traumatología, Hospital Clínico de Valladolid, Av. Ramón y Cajal 3, Valladolid 47003, Spain
| | | | - Matilde Alonso Rodrigo
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| | - Angel José Àlvarez Barcia
- SIBA-UVA: servicio investigación y bienestar animal, University of Valladolid, C/Plaza de Santa Cruz 8, Valladolid 47002, Spain
| | - Ana Sanchez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Calle Sanz y Fores 3, Valladolid 47003, Spain
| | - Verónica García Diaz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Calle Sanz y Fores 3, Valladolid 47003, Spain
| | - Monica Lopez Peña
- Facultad de veterinaria, Campus Universitario, Avda. Carballo Calero s/n, Lugo 27002, Spain
| | - José Carlos Rodriguez-Cabello
- Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, Valladolid 47011, Spain.,Bioforge, University of Valladolid CIBER-BBN, Paseo de Belén 19, Valladolid 47011, Spain
| |
Collapse
|
40
|
Liu J, Jiang T, Li C, Wu Y, He M, Zhao J, Zheng L, Zhang X. Bioconjugated Carbon Dots for Delivery of siTnfα to Enhance Chondrogenesis of Mesenchymal Stem Cells by Suppression of Inflammation. Stem Cells Transl Med 2019; 8:724-736. [PMID: 30919586 PMCID: PMC6591550 DOI: 10.1002/sctm.18-0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
Although a promising strategy, the mesenchymal stem cell (MSC)‐based therapy of cartilage defects is sometimes accompanied with chronic inflammation during the remodeling status, which may hinder cartilage regeneration. During this process, the inflammatory cytokine tumor necrosis factor α (TNFα) plays an important role and may be a potential target. In this study, we investigated the effect of Tnfα RNA interference by introducing a functional and highly safe carbon dot (CD)‐SMCC nanovector synthesized by bioconjugation of CDs with a protein crosslinker, sulfosuccinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐1‐carboxylate (sulfo‐SMCC), as the vehicle of the silenced TNFα (siTnfα) on chondrogenesis of MSCs. The results showed that CD‐SMCC displayed intense fluorescence with well‐dispersed and positively charged properties, which favored effective binding and delivering of siTnfα into the MSCs. CD‐SMCC‐siTnfα nanoformula also exhibited considerably high transfection efficiency and nearly no cytotoxicity, which is preferred over commercial polyethyleneimine. Interference of Tnfα by CD‐SMCC‐siTnfα markedly promoted the chondrogenesis of MSCs, as indicated by upregulating cartilage‐specific markers. Furthermore, in vivo exploration indicated that CD‐SMCC‐siTnfα transfected MSCs accelerated cartilage regeneration. In conclusion, this study demonstrated that in combination with the novel CD‐SMCC nanovector, targeting Tnfα may facilitate stem cell‐based therapy of cartilage defects. stem cells translational medicine2019;8:724&736
Collapse
Affiliation(s)
- Jianwei Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Chun Li
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Yang Wu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Maolin He
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
41
|
Pascual-Garrido C, Aisenbrey EA, Rodriguez-Fontan F, Payne KA, Bryant SJ, Goodrich LR. Photopolymerizable Injectable Cartilage Mimetic Hydrogel for the Treatment of Focal Chondral Lesions: A Proof of Concept Study in a Rabbit Animal Model. Am J Sports Med 2019; 47:212-221. [PMID: 30481048 DOI: 10.1177/0363546518808012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In this study, we investigate the in vitro and in vivo chondrogenic capacity of a novel photopolymerizable cartilage mimetic hydrogel, enhanced with extracellular matrix analogs, for cartilage regeneration. PURPOSE To (1) determine whether mesenchymal stem cells (MSCs) embedded in a novel cartilage mimetic hydrogel support in vitro chondrogenesis, (2) demonstrate that the proposed hydrogel can be delivered in situ in a critical chondral defect in a rabbit model, and (3) determine whether the hydrogel with or without MSCs supports in vivo chondrogenesis in a critical chondral defect. STUDY DESIGN Controlled laboratory study. METHODS Rabbit bone marrow-derived MSCs were isolated, expanded, encapsulated in the hydrogel, and cultured in chondrogenic differentiation medium for 9 weeks. Compressive modulus was evaluated at day 1 and at weeks 3, 6, and 9. Chondrogenic differentiation was investigated via quantitative polymerase reaction, safranin-O staining, and immunofluorescence. In vivo, a 3 mm-wide × 2-mm-deep chondral defect was created bilaterally on the knee trochlea of 10 rabbits. Each animal had 1 defect randomly assigned to be treated with hydrogel with or without MSCs, and the contralateral knee was left untreated. Hence, each rabbit served as its own matched control. Three groups were established: group A, hydrogel (n = 5); group B, hydrogel with MSCs (n = 5); and group C, control (n = 10). Repair tissue was evaluated at 6 months after intervention. RESULTS In vitro, chondrogenesis and the degradable behavior of the hydrogel by MSCs were confirmed. In vivo, the hydrogel could be delivered intraoperatively in a sterile manner. Overall, the hydrogel group had the highest scores on the modified O'Driscoll scoring system (group A, 17.4 ± 4.7; group B, 13 ± 3; group C, 16.7 ± 2.9) ( P = .11) and showed higher safranin-O staining (group A, 49.4% ± 20%; group B, 25.8% ± 16.4%; group C, 36.9% ± 25.2%) ( P = .27), although significance was not detected for either parameter. CONCLUSION This study provides the first evidence of the ability to photopolymerize this novel hydrogel in situ and assess its ability to provide chondrogenic cues for cartilage repair in a small animal model. In vitro chondrogenesis was evident when MSCs were encapsulated in the hydrogel. CLINICAL RELEVANCE Cartilage mimetic hydrogel may offer a tissue engineering approach for the treatment of osteochondral lesions.
Collapse
Affiliation(s)
- Cecilia Pascual-Garrido
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A Aisenbrey
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Karin A Payne
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie J Bryant
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Laurie R Goodrich
- Department of Clinical Sciences and Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
42
|
Bittner SM, Guo JL, Mikos AG. Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2018; 12:e00032. [PMID: 31106279 PMCID: PMC6519969 DOI: 10.1016/j.bprint.2018.e00032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional printing (3DP) has enabled the fabrication of tissue engineering scaffolds that recapitulate the physical, architectural, and biochemical cues of native tissue matrix more effectively than ever before. One key component of biomimetic scaffold fabrication is the patterning of growth factors, whose spatial distribution and temporal release profile should ideally match that seen in native tissue development. Tissue engineers have made significant progress in improving the degree of spatiotemporal control over which growth factors are presented within 3DP scaffolds. However, significant limitations remain in terms in pattern resolution, the fabrication of true gradients, temporal control of growth factor release, the maintenance of growth factor distributions against diffusion, and more. This review summarizes several key areas for advancement of the field in terms of improving spatiotemporal control over growth factor presentation, and additionally highlights several major tissues of interest that have been targeted by 3DP growth factor patterning strategies.
Collapse
Affiliation(s)
- Sean M. Bittner
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Engineering Complex Tissues, United States
| | - Jason L. Guo
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Engineering Complex Tissues, United States
| |
Collapse
|
43
|
Francis SL, Di Bella C, Wallace GG, Choong PFM. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology-Barriers to Clinical Translation. Front Surg 2018; 5:70. [PMID: 30547034 PMCID: PMC6278684 DOI: 10.3389/fsurg.2018.00070] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023] Open
Abstract
There is no long-term treatment strategy for young and active patients with cartilage defects. Early and effective joint preserving treatments in these patients are crucial in preventing the development of osteoarthritis. Tissue engineering over the past few decades has presented hope in overcoming the issues involved with current treatment strategies. Novel advances in 3D bioprinting technology have promoted more focus on efficient delivery of engineered tissue constructs. There have been promising in-vitro studies and several animal studies looking at 3D bioprinting of engineered cartilage tissue. However, to date there are still no human clinical trials using 3D printed engineered cartilage tissue. This review begins with discussion surrounding the difficulties with articular cartilage repair and the limitations of current clinical management options which have led to research in cartilage tissue engineering. Next, the major barriers in each of the 4 components of cartilage tissue engineering; cells, scaffolds, chemical, and physical stimulation will be reviewed. Strategies that may overcome these barriers will be discussed. Finally, we will discuss the barriers surrounding intraoperative delivery of engineered tissue constructs and possible solutions.
Collapse
Affiliation(s)
- Sam L Francis
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| | - Claudia Di Bella
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| | - Gordon G Wallace
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia.,Australian Research Council, Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Peter F M Choong
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Shen C, Jiang T, Zhu B, Le Y, Liu J, Qin Z, Chen H, Zhong G, Zheng L, Zhao J, Zhang X. In vitro culture expansion impairs chondrogenic differentiation and the therapeutic effect of mesenchymal stem cells by regulating the unfolded protein response. J Biol Eng 2018; 12:26. [PMID: 30479659 PMCID: PMC6245887 DOI: 10.1186/s13036-018-0119-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
In vitro expansion of mesenchymal stem cells (MSCs) has been implicated in loss of multipotency, leading to impaired chondrogenic potential and an eventual therapeutic effect, as reported in our previous study. However, the precise regulatory mechanism is still unclear. Here, we demonstrate that endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were involved in transformation of MSCs induced by in vitro culture based on the comparative profiling of in vitro cultured bone marrow MSCs at passage 3 (P3 BMSCs) vs. fresh P0 BMSCs by microarray analysis. Indeed, RT-PCR and Western blot analysis showed significantly lower expression levels of three key UPR-related molecules, ATF4, ATF6 and XBP1, in P3 BMSCs than P0 BMSCs. Further, we found that UPR suppression by 4-phenylbutyrate (4-PBA) reduced the chondrogenic potential of P0 BMSCs and further cartilage regeneration. Conversely, UPR induction by tunicamycin (TM) enhanced the chondrogenic differentiation of P3 BMSCs and the therapeutic effect on cartilage repair. Thus, the decline in the chondrogenic potential of stem cells after in vitro culture and expansion may be due to changes in ER stress and the UPR pathway.
Collapse
Affiliation(s)
- Chong Shen
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China.,2Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongmeng Jiang
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China.,2Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Zhu
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China
| | - Yiguan Le
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China.,2Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianwei Liu
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China
| | - Zainen Qin
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China
| | - Haimin Chen
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China
| | - Gang Zhong
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China.,2Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Zheng
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China
| | - Jinmin Zhao
- 1Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021 China.,2Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,3Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Xingdong Zhang
- 4National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064 China
| |
Collapse
|
45
|
Roushangar Zineh B, shabgard MR, Roshangar L. An Experimental Study on the Mechanical and Biological Properties of Bio-Printed Alginate/Halloysite Nanotube/Methylcellulose/Russian Olive-Based Scaffolds. Adv Pharm Bull 2018; 8:643-655. [PMID: 30607337 PMCID: PMC6311641 DOI: 10.15171/apb.2018.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose: Cartilage shows neither repairs nor regenerative properties after trauma or gradual wear and causes severe pain due to bones rubbing. Bioprinting of tissue-engineered artificial cartilage is one of the most fast-growing sciences in this area that can help millions of people against this disease. Methods: Bioprinting of proper bioscaffolds for cartilage repair was the main goal of this study. The bioprinting process was achieved by a novel composition consisting of alginate (AL), Halloysite nanotube (HNT), and methylcellulose (MC) prepared in bio-ink. Also, the effect of Russian olive (RO) in chondrocytes growth on bioscaffolds was also investigated in this work. Compressive, hardness and viscosity tests, Energy-Dispersive X-Ray Spectroscopy (EDX), Fourier-Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), water-soluble Tetrazolium (WST) assay, and also transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were carried out. Results: The results show that in constant concentrations of AL, MC, and RO (20 mg/ml AL, 20 mg/ml MC, and 10 mg/ml RO) when concentration of HNT increased from 10 mg/ml (T-7) to 20 mg/ml (T-8) compressive stiffness increased from 241±45 kPa to 500.66±19.50 kPa. Also, 20 mg/ml of AL in composition saved proper water content for chondrocyte growth and produced good viscosity properties for a higher printing resolution. Conclusion: RO increased chondrocytes living cell efficiency by 11% on bioprinted scaffolds in comparison with the control group without RO. Results obtained through in-vivo studies were similar to those of in-vitro studies. According to the results, T-7 bio-ink has good potential in bioprinting of scaffolds in cartilage repairs.
Collapse
Affiliation(s)
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz Iran
| |
Collapse
|
46
|
Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:861-874. [PMID: 30450010 PMCID: PMC6233733 DOI: 10.1016/j.mattod.2018.02.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The field of tissue engineering has produced new therapies for the repair of damaged tissues and organs, utilizing biomimetic scaffolds that mirror the mechanical and biological properties of host tissue. The emergence of three-dimensional printing (3DP) technologies has enabled the fabrication of highly complex scaffolds which offer a more accurate replication of native tissue properties and architecture than previously possible. Of strong interest to tissue engineers is the construction of multilayered scaffolds that target distinct regions of complex tissues. Musculoskeletal and dental tissues in particular, such as the osteochondral unit and periodontal complex, are composed of multiple interfacing tissue types, and thus benefit from the usage of multilayered scaffold fabrication. Traditional 3DP technologies such as extrusion printing and selective laser sintering have been used for the construction of scaffolds with gradient architectures and mixed material compositions. Additionally, emerging bioprinting strategies have been used for the direct printing and spatial patterning of cells and chemical factors, capturing the complex organization found in the body. To better replicate the varied and gradated properties of larger tissues, researchers have created scaffolds composed of multiple materials spanning natural polymers, synthetic polymers, and ceramics. By utilizing high precision 3DP techniques and judicious material selection, scaffolds can thus be designed to address the regeneration of previously challenging musculoskeletal, dental, and other heterogeneous target tissues. These multilayered 3DP strategies show great promise in the future of tissue engineering.
Collapse
Affiliation(s)
- Sean M Bittner
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| | - Jason L Guo
- Department of Bioengineering, Rice University, Houston, TX
| | - Anthony Melchiorri
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| |
Collapse
|
47
|
Kim S, Kim J, Gajendiran M, Yoon M, Hwang MP, Wang Y, Kang BJ, Kim K. Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels. Biomacromolecules 2018; 19:4239-4249. [DOI: 10.1021/acs.biomac.8b01013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sungjun Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mani Gajendiran
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Minhyuk Yoon
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Mintai P. Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kyobum Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| |
Collapse
|
48
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
49
|
Abstract
The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.
Collapse
Affiliation(s)
- Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
50
|
Yang W, Cao Y, Zhang Z, Du F, Shi Y, Li X, Zhang Q. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect. Acta Biomater 2018; 69:170-182. [PMID: 29408545 DOI: 10.1016/j.actbio.2018.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/28/2017] [Accepted: 01/25/2018] [Indexed: 01/25/2023]
Abstract
It is reported that growth factor (GF) is able to enhance the repair of articular cartilage (AC) defect, however underlying mechanisms of which are not fully elucidated yet. Moreover, the strategy for delivering GF needs to be optimized. The crosstalk between AC and subchondral bone (SB) play important role in the homeostasis and integrity of AC, therefore SB targeted delivery of GF represents one promising way to facilitate the repair of AC defect. In this study, we firstly investigated the effects and mechanism of FGF2 on surrounding SB and cartilage of detect defects in rabbits by using a homogenous collagen-based membranes. It was found that FGF2 had a modulating effect on the defect-surrounding SB via upregulation of bone morphogenetic protein (BMP)-2, BMP4 and SOX9 at the early stage. Low dose FGF2 improved the repair upon directly injected to SB. Inhibition of BMP signaling pathway compromised the beneficial effects of FGF2, which indicated the pivotal roles of BMP in the process. To facilitate SB targeted FGF2 delivery, a double-layered inhomogeneous collagen membrane was prepared and it induced increase of BMP2 and BMP4 in the synovial fluid, and subsequent successful repair of AC defect. Taken together, this targeted delivery of FGF2 to SB provides a promising strategy for AC repair owing to the relatively clear mechanism, less amount of it, and short duration of delivery. STATEMENT OF SIGNIFICANCE Articular cartilage (AC) and subchondral bone (SB) form an integral functional unit. The homeostasis and integrity of AC depend on its crosstalk with the SB. However, the function of the SB in AC defect repair is not completely understood. The application of growth factors to promote the repair articular cartilage defect is a promising strategy, but still under the optimization. Our study demonstrate that SB plays important roles in the repair of AC defect. Particularly, SB is the effective target of fibroblast growth factor 2 (FGF2), and targeted delivery of FGF2 can modulate SB and thus significantly enhances the repair of AC defect. Therefore, targeted delivery of growth factor to SB is a novel promising strategy to improve the repair of AC defect.
Collapse
|