1
|
Guo W, Peng Z, Ning D, Wu Y, Mao Y, Wang E, Zhang M, Zhang Y, Zhang W, You H, Long Y, Guo F, Mai H. Chitosan microporous foam filled 3D printed polylactic acid-pearl macroporous scaffold: Dual-scale porous structure, biological and mechanical properties. Int J Biol Macromol 2025; 303:140508. [PMID: 39889981 DOI: 10.1016/j.ijbiomac.2025.140508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
A bone scaffold with well-designed porous structure and material composition is essential for bone regeneration as it supports various biological functions. In this study, a dual-scale porous polylactic acid-pearl/chitosan (PLA-P/CS) scaffold was developed by integrating 3D printing and conventional techniques. An interconnected macroporous PLA-P scaffold with pore sizes ranging from 680-800 μm was fabricated using FDM 3D printing. Additionally, a microporous CS foam with pore sizes of 10-200 μm was prepared via freeze-drying within the macropores of the 3D-printed scaffold. The microporous CS foam enhanced the scaffold's hydrophilicity while preserving its favorable mechanical properties. Moreover, the dual-scale porous structure demonstrated improved biomineralization, due to its larger specific surface area and increased nucleation sites, along with the electrostatic adsorption provided by the amino and hydroxyl functional groups of chitosan. Furthermore, cell culture experiments revealed the dual-scale porous structure, and the effects of CS enhanced the cellular response of BMSCs. More importantly, a 12-week in vivo study on rat skull defect repair demonstrated that the dual-scale porous PLA-P/CS scaffold exhibited enhanced bone formation. These findings suggest that designing a graded porous structure and optimizing material composition can effectively enhance biological responses, thereby facilitating bone regeneration.
Collapse
Affiliation(s)
- Wang Guo
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Ziying Peng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Dan Ning
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yunlei Wu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yufeng Mao
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Enyu Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Mingzhi Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Yong Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Wenjie Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Hui You
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yu Long
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Feng Guo
- Department of Oral Anatomy and Physiology, College of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China.
| | - Huaming Mai
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, GuiLin Medical University, Guilin 541004, China; Department of Oral and Maxillofacial Surgery, College &Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China.
| |
Collapse
|
2
|
Li Q, Shi H, Wang Y, Hu R, Feng C, Ma X, Wang Y, Li X, Zhu X, Zhang X. Enhancing the mechanical and antibacterial properties of hydroxyapatite bioceramics by in situ graphene doping to promote osseointegration in infected bone defects. J Mater Chem B 2025; 13:3930-3944. [PMID: 40013324 DOI: 10.1039/d4tb02330g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Hydroxyapatite (HA) bioceramics are extensively utilized in the field of bone repair owing to their remarkable biocompatibility, bioactivity, and osteoconductivity. However, their applications in load-bearing bones are significantly limited because of their inherent brittleness. Achieving a suitable balance between mechanical strength and osteogenic activity remains a critical challenge. In this work, HA ceramics with in situ graphene doping were fabricated via ball-milling and vacuum sintering processes in a convenient way, thereby increasing their fracture toughness and flexural strength to the levels of natural cortical bone. Furthermore, in situ graphene doping imparted outstanding photothermal property to HA bioceramics, achieving wet temperatures exceeding 60 °C under near-infrared radiation at 808 nm and exhibiting excellent antibacterial efficacy with a bacteriostasis rate of approximately 96% against S. aureus. Additionally, HA bioceramics with in situ graphene doping promoted the proliferation and differentiation of bone marrow stem cells (BMSCs). The anti-infective capability and osseointegration potential of these doped HA bioceramics were further validated using an infected bone defect model in the rabbit femur. In summary, these findings indicate that in situ graphene doping holds immense potential for broadening the applications of HA bioceramics in the repair of load-bearing and infected bone defects.
Collapse
Affiliation(s)
- Qipeng Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hao Shi
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Ruitao Hu
- Pittsburgh Institute, Sichuan University, Chengdu, 610065, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiaodong Ma
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ye Wang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Pascaud K, Tenailleau C, Duployer B, Sescousse R, Brouillet F, Jayme CC, Fernandes DS, Tedesco AC, Sarda S, Ré MI. Achieving tunable and interconnected porosity of biomimetic apatite scaffolds through Pickering emulsion templates. MATERIALIA 2025; 39:102308. [DOI: 10.1016/j.mtla.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Jin J, Wang D, Qian H, Ruan C, Yang Y, Li D, Wang G, Zhu X, Hu Y, Lei P. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: A proof-of-concept study. Biomaterials 2025; 313:122756. [PMID: 39182327 DOI: 10.1016/j.biomaterials.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Currently, the treatment of bone defects in arthroplasty is a challenge in clinical practice. Nonetheless, commercially available orthopaedic scaffolds have shown limited therapeutic effects for large bone defects, especially for massiveand irregular defects. Additively manufactured porous tantalum, in particular, has emerged as a promising material for such scaffolds and is widely used in orthopaedics for its exceptional biocompatibility, osteoinduction, and mechanical properties. Porous tantalum has also exhibited unique advantages in personalised rapid manufacturing, which allows for the creation of customised scaffolds with complex geometric shapes for clinical applications at a low cost and high efficiency. However, studies on the effect of the pore structure of additively manufactured porous tantalum on bone regeneration have been rare. In this study, our group designed and fabricated a batch of precision porous tantalum scaffolds via laser powder bed fusion (LPBF) with pore sizes of 250 μm (Ta 250), 450 μm (Ta 450), 650 μm (Ta 650), and 850 μm (Ta 850). We then performed a series of in vitro experiments and observed that all four groups showed good biocompatibility. In particular, Ta 450 demonstrated the best osteogenic performance. Afterwards, our team used a rat bone defect model to determine the in vivo osteogenic effects. Based on micro-computed tomography and histology, we identified that Ta 450 exhibited the best bone ingrowth performance. Subsequently, sheep femur and hip defect models were used to further confirm the osteogenic effects of Ta 450 scaffolds. Finally, we verified the aforementioned in vitro and in vivo results via clinical application (seven patients waiting for revision total hip arthroplasty) of the Ta 450 scaffold. The clinical results confirmed that Ta 450 had satisfactory clinical outcomes up to the 12-month follow-up. In summary, our findings indicate that 450 μm is the suitable pore size for porous tantalum scaffolds. This study may provide a new therapeutic strategy for the treatment of massive, irreparable, and protracted bone defects in arthroplasty.
Collapse
Affiliation(s)
- Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongyu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Hu Qian
- Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chengxin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqi Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dongdong Li
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, 200233, China
| | - Guohua Wang
- Hunan Huaxiang Medical Technology Co., Ltd, Changsha, 410008, China
| | - Xiaobo Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Pengfei Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Department of Orthopedic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Krishnamoorthy E, Subramanian B. Synergistic effects of silica-enriched bioactive glass and tri-calcium phosphate nanocomposites on BMP2 gene expression for bone repair and regeneration applications. Int J Pharm 2025; 669:125026. [PMID: 39645065 DOI: 10.1016/j.ijpharm.2024.125026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
This study focuses on the development of biomaterials for bone regeneration highlighting 59S bioactive glass (59S BG), tri-calcium phosphate (TCP), and their 1:1 composite (59S BG/TCP). The synthesized materials demonstrated excellent properties for bone tissue engineering. Characterization revealed their thermal stability up to 900 °C, as confirmed by thermogravimetric analysis (TGA), while X-ray diffraction (XRD) identified calcium phosphate and silicate phases. Functional groups and chemical bonding were elucidated using Fourier transform infrared spectroscopy (FTIR). The composite exhibited remarkable mechanical properties, with a hardness of 167.87 HV and a strength of 680.52 MPa, indicating its suitability for load-bearing applications. Biological evaluations confirmed promising performance, with in-vitro bioactivity showing apatite formation and reduced XRD peak intensity. Biocompatibility assessments revealed hemolysis below 5 % and a 300 % cell proliferation rate by day three ensuring minimal cytotoxicity and favorable blood compatibility. Protein adsorption studies demonstrated strong interactions with bovine serum albumin (BSA) and lysozyme, supporting protein stability. Additionally, the composite showed enhanced osteogenic potential with elevated BMP2 gene expression indicating its capacity to promote robust bone regeneration. The synergy between 59S BG and TCP underscores the composite's potential as a promising material for effective bone repair and regeneration.
Collapse
Affiliation(s)
- Elakkiya Krishnamoorthy
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India.
| |
Collapse
|
6
|
Le Grill S, Brouillet F, Drouet C. Bone Regeneration: Mini-Review and Appealing Perspectives. Bioengineering (Basel) 2025; 12:38. [PMID: 39851312 PMCID: PMC11763268 DOI: 10.3390/bioengineering12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired. The global trend in bone implant research is shifting toward osteointegrative, bioactive and possibly stimuli-responsive biomaterials and, where possible, resorbable implants that actively promote the regeneration of natural bone tissue. In this mini-review, the fundamentals of bone healing materials and clinical challenges are summarized and commented on with regard to progressing scientific discoveries. The main types of bone-healing materials are then reviewed, and their specific relevance to the field is reminded, with the citation of reference works. In the final part, we highlight the promise of hybrid organic-inorganic bioactive materials and the ongoing research activities toward the development of multifunctional or stimuli-responsive implants. This contribution is expected to serve as a commented introduction to the ever-progressing field of bone regeneration and highlight trends of future-oriented research.
Collapse
Affiliation(s)
- Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
- Regenerative Nanomedicine Unit, Center of Research on Biomedicines of Strasbourg (CRBS), French National Institute of Health and Medical Research (INSERM), University of Strasbourg, UMR 1260, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| | - Christophe Drouet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France; (F.B.); (C.D.)
| |
Collapse
|
7
|
Wang H, Sanghvi G, Arefpour A, Alkhayyat A, Soheily A, Jabbarzare S, Salahshour S, Alizadeh A, Baghaei S. Using hardystonite as a biomaterial in biomedical and bone tissue engineering applications. Tissue Cell 2024; 91:102551. [PMID: 39255743 DOI: 10.1016/j.tice.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Widespread adoption for substitutes of artificial bone grafts based on proper bioceramics has been generated in recent years. Among them, calcium-silicate-based bioceramics, which possess osteoconductive properties and can directly attach to biological organs, have attracted substantial attention for broad ranges of applications in bone tissue engineering. Approaches exist for a novel strategy to promote the drawbacks of bioceramics such as the incorporation of Zn2+, Mg2+, and Zr4+ ions into calcium-silicate networks, and the improvement of their physical, mechanical, and biological properties. Recently, hardystonite (Ca2ZnSi2O7) bioceramics, as one of the most proper calcium-silicate-based bioceramics, has presented excellent biocompatibility, bioactivity, and interaction. Due to its physical, mechanical, and biological behaviors and ability to be shaped utilizing a variety of fabrication techniques, hardystonite possesses the potential to be applied in biomedical and tissue engineering, mainly bone tissue engineering. A notable potential exists for the newly developed bioceramics to help therapies supply clinical outputs. The promising review paper has been presented by considering major aims to summarize and discuss the most applicable studies carried out for its physical, mechanical, and biological behaviors.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College, Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - Ahmadreza Arefpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmad Alkhayyat
- Department of computers Techniques engineering, College of technical engineering, The Islamic University, Najaf, Iraq; Department of computers Techniques engineering, College of technical engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of computers Techniques engineering, College of technical engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Soheily
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeid Jabbarzare
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - As'ad Alizadeh
- Department of Mechanical Engineering, College of Engineering, Urmia University, Urmia, Iran
| | - Sh Baghaei
- Department of mechanical engineering, Khomeinishahr branch, Islamic Azad University, Khomeinishahr, Iran.
| |
Collapse
|
8
|
Foroughi AH, Valeri C, Razavi MJ. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012003. [PMID: 39655853 DOI: 10.1088/2516-1091/ad879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 12/18/2024]
Abstract
The design and optimization of bone scaffolds are critical for the success of bone tissue engineering (BTE) applications. This review paper provides a comprehensive analysis of computational optimization methods for bone scaffold architecture, focusing on the balance between mechanical stability, biological compatibility, and manufacturability. Finite element method (FEM), computational fluid dynamics (CFD), and various optimization algorithms are discussed for their roles in simulating and refining scaffold designs. The integration of multiobjective optimization and topology optimization has been highlighted for developing scaffolds that meet the multifaceted requirements of BTE. Challenges such as the need for consideration of manufacturing constraints and the incorporation of degradation and bone regeneration models into the optimization process have been identified. The review underscores the potential of advanced computational tools and additive manufacturing techniques in evolving the field of BTE, aiming to improve patient outcomes in bone tissue regeneration. The reliability of current optimization methods is examined, with suggestions for incorporating non-deterministic approaches andin vivovalidations to enhance the practical application of optimized scaffolds. The review concludes with a call for further research into artificial intelligence-based methods to advance scaffold design and optimization.
Collapse
Affiliation(s)
- Ali H Foroughi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Caleb Valeri
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| |
Collapse
|
9
|
Trzaskowska M, Vivcharenko V, Benko A, Franus W, Goryczka T, Barylski A, Palka K, Przekora A. Biocompatible nanocomposite hydroxyapatite-based granules with increased specific surface area and bioresorbability for bone regenerative medicine applications. Sci Rep 2024; 14:28137. [PMID: 39548237 PMCID: PMC11568164 DOI: 10.1038/s41598-024-79822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m2/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability. HA granules of high microporosity and SSA can be produced by applying low sintering temperatures (below 900 °C). Nevertheless, although HA sintered at low temperatures shows significantly higher SSA (10-60 m2/g) and improved bioabsorbability, it also exhibits high ion reactivity and cytotoxicity under in vitro conditions. The latter is due to the presence of reaction by-products. Thus, the aim of this study was to fabricate novel biomaterials in the form of granules, composed of hydroxyapatite nanopowder sintered at a high temperature (1100 °C) and a biopolymer matrix: chitosan/agarose or chitosan/β-1,3-glucan (curdlan). It was hypothesized that appropriately selected ingredients would ensure high biocompatibility and microstructural properties comparable to HA sintered at low temperatures. Synthesized granules were subjected to the evaluation of their biological, microstructural, physicochemical, and mechanical properties. The obtained results showed that the developed nanocomposite granules were characterized by a lack of cytotoxicity towards both mouse preosteoblasts and normal human fetal osteoblasts, and supported cell adhesion to their surface. Moreover, produced biomaterials had the ability to induce precipitation of apatite crystals after immersion in simulated body fluid, which, combined with high biocompatibility, should ensure good osseointegration after implantation. Additionally, nanocomposite granules possessed microstructural parameters similar to HA sintered at a low temperature (porosity approx. 50%, SSA approx. 30 m²/g), Young's modulus (5-8 GPa) comparable to cancellous bone, and high fluid absorption capacity. Moreover, the nanocomposites were prone to biodegradation under the influence of enzymatic solution and in an acidic environment. Additionally, it was noted that the hydroxyapatite nanoparticles remaining after the physicochemical dissolution of the biomaterial were easily phagocytosed by mouse macrophages, mouse preosteoblasts, and normal human fetal osteoblasts (in vitro studies). The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability. The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Vladyslav Vivcharenko
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618, Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Krzysztof Palka
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20- 618, Lublin, Poland
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
10
|
Pandit A, Indurkar A, Locs J, Haugen HJ, Loca D. Calcium Phosphates: A Key to Next-Generation In Vitro Bone Modeling. Adv Healthc Mater 2024; 13:e2401307. [PMID: 39175382 PMCID: PMC11582516 DOI: 10.1002/adhm.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Indexed: 08/24/2024]
Abstract
The replication of bone physiology under laboratory conditions is a prime target behind the development of in vitro bone models. The model should be robust enough to elicit an unbiased response when stimulated experimentally, giving reproducible outcomes. In vitro bone tissue generation majorly requires the availability of cellular components, the presence of factors promoting cellular proliferation and differentiation, efficient nutrient supply, and a supporting matrix for the cells to anchor - gaining predefined topology. Calcium phosphates (CaP) are difficult to ignore while considering the above requirements of a bone model. Therefore, the current review focuses on the role of CaP in developing an in vitro bone model addressing the prerequisites of bone tissue generation. Special emphasis is given to the physico-chemical properties of CaP that promote osteogenesis, angiogenesis and provide sufficient mechanical strength for load-bearing applications. Finally, the future course of action is discussed to ensure efficient utilization of CaP in the in vitro bone model development field.
Collapse
Affiliation(s)
- Ashish Pandit
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Abhishek Indurkar
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | - Janis Locs
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| | | | - Dagnija Loca
- Institute of Biomaterials and BioengineeringFaculty of Natural Sciences and TechnologyRiga Technical UniversityPulka Street 3RigaLV‐1007Latvia
- Baltic Biomaterials Centre of ExcellenceHeadquarters at Riga Technical UniversityRigaLV‐1007Latvia
| |
Collapse
|
11
|
Vahidi M, Rizkalla AS, Mequanint K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv Healthc Mater 2024; 13:e2401218. [PMID: 39036851 DOI: 10.1002/adhm.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Native tissues, comprising multiple cell types and extracellular matrix components, are inherently composites. Mimicking the intricate structure, functionality, and dynamic properties of native composite tissues represents a significant frontier in biomaterials science and tissue engineering research. Biomimetic composite biomaterials combine the benefits of different components, such as polymers, ceramics, metals, and biomolecules, to create tissue-template materials that closely simulate the structure and functionality of native tissues. While the design of composite biomaterials and their in vitro testing are frequently reviewed, there is a considerable gap in whole animal studies that provides insight into the progress toward clinical translation. Herein, we provide an insightful critical review of advanced composite biomaterials applicable in several tissues. The incorporation of bioactive cues and signaling molecules into composite biomaterials to mimic the native microenvironment is discussed. Strategies for the spatiotemporal release of growth factors, cytokines, and extracellular matrix proteins are elucidated, highlighting their role in guiding cellular behavior, promoting tissue regeneration, and modulating immune responses. Advanced composite biomaterials design challenges, such as achieving optimal mechanical properties, improving long-term stability, and integrating multifunctionality into composite biomaterials and future directions, are discussed. We believe that this manuscript provides the reader with a timely perspective on composite biomaterials.
Collapse
Affiliation(s)
- Milad Vahidi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Amin S Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| |
Collapse
|
12
|
Zöller T, Schmal H, Ahlhelm M, Mayr HO, Seidenstuecker M. Conventional Manufacturing by Pouring Versus Additive Manufacturing Technology of β-Tricalcium Phosphate Bone Substitute Implants. Biomedicines 2024; 12:1800. [PMID: 39200264 PMCID: PMC11351892 DOI: 10.3390/biomedicines12081800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of the study was to compare conventional sintering with additive manufacturing techniques for β-TCP bioceramics, focusing on mechanical properties and biocompatibility. A "critical" bone defect requires surgical intervention beyond simple stabilization. Autologous bone grafting is the gold standard treatment for such defects, but it has its limitations. Alloplastic bone grafting with synthetic materials is becoming increasingly popular. The use of bone graft substitutes has increased significantly, and current research has focused on optimizing these substitutes, whereas this study compares two existing manufacturing techniques and the resulting β-TCP implants. The 3D printed β-TCP hybrid structure implant was fabricated from two components, a column structure and a freeze foam, which were sintered together. The conventionally fabricated ceramics were fabricated by casting. Both scaffolds were characterized for porosity, mechanical properties, and biocompatibility. The hybrid structure had an overall porosity of 74.4 ± 0.5%. The microporous β-TCP implants had a porosity of 43.5 ± 2.4%, while the macroporous β-TCP implants had a porosity of 61.81%. Mechanical testing revealed that the hybrid structure had a compressive strength of 10.4 ± 6 MPa, which was significantly lower than the microporous β-TCP implants with 32.9 ± 8.7 MPa. Biocompatibility evaluations showed a steady increase in cell proliferation over time for all the β-TCP implants, with minimal cytotoxicity. This study provides a valuable insight into the potential of additive manufacturing for β-TCP bioceramics in the treatment of bone defects.
Collapse
Affiliation(s)
- Tanja Zöller
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany;
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (H.S.); (H.O.M.)
- Department of Orthopedic Surgery and Traumatology, Odense University Hospital, 5000 Odense, Denmark
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany;
| | - Hermann O. Mayr
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (H.S.); (H.O.M.)
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany;
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (H.S.); (H.O.M.)
| |
Collapse
|
13
|
Phan VHG, Thai NKL, Tran THH, Nguyen TKN, Thambi T, Murgia X, Ho DK, Elmaleh DR. Triple-Hybrid BioScaffold Based on Silk Fibroin, Chitosan, and nano-Biphasic Calcium Phosphates: Preparation, Characterization of Physiochemical and Biopharmaceutical Properties. J Pharm Sci 2024; 113:2286-2295. [PMID: 38527617 DOI: 10.1016/j.xphs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Bioscaffolds, which promote cell regeneration and restore tissues' functions, have emerged as significant need in clinic. The hybrid of several biomaterials in a bioscaffold renders clinically advanced and relevant properties for applications yet add challenges in cost efficiency, production, and clinical investigation. This study proposes a facile and sustainable method to formulate a triple-hybrid bioscaffold based on Vietnamese cocoon origin Silk Fibroin, Chitosan, and nano-Biphasic Calcium Phosphates (nano-BCP) that can be easily molded, has high porosity (55-80%), and swelling capacity that facilitates cell proliferation and nutrient diffusion. Notably, their mechanical properties, in particular compressive strength, can easily be tuned in a range from 50 - 200 kPa by changing the amount of nano-BCP addition, which is comparable to the successful precedents for productive cell regeneration. The latter parts investigate the biopharmaceutical properties of a representative bioscaffold, including drug loading and release studies with two kinds of active compounds, salmon calcitonin and methylprednisolone. Furthermore, the bioscaffold is highly biocompatible as the results of hemocompatibility and hemostasis tests, as well as ovo chick chorioallantoic membrane investigation. The findings of the study suggest the triple-hybrid scaffold as a promising platform for multi-functional drug delivery and bone defect repair.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Nguyen-Kim-Luong Thai
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thanh-Han Hoang Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thien-Kim Ngoc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| | | | - Duy-Khiet Ho
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - David R Elmaleh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA
| |
Collapse
|
14
|
Mîrț AL, Ficai D, Oprea OC, Vasilievici G, Ficai A. Current and Future Perspectives of Bioactive Glasses as Injectable Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1196. [PMID: 39057873 PMCID: PMC11280465 DOI: 10.3390/nano14141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review covers recent compositions of bioactive glass, with a specific emphasis on both inorganic and organic materials commonly utilized as matrices for injectable materials. The major objective is to highlight the predominant bioactive glass formulations and their clinical applications in the biomedical field. Previous studies have highlighted the growing interest among researchers in bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result of this increased interest, investigations into bioactive glass have prompted the creation of composite materials and, notably, the development of injectable composites as a minimally invasive method for administering the material within the human body. Injectable materials have emerged as a promising avenue to mitigate various challenges. They offer several advantages, including minimizing invasive surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution, allowing for the filling of defects of any shape.
Collapse
Affiliation(s)
- Andreea-Luiza Mîrț
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Denisa Ficai
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
15
|
Talebpour C, Fani F, Laliberté-Riverin S, Vaidya R, Salimnia H, Alamdari H, Ouellette M. Long-Term Prevention of Arthroplasty Infections via Incorporation of Activated AgNbO 3 Nanoparticles in PMMA Bone Cement. ACS APPLIED BIO MATERIALS 2024; 7:4039-4050. [PMID: 38830835 DOI: 10.1021/acsabm.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We investigated the possibility of loading PMMA bone cement with antimicrobial nanostructured AgNbO3 particles to counter biofilm formation at the cement-tissue interface. We found that a formulation containing (1-4)% AgNbO3 showed high antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa while not showing any toxicity against THP1 human cell lines. In addition, loading the particles did not impact the mechanical properties of the cement. The results thus obtained illustrate the potential of the approach to replace the current technique of mixing cement with conventional antibiotics, which is associated with shortcomings such as efficacy loss from antibiotic depletion.
Collapse
Affiliation(s)
- Cyrus Talebpour
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Fereshteh Fani
- Centre de recherche en infectiologie du CHU de Québec and Department of Microbiology and Immunology, Faculté de Medicine, Université Laval, 2705 Boul. Laurier, Québec G1V4G2, Canada
| | - Simon Laliberté-Riverin
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Rahul Vaidya
- School of Medicine, Wayne State University, 540 E, Canfield Avenue, Detroit, Michigan 48201, United States
| | - Hossein Salimnia
- Department of Pathology, Children's Hospital of Michigan, 3901 Beaubien, Detroit 48201, Michigan, United States
| | - Houshang Alamdari
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Marc Ouellette
- Centre de recherche en infectiologie du CHU de Québec and Department of Microbiology and Immunology, Faculté de Medicine, Université Laval, 2705 Boul. Laurier, Québec G1V4G2, Canada
| |
Collapse
|
16
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
17
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
18
|
Verbist M, Vandevelde AL, Geusens J, Sun Y, Shaheen E, Willaert R. Reconstruction of Craniomaxillofacial Bone Defects with 3D-Printed Bioceramic Implants: Scoping Review and Clinical Case Series. J Clin Med 2024; 13:2805. [PMID: 38792347 PMCID: PMC11122134 DOI: 10.3390/jcm13102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Reconstruction of craniomaxillofacial bone defects using 3D-printed hydroxyapatite (HA) bioceramic patient-specific implants (PSIs) is a new technique with great potential. This study aimed to investigate the advantages, disadvantages, and clinical outcomes of these implants in craniomaxillofacial surgeries. The PubMed and Embase databases were searched for patients with craniomaxillofacial bone defects treated with bioceramic PSIs. Clinical outcomes such as biocompatibility, biomechanical properties, and aesthetics were evaluated and compared to those of commonly used titanium or poly-ether-ether-ketone (PEEK) implants and autologous bone grafts. Two clinical cases are presented to illustrate the surgical procedure and clinical outcomes of HA bioceramic PSIs. Literature review showed better a biocompatibility of HA PSIs than titanium and PEEK. The initial biomechanical properties were inferior to those of autologous bone grafts, PEEK, and titanium but improved when integrated. Satisfactory aesthetic results were found in our two clinical cases with good stability and absence of bone resorption or infection. Radiological signs of osteogenesis were observed in the two clinical cases six months postoperatively. HA bioceramic PSIs have excellent biocompatible properties and imitate natural bone biomechanically and radiologically. They are a well-suited alternative for conventional biomaterials in the reconstruction of load-sharing bone defects in the craniomaxillofacial region.
Collapse
Affiliation(s)
- Maarten Verbist
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- OMFS IMPATH Research Group: Department of Oral and Maxillofacial Surgery, Imaging and Pathology, Leuven University Hospitals, 3000 Leuven, Belgium
| | - Anne-Laure Vandevelde
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- OMFS IMPATH Research Group: Department of Oral and Maxillofacial Surgery, Imaging and Pathology, Leuven University Hospitals, 3000 Leuven, Belgium
| | - Joris Geusens
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- OMFS IMPATH Research Group: Department of Oral and Maxillofacial Surgery, Imaging and Pathology, Leuven University Hospitals, 3000 Leuven, Belgium
| | - Yi Sun
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- OMFS IMPATH Research Group: Department of Oral and Maxillofacial Surgery, Imaging and Pathology, Leuven University Hospitals, 3000 Leuven, Belgium
| | - Eman Shaheen
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- OMFS IMPATH Research Group: Department of Oral and Maxillofacial Surgery, Imaging and Pathology, Leuven University Hospitals, 3000 Leuven, Belgium
| | - Robin Willaert
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- OMFS IMPATH Research Group: Department of Oral and Maxillofacial Surgery, Imaging and Pathology, Leuven University Hospitals, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Yu M, Huang R, Hua J, Ru M, You R, Huang Y, Yan S, Zhang Q. High biocompatible bone screw enabled by a rapid and robust chitosan/silk fibroin composite material. Int J Biol Macromol 2024; 267:131519. [PMID: 38608985 DOI: 10.1016/j.ijbiomac.2024.131519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renyan Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiahui Hua
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Min Ru
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ying Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Shuqin Yan
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Qiang Zhang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
20
|
Remy M, Upara C, Ding QJ, Miszuk JM, Sun H, Hong L. MicroRNA-200c Release from Gelatin-Coated 3D-Printed PCL Scaffolds Enhances Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2337-2350. [PMID: 38531043 PMCID: PMC11005014 DOI: 10.1021/acsbiomaterials.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The fabrication of clinically relevant synthetic bone grafts relies on combining multiple biodegradable biomaterials to create a structure that supports the regeneration of defects while delivering osteogenic biomolecules that enhance regeneration. MicroRNA-200c (miR-200c) functions as a potent osteoinductive biomolecule to enhance osteogenic differentiation and bone formation; however, synthetic tissue-engineered bone grafts that sustain the delivery of miR-200c for bone regeneration have not yet been evaluated. In this study, we created novel, multimaterial, synthetic bone grafts from gelatin-coated 3D-printed polycaprolactone (PCL) scaffolds. We attempted to optimize the release of pDNA encoding miR-200c by varying gelatin types, concentrations, and polymer crosslinking materials to improve its functions for bone regeneration. We revealed that by modulating gelatin type, coating material concentration, and polymer crosslinking, we effectively altered the release rates of pDNA encoding miR-200c, which promoted osteogenic differentiation in vitro and bone regeneration in a critical-sized calvarial bone defect animal model. We also demonstrated that crosslinking the gelatin coatings on the PCL scaffolds with low-concentration glutaraldehyde was biocompatible and increased cell attachment. These results strongly indicate the potential use of gelatin-based systems for pDNA encoding microRNA delivery in gene therapy and further demonstrate the effectiveness of miR-200c for enhancing bone regeneration from synthetic bone grafts.
Collapse
Affiliation(s)
- Matthew
T. Remy
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
- Roy
J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Chawin Upara
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Qiong J. Ding
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jacob M. Miszuk
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hongli Sun
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Liu Hong
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
21
|
Zhao Y, Sun W, Wu X, Gao X, Song F, Duan B, Lu A, Yang H, Huang C. Janus Membrane with Intrafibrillarly Strontium-Apatite-Mineralized Collagen for Guided Bone Regeneration. ACS NANO 2024; 18:7204-7222. [PMID: 38373291 DOI: 10.1021/acsnano.3c12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Commercial collagen membranes face difficulty in guided bone regeneration (GBR) due to the absence of hierarchical structural design, effective interface management, and diverse bioactivity. Herein, a Janus membrane called SrJM is developed that consists of a porous collagen face to enhance osteogenic function and a dense face to maintain barrier function. Specifically, biomimetic intrafibrillar mineralization of collagen with strontium apatite is realized by liquid precursors of amorphous strontium phosphate. Polycaprolactone methacryloyl is further integrated on one side of the collagen as a dense face, which endows SrJM with mechanical support and a prolonged lifespan. In vitro experiments demonstrate that the dense face of SrJM acts as a strong barrier against fibroblasts, while the porous face significantly promotes cell adhesion and osteogenic differentiation through activation of calcium-sensitive receptor/integrin/Wnt signaling pathways. Meanwhile, SrJM effectively enhances osteogenesis and angiogenesis by recruiting stem cells and modulating osteoimmune response, thus creating an ideal microenvironment for bone regeneration. In vivo studies verify that the bone defect region guided by SrJM is completely repaired by newly formed vascularized bone. Overall, the outstanding performance of SrJM supports its ongoing development as a multifunctional GBR membrane, and this study provides a versatile strategy of fabricating collagen-based biomaterials for hard tissue regeneration.
Collapse
Affiliation(s)
- Yaning Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Wei Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Xiaoyi Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Xin Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Bo Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Jing L, Xu J, Cai J, Huang S, Qiao X, Wan F. Morphologic and mechanical adaptive variations in Saiga tatarica calcaneus: A model for interpreting the bone functional adaptation of wild artiodactyl in captivity. Vet World 2024; 17:448-461. [PMID: 38595661 PMCID: PMC11000478 DOI: 10.14202/vetworld.2024.448-461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Captivity alters the locomotor behavior of wild artiodactyls and affects the mechanical loading of the calcaneus; however, the resulting adaptive changes in calcaneus morphology have not been sufficiently studied to date. This study aimed to investigate the morphological and mechanical adaptive variations in the calcaneus of Saiga tatarica to understand further the functional adaptation of the calcaneus in wild artiodactyl to captivity. Materials and Methods Paired calcanei from autopsy samples of six captive wild artiodactyls (S. tatarica) and six domesticated artiodactyls (Ovis aries) were divided into skeletally immature and mature groups using X-ray evaluation of growth plate closure. High-resolution microcomputed tomography revealed a calcaneal diaphyseal cross-section. The mechanical and nanomorphological characteristics of the trabecular bone were determined by atomic force microscopy. Results The percent cortical bone area (%CA), cortical thickness ratio (CTR), and Young's modulus (E) differed between species in the immature groups but not in the mature groups. S. tatarica had significantly higher growth rates for %CA, CTR, and E in the mid-shaft than O. aries (p < 0.05). Conclusion The calcaneus morphology of S. tatarica converges with that of domesticated O. aries during ontogeny. These results indicate that the calcaneus of wild artiodactyls can undergo potentially transitional changes during the short-term adaptation to captivity. The above parameters can be preliminarily identified as morphological signs of functional bone adaptation in artiodactyls.
Collapse
Affiliation(s)
- Libaihe Jing
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jie Xu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jiao Cai
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shan Huang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xinyu Qiao
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Fengqi Wan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| |
Collapse
|
23
|
Zuo L, Yang Y, Zhang H, Ma Z, Xin Q, Ding C, Li J. Bioinspired Multiscale Mineralization: From Fundamentals to Potential Applications. Macromol Biosci 2024; 24:e2300348. [PMID: 37689995 DOI: 10.1002/mabi.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The wondrous and imaginative designs of nature have always been an inexhaustible treasure trove for material scientists. Throughout the long evolutionary process, biominerals with hierarchical structures possess some specific advantages such as outstanding mechanical properties, biological functions, and sensing performances, the formation of which (biomineralization) is delicately regulated by organic component. Provoked by the subtle structures and profound principles of nature, bioinspired functional minerals can be designed with the participation of organic molecules. Because of the designable morphology and functions, multiscale mineralization has attracted more and more attention in the areas of medicine, chemistry, biology, and material science. This review provides a summary of current advancements in this extending topic. The mechanisms underlying mineralization is first concisely elucidated. Next, several types of minerals are categorized according to their structural characteristic, as well as the different potential applications of these materials. At last, a comprehensive overview of future developments for bioinspired multiscale mineralization is given. Concentrating on the mechanism of fabrication and broad application prospects of multiscale mineralization, the hope is to provide inspirations for the design of other functional materials.
Collapse
Affiliation(s)
- Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
24
|
Chen J, Huang X, Wang J, Chen W, Teng Y, Yin D. Incorporation of black phosphorus nanosheets into poly(propylene fumarate) biodegradable bone cement to enhance bioactivity and osteogenesis. J Orthop Surg Res 2024; 19:98. [PMID: 38291442 PMCID: PMC10829309 DOI: 10.1186/s13018-024-04566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Injectable bone cement is commonly used in clinical orthopaedics to fill bone defects, treat vertebral compression fractures, and fix joint prostheses during joint replacement surgery. Poly(propylene fumarate) (PPF) has been proposed as a biodegradable and injectable alternative to polymethylmethacrylate (PMMA) bone cement. Recently, there has been considerable interest in two-dimensional (2D) black phosphorus nanomaterials (BPNSs) in the biomedical field due to their excellent photothermal and osteogenic properties. In this study, we investigated the biological and physicochemical qualities of BPNSs mixed with PPF bone cement created through thermal cross-linking. METHODS PPF was prepared through a two-step process, and BPNSs were prepared via a liquid phase stripping method. BP/PPF was subsequently prepared through thermal cross-linking, and its characteristics were thoroughly analysed. The mechanical properties, cytocompatibility, osteogenic performance, degradation performance, photothermal performance, and in vivo toxicity of BP/PPF were evaluated. RESULTS BP/PPF exhibited low cytotoxicity levels and mechanical properties similar to that of bone, whereas the inclusion of BPNSs promoted preosteoblast adherence, proliferation, and differentiation on the surface of the bone cement. Furthermore, 200 BP/PPF demonstrated superior cytocompatibility and osteogenic effects, leading to the degradation of PPF bone cement and enabling it to possess photothermal properties. When exposed to an 808-nm laser, the temperature of the bone cement increased to 45-55 °C. Furthermore, haematoxylin and eosin-stained sections from the in vivo toxicity test did not display any anomalous tissue changes. CONCLUSION BP/PPF exhibited mechanical properties similar to that of bone: outstanding photothermal properties, cytocompatibility, and osteoinductivity. BP/PPF serves as an effective degradable bone cement and holds great potential in the field of bone regeneration.
Collapse
Affiliation(s)
- Jiahan Chen
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Orthopedics, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China
| | - Xiaoxia Huang
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Orthopedics, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China
| | - Jianghua Wang
- Department of Pharmacy, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China
| | - Wen Chen
- Shihezi University College of Pharmacy, Shihezi, Xinjiang, China
| | - Yong Teng
- Department of Orthopedics, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China.
| | - Dongfeng Yin
- Department of Pharmacy, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China.
| |
Collapse
|
25
|
Dousti M, Golmohamadpour A, Hami Z, Jamalpoor Z. Ca-AlN MOFs-loaded chitosan/gelatin scaffolds; a dual-delivery system for bone tissue engineering applications. NANOTECHNOLOGY 2024; 35:145101. [PMID: 37992401 DOI: 10.1088/1361-6528/ad0ef4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Creating a scaffold for bone tissue engineering that is bioactive and capable of acting as a local-dual delivery system, releasing bioactive molecules and regulating the bone remodeling process to achieve balanced bone resorption and formation, is a significant challenge. The objective of this research is to create a composite scaffold using chitosan/gelatin (CHS/Gel) and the calcium (Ca)-alendronate (ALN) metal-organic frameworks (MOFs). The scaffold will act as a dual-delivery system, releasing Ca ions and ALN to regulate bone formation. Ca-ALN MOF nanoparticles (NPs) were prepared in mild conditions and studied by FTIR, XRD, FESEM, and TGA. Ca-ALN NPs-loaded CHS/Gel scaffolds were opportunely fabricated through freeze-drying approach. Physicochemical features of the scaffolds after incorporating NPs equated by CHS/Gel scaffold changed, therefore, the attendance of NPs caused a decreasing porosity, decreased swelling, and low rate of degradation. The release profile results showed that the NPs-loaded CHS/Gel scaffolds were able to simultaneously release ALN and Ca ions due to the decomposition of NPs. Additionally, the loading of NPs in the CHS/Gel scaffold led to an increment in alkaline phosphatase (ALP) activity and the quantity of deposited Ca along with osteogenesis gene markers. These findings suggest that the NPs-loaded CHS/Gel scaffold has the potential to enhance the differentiation of human adipose tissue-derived mesenchymal stem cells, making it a promising approach for bone repair.
Collapse
Affiliation(s)
- Mahdi Dousti
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| | | | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Le Grill S, Drouet C, Marsan O, Coppel Y, Mazel V, Barthelemy MC, Brouillet F. Consolidation of Spray-Dried Amorphous Calcium Phosphate by Ultrafast Compression: Chemical and Structural Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:152. [PMID: 38251117 PMCID: PMC10819566 DOI: 10.3390/nano14020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
A large amount of research in orthopedic and maxillofacial domains is dedicated to the development of bioactive 3D scaffolds. This includes the search for highly resorbable compounds, capable of triggering cell activity and favoring bone regeneration. Considering the phosphocalcic nature of bone mineral, these aims can be achieved by the choice of amorphous calcium phosphates (ACPs). Because of their metastable property, these compounds are however to-date seldom used in bulk form. In this work, we used a non-conventional "cold sintering" approach based on ultrafast low-pressure RT compaction to successfully consolidate ACP pellets while preserving their amorphous nature (XRD). Complementary spectroscopic analyses (FTIR, Raman, solid-state NMR) and thermal analyses showed that the starting powder underwent slight physicochemical modifications, with a partial loss of water and local change in the HPO42- ion environment. The creation of an open porous structure, which is especially adapted for non-load bearing bone defects, was also observed. Moreover, the pellets obtained exhibited sufficient mechanical resistance allowing for manipulation, surgical placement and eventual cutting/reshaping in the operation room. Three-dimensional porous scaffolds of cold-sintered reactive ACP, fabricated through this low-energy, ultrafast consolidation process, show promise toward the development of highly bioactive and tailorable biomaterials for bone regeneration, also permitting combinations with various thermosensitive drugs.
Collapse
Affiliation(s)
- Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France
| | - Christophe Drouet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France
| | - Yannick Coppel
- LCC, UPR 8241 CNRS, Université de Toulouse, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Vincent Mazel
- Université de Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, 33400 Talence, France
- Arts et Metiers Institute of Technology, CNRS, Bordeaux INP, Hesam Universite, I2M, UMR 5295, 33400 Talence, France
| | - Marie-Claire Barthelemy
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| |
Collapse
|
27
|
Abdulaziz D, Anastasiou AD, Panagiotopoulou V, Raif EM, Giannoudis PV, Jha A. Physiologically engineered porous titanium/brushite scaffolds for critical-size bone defects: A design and manufacturing study. J Mech Behav Biomed Mater 2023; 148:106223. [PMID: 37976684 DOI: 10.1016/j.jmbbm.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Repairing critical-size bone defects still represents a critical clinical challenge in the field of trauma surgery. This study focuses on a physiological design and manufacturing of porous composite scaffold (titanium Ti with 10 % mole iron doped brushite DCPD-Fe3+) which can mimic the biomechanical properties of natural cortical bone, specifically for the purpose of repairing critical-size defects. To achieve this, the principle of design of experiments (DOE) was applied for investigating the impact of sintering temperature, mineral ratio, and volume fraction of porosity on the mechanical properties of the fabricated scaffolds. The fabricated scaffolds had open porosity up to 60 %, with pore size approximately between 100 μm and 850 μm. The stiffness of the porous composite scaffolds varied between 3.30 GPa and 20.50 GPa, while the compressive strength ranged from approximately 130 MPa-165 MPa at sintering temperatures equal to or exceeding 1000 °C. Scaffolds with higher porosity and mineral content demonstrated lower stiffness values, resembling natural bone. Numerical simulation was employed by Ansys Workbench to investigate the stress and strain distribution of a critical size defect in mid-shaft femur which was designed to be replaced with the fabricated scaffold. The fabricated scaffolds showed flexible biomechanical behaviour at the bone/scaffold interface, generating lower stress levels and indicating a better match with the femoral shaft stiffness. The experimental and numerical findings demonstrated promising applications for manufacturing a patient-specific bone scaffold for critical and potentially large defects for reducing stress shielding and minimizing non-union risk.
Collapse
Affiliation(s)
- Dina Abdulaziz
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Antonios D Anastasiou
- Department of Chemical Engineering, University of Manchester, Manchester, M1 3AL, UK
| | | | - El Mostafa Raif
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
28
|
Wang Y, Chen S, Liang H, Bai J, Wang M. Design and fabrication of biomimicking radially graded scaffolds via digital light processing 3D printing for bone regeneration. J Mater Chem B 2023; 11:9961-9974. [PMID: 37818766 DOI: 10.1039/d3tb01573d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Scaffolds are an essential component in bone tissue engineering (BTE). However, most of the current BTE scaffolds are homogeneous structures and do not resemble the graded architectures of native bone. In the current study, four types of biomimicking scaffold designs based on gyroid (G) and primitive (P) units with radially graded pore sizes were devised, and scaffolds of these designs with two porosity groups (65 vol% and 75 vol%) were fabricated via digital light processing (DLP) 3D printing using biphasic calcium phosphate (BCP). Scaffolds of the gyroid-gyroid (G-G) design displayed better dimensional accuracy, compressive property, and cell proliferation rate than gyroid-primitive (G-P), primitive-gyroid (P-G), and primitive-primitive (P-P) scaffolds. Subsequently, graded G-G scaffolds with different porosities were fabricated and the relationship between compressive strength and porosity was determined. Furthermore, the sintered BCP bioceramics fabricated via current manufacturing process exhibited excellent biocompatibility and bioactivity, indicating their high potential for BTE.
Collapse
Affiliation(s)
- Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
29
|
Schröter L, Kaiser F, Preißler A, Wohlfahrt P, Küppers O, Gbureck U, Ignatius A. Ready-To-Use and Rapidly Biodegradable Magnesium Phosphate Bone Cement: In Vivo Evaluation in Sheep. Adv Healthc Mater 2023; 12:e2300914. [PMID: 37224104 PMCID: PMC11468836 DOI: 10.1002/adhm.202300914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Indexed: 05/26/2023]
Abstract
In clinical practice, hydroxyapatite (HA) cements for bone defect treatment are frequently prepared by mixing a powder component and a liquid component shortly before implantation in the operation theater, which is time-consuming and error-prone. In addition, HA cements are only slightly resorbed, that is, cement residues can still be found in the bone years after implantation. Here, these challenges are addressed by a prefabricated magnesium phosphate cement paste based on glycerol, which is ready-to-use and can be directly applied during surgery. By using a trimodal particle size distribution (PSD), the paste is readily injectable and exhibits a compressive strength of 9-14 MPa after setting. Struvite (MgNH4 PO4 ·6H2 O), dittmarite (MgNH4 PO4 ·H2 O), farringtonite (Mg3 (PO4 )2 ), and newberyite (MgHPO4 ·3H2 O) are the mineral phases present in the set cement. The paste developed here features a promising degradation of 37% after four months in an ovine implantation model, with 25% of the implant area being newly formed bone. It is concluded that the novel prefabricated paste improves application during surgery, has a suitable degradation rate, and supports bone regeneration.
Collapse
Affiliation(s)
- Lena Schröter
- Institute for Orthopedic Research and BiomechanicsUlm University Medical CenterHelmholtzstraße 14D‐89081UlmGermany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Anna‐Lena Preißler
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Philipp Wohlfahrt
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Oliver Küppers
- Institute for Orthopedic Research and BiomechanicsUlm University Medical CenterHelmholtzstraße 14D‐89081UlmGermany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Anita Ignatius
- Institute for Orthopedic Research and BiomechanicsUlm University Medical CenterHelmholtzstraße 14D‐89081UlmGermany
| |
Collapse
|
30
|
Shao H, Zhang T, Gong Y, He Y. Silver-Containing Biomaterials for Biomedical Hard Tissue Implants. Adv Healthc Mater 2023; 12:e2300932. [PMID: 37300754 DOI: 10.1002/adhm.202300932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Bacterial infection caused by biomaterials is a very serious problem in the clinical treatment of implants. The emergence of antibiotic resistance has prompted other antibacterial agents to replace traditional antibiotics. Silver is rapidly developing as an antibacterial candidate material to inhibit bone infections due to its significant advantages such as high antibacterial timeliness, high antibacterial efficiency, and less susceptibility to bacterial resistance. However, silver has strong cytotoxicity, which can cause inflammatory reactions and oxidative stress, thereby destroying tissue regeneration, making the application of silver-containing biomaterials extremely challenging. In this paper, the application of silver in biomaterials is reviewed, focusing on the following three issues: 1) how to ensure the excellent antibacterial properties of silver, and not easy to cause bacterial resistance; 2) how to choose the appropriate method to combine silver with biomaterials; 3) how to make silver-containing biomaterials in hard tissue implants have further research. Following a brief introduction, the discussion focuses on the application of silver-containing biomaterials, with an emphasis on the effects of silver on the physicochemical properties, structural properties, and biological properties of biomaterials. Finally, the review concludes with the authors' perspectives on the challenges and future directions of silver in commercialization and in-depth research.
Collapse
Affiliation(s)
- Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Zhejiang Guanlin Machinery Limited Company, Anji, Hangzhou, 313300, China
| | - Tao Zhang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
31
|
Alshammari A, Alabdah F, Wang W, Cooper G. Virtual Design of 3D-Printed Bone Tissue Engineered Scaffold Shape Using Mechanobiological Modeling: Relationship of Scaffold Pore Architecture to Bone Tissue Formation. Polymers (Basel) 2023; 15:3918. [PMID: 37835968 PMCID: PMC10575293 DOI: 10.3390/polym15193918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Large bone defects are clinically challenging, with up to 15% of these requiring surgical intervention due to non-union. Bone grafts (autographs or allografts) can be used but they have many limitations, meaning that polymer-based bone tissue engineered scaffolds (tissue engineering) are a more promising solution. Clinical translation of scaffolds is still limited but this could be improved by exploring the whole design space using virtual tools such as mechanobiological modeling. In tissue engineering, a significant research effort has been expended on materials and manufacturing but relatively little has been focused on shape. Most scaffolds use regular pore architecture throughout, leaving custom or irregular pore architecture designs unexplored. The aim of this paper is to introduce a virtual design environment for scaffold development and to illustrate its potential by exploring the relationship of pore architecture to bone tissue formation. A virtual design framework has been created utilizing a mechanical stress finite element (FE) model coupled with a cell behavior agent-based model to investigate the mechanobiological relationships of scaffold shape and bone tissue formation. A case study showed that modifying pore architecture from regular to irregular enabled between 17 and 33% more bone formation within the 4-16-week time periods analyzed. This work shows that shape, specifically pore architecture, is as important as other design parameters such as material and manufacturing for improving the function of bone tissue scaffold implants. It is recommended that future research be conducted to both optimize irregular pore architectures and to explore the potential extension of the concept of shape modification beyond mechanical stress to look at other factors present in the body.
Collapse
Affiliation(s)
- Adel Alshammari
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
- Engineering College, University of Hail, Hail 55476, Saudi Arabia
| | - Fahad Alabdah
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
- Engineering College, University of Hail, Hail 55476, Saudi Arabia
| | - Weiguang Wang
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
| | - Glen Cooper
- School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (F.A.); (W.W.)
| |
Collapse
|
32
|
Anwar A, Kanwal Q, Sadiqa A, Razaq T, Khan IH, Javaid A, Khan S, Tag-Eldin E, Ouladsmane M. Synthesis and Antimicrobial Analysis of High Surface Area Strontium-Substituted Calcium Phosphate Nanostructures for Bone Regeneration. Int J Mol Sci 2023; 24:14527. [PMID: 37833975 PMCID: PMC10572144 DOI: 10.3390/ijms241914527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
Continuous microwave-assisted flow synthesis has been used as a simple, more efficient, and low-cost route to fabricate a range of nanosized (<100 nm) strontium-substituted calcium phosphates. In this study, fine nanopowder was synthesized via a continuous flow synthesis with microwave assistance from the solutions of calcium nitrate tetrahydrate (with strontium nitrate as Sr2+ ion source) and diammonium hydrogen phosphate at pH 10 with a time duration of 5 min. The morphological characterization of the obtained powder has been carried out by employing techniques such as transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis. The chemical structural analysis to evaluate the surface properties was made by using X-ray photoelectron spectroscopy. Zeta potential analysis was performed to evaluate the colloidal stability of the particles. Antimicrobial studies were performed for all the compositions using four bacterial strains and an opportunistic human fungal pathogen Macrophomina phaseolina. It was found that the nanoproduct with high strontium content (15 wt% of strontium) showed pronounced antibacterial potential against M. luteus while it completely arrested the fungal growth after 48 h by all of its concentrations. Thus the synthesis strategy described herein facilitated the rapid production of nanosized Sr-substituted CaPs with excellent biological performance suitable for a bone replacement application.
Collapse
Affiliation(s)
- Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; (Q.K.); (A.S.)
| | - Ayesha Sadiqa
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; (Q.K.); (A.S.)
| | - Tabassam Razaq
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| | - Iqra Haider Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.H.K.); (A.J.)
| | - Arshad Javaid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.H.K.); (A.J.)
| | - Safia Khan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt;
| | - ElSayed Tag-Eldin
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
33
|
Che J, Sun T, Lv X, Ma Y, Liu G, Li L, Yuan S, Fan X. Influence of Ag and/or Sr Dopants on the Mechanical Properties and In Vitro Degradation of β-Tricalcium Phosphate-Based Ceramics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6025. [PMID: 37687718 PMCID: PMC10489148 DOI: 10.3390/ma16176025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
β-tricalcium phosphate has good biodegradability and biocompatibility; it is widely perceived as a good material for treating bone deficiency. In this research, different contents of strontium (Sr) and silver (Ag) ion-doped β-tricalcium phosphate powders were prepared using the sol-gel method. After obtaining the best ratio of pore-forming agent and binder, the as-synthesized powders were sintered in a muffle for 5 h at 1000 °C to obtain the samples. Then, these samples were degraded in vitro in simulated body fluids. The samples were tested using a series of characterization methods before and after degradation. Results showed that the amount of Sr and/or Ag doping had an effect on the crystallinity and structural parameters of the samples. After degradation, though the compressive strength of these samples decreased overall, the compressive strength of the undoped samples was higher than that of the doped samples. Notably, apatite-like materials were observed on the surface of the samples. All the results indicate that Sr and/or Ag β-TCP has good osteogenesis and proper mechanical properties; it will be applied as a prospective biomaterial in the area of bone repair.
Collapse
Affiliation(s)
- Junjian Che
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| | - Tao Sun
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Xueman Lv
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Yunhai Ma
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
| | - Guoqin Liu
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| | - Lekai Li
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
| | - Shengwang Yuan
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| | - Xueying Fan
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| |
Collapse
|
34
|
Umrath F, Schmitt LF, Kliesch SM, Schille C, Geis-Gerstorfer J, Gurewitsch E, Bahrini K, Peters F, Reinert S, Alexander D. Mechanical and Functional Improvement of β-TCP Scaffolds for Use in Bone Tissue Engineering. J Funct Biomater 2023; 14:427. [PMID: 37623671 PMCID: PMC10455746 DOI: 10.3390/jfb14080427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Autologous bone transplantation is still considered as the gold standard therapeutic option for bone defect repair. The alternative tissue engineering approaches have to combine good hardiness of biomaterials whilst allowing good stem cell functionality. To become more useful for load-bearing applications, mechanical properties of calcium phosphate materials have to be improved. In the present study, we aimed to reduce the brittleness of β-tricalcium phosphate (β-TCP). For this purpose, we used three polymers (PDL-02, -02a, -04) for coatings and compared resulting mechanical and degradation properties as well as their impact on seeded periosteal stem cells. Mechanical properties of coated and uncoated β-TCP scaffolds were analyzed. In addition, degradation kinetics analyses of the polymers employed and of the polymer-coated scaffolds were performed. For bioactivity assessment, the scaffolds were seeded with jaw periosteal cells (JPCs) and cultured under untreated and osteogenic conditions. JPC adhesion/proliferation, gene and protein expression by immunofluorescent staining of embedded scaffolds were analyzed. Raman spectroscopy measurements gave an insight into material properties and cell mineralization. PDL-coated β-TCP scaffolds showed a significantly higher flexural strength in comparison to that of uncoated scaffolds. Degradation kinetics showed considerable differences in pH and electrical conductivity of the three different polymer types, while the core material β-TCP was able to stabilize pH and conductivity. Material differences seemed to have an impact on JPC proliferation and differentiation potential, as reflected by the expression of osteogenic marker genes. A homogenous cell colonialization of coated and uncoated scaffolds was detected. Most interesting from a bone engineer's point of view, the PDL-04 coating enabled detection of cell matrix mineralization by Raman spectroscopy. This was not feasible with uncoated scaffolds, due to intercalating effects of the β-TCP material and the JPC-formed calcium phosphate. In conclusion, the use of PDL-04 coating improved the mechanical properties of the β-TCP scaffold and promoted cell adhesion and osteogenic differentiation, whilst allowing detection of cell mineralization within the ceramic core material.
Collapse
Affiliation(s)
- Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
- Department of Orthopedic Surgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Lukas-Frank Schmitt
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
| | | | - Christine Schille
- Section Medical Materials Science and Technology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.S.); (J.G.-G.)
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, 72076 Tübingen, Germany; (C.S.); (J.G.-G.)
| | | | | | - Fabian Peters
- Curasan AG, 65933 Frankfurt, Germany; (E.G.); (K.B.); (F.P.)
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (L.-F.S.); (S.R.)
| |
Collapse
|
35
|
Lu Q, Diao J, Wang Y, Feng J, Zeng F, Yang Y, Kuang Y, Zhao N, Wang Y. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioact Mater 2023; 26:413-424. [PMID: 36969106 PMCID: PMC10036893 DOI: 10.1016/j.bioactmat.2023.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/28/2023] Open
Abstract
Bone bionics and structural engineering have sparked a broad interest in optimizing artificial scaffolds for better bone regeneration. However, the mechanism behind scaffold pore morphology-regulated bone regeneration remains unclear, making the structure design of scaffolds for bone repair challenging. To address this issue, we have carefully assessed diverse cell behaviors of bone mesenchymal stem cells (BMSCs) on the β-tricalcium phosphate (β-TCP) scaffolds with three representative pore morphologies (i.e., cross column, diamond, and gyroid pore unit, respectively). Among the scaffolds, BMSCs on the β-TCP scaffold with diamond pore unit (designated as D-scaffold) demonstrated enhanced cytoskeletal forces, elongated nucleus, faster cell mobility, and better osteogenic differentiation potential (for example, the alkaline phosphatase expression level in D-scaffold were 1.5-2 times higher than other groups). RNA-sequencing analysis and signaling pathway intervention revealed that Ras homolog gene family A (RhoA)/Rho-associated kinase-2 (ROCK2) has in-depth participated in the pore morphology-mediated BMSCs behaviors, indicating an important role of mechanical signaling transduction in scaffold-cell interactions. Finally, femoral condyle defect repair results showed that D-scaffold could effectively promote endogenous bone regeneration, of which the osteogenesis rate was 1.2-1.8 times higher than the other groups. Overall, this work provides insights into pore morphology-mediated bone regeneration mechanisms for developing novel bioadaptive scaffold designs.
Collapse
Affiliation(s)
- Qiji Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Jingjing Diao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Medical Devices Research & Testing Center of SCUT, Guangzhou, 510006, PR China
| | - Yingqu Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Jianlang Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Fansen Zeng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Yan Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Yudi Kuang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510535, PR China
- Corresponding author. National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| | - Naru Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510535, PR China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| |
Collapse
|
36
|
Trzaskowska M, Vivcharenko V, Franus W, Goryczka T, Barylski A, Przekora A. Optimization of the Composition of Mesoporous Polymer-Ceramic Nanocomposite Granules for Bone Regeneration. Molecules 2023; 28:5238. [PMID: 37446899 DOI: 10.3390/molecules28135238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Difficult-to-treat bone damage resulting from metabolic bone diseases, mechanical injuries, or tumor resection requires support in the form of biomaterials. The aim of this research was to optimize the concentration of individual components of polymer-ceramic nanocomposite granules (nanofilled polymer composites) for application in orthopedics and maxillofacial surgery to fill small bone defects and stimulate the regeneration process. Two types of granules were made using nanohydroxyapatite (nanoHA) and chitosan-based matrix (agarose/chitosan or curdlan/chitosan), which served as binder for ceramic nanopowder. Different concentrations of the components (nanoHA and curdlan), foaming agent (sodium bicarbonate-NaHCO3), and chitosan solvent (acetic acid-CH3COOH) were tested during the production process. Agarose and chitosan concentrations were fixed to be 5% w/v and 2% w/v, respectively, based on our previous research. Subsequently, the produced granules were subjected to cytotoxicity testing (indirect and direct contact methods), microhardness testing (Young's modulus evaluation), and microstructure analysis (porosity, specific surface area, and surface roughness) in order to identify the biomaterial with the most favorable properties. The results demonstrated only slight differences among the resultant granules with respect to their microstructural, mechanical, and biological properties. All variants of the biomaterials were non-toxic to a mouse preosteoblast cell line (MC3T3-E1), supported cell growth on their surface, had high porosity (46-51%), and showed relatively high specific surface area (25-33 m2/g) and Young's modulus values (2-10 GPa). Apart from biomaterials containing 8% w/v curdlan, all samples were predominantly characterized by mesoporosity. Nevertheless, materials with the greatest biomedical potential were obtained using 5% w/v agarose, 2% w/v chitosan, and 50% or 70% w/v nanoHA when the chitosan solvent/foaming agent ratio was equal to 2:2. In the case of the granules containing curdlan/chitosan matrix, the most optimal composition was as follows: 2% w/v chitosan, 4% w/v curdlan, and 30% w/v nanoHA. The obtained test results indicate that both manufactured types of granules are promising implantable biomaterials for filling small bone defects that can be used in maxillofacial surgery.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618 Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
37
|
Yudin VV, Shurygina MP, Egorikhina MN, Aleynik DY, Linkova DD, Charykova IN, Kovylin RS, Chesnokov SA. Pore Structure Tuning of Poly-EGDMA Biomedical Material by Varying the O-Quinone Photoinitiator. Polymers (Basel) 2023; 15:polym15112558. [PMID: 37299356 DOI: 10.3390/polym15112558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Porous polymer monoliths with thicknesses of 2 and 4 mm were obtained via polymerization of ethylene glycol dimethacrylate (EGDMA) under the influence visible-light irradiation in the presence of a 70 wt% 1-butanol porogenic agent and o-quinone photoinitiators. The o-quinones used were: 3,5-di-tret-butyl-benzoquinone-1,2 (35Q), 3,6-di-tret-butyl-benzoquinone-1,2 (36Q), camphorquinone (CQ), and 9,10-phenanthrenequinone (PQ). Porous monoliths were also synthesized from the same mixture but using 2,2'-azo-bis(iso-butyronitrile) (AIBN) at 100 °C instead o-quinones. According to the results of scanning electron microscopy, all the resulting samples were conglomerates of spherical, polymeric particles with pores between them. Use of mercury porometry showed that the interconnected pore systems of all the polymers were open. The average pore size, Dmod, in such polymers strongly depended on both the nature of the initiator and the method of initiation of polymerization. For polymers obtained in the presence of AIBN, the Dmod value was as low as 0.8 μm. For polymers obtained via photoinitiation in the presence of 36Q, 35Q, CQ, and PQ, the Dmod values were significantly greater, i.e., 9.9, 6.4, 3.6, and 3.7 μm, respectively. The compressive strength and Young's modulus of the porous monoliths increased symbatically in the series PQ < CQ < 36Q < 35Q < AIBN with decreasing proportions of large pores (over 12 μm) in their polymer structures. The photopolymerization rate of the EGDMA and 1-butanol, 30:70 wt% mixture was maximal for PQ and minimal for 35Q. All polymers tested were non-cytotoxic. Based on the data from MTT testing, it can be noted that the polymers obtained via photoinitiation were characterized by their positive effect on the proliferative activity of human dermal fibroblasts. This makes them promising osteoplastic materials for clinical trials.
Collapse
Affiliation(s)
- Vladimir V Yudin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
| | - Margarita P Shurygina
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
| | - Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Diana Ya Aleynik
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Daria D Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Irina N Charykova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| | - Roman S Kovylin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
| | - Sergey A Chesnokov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinina, 603950 Nizhny Novgorod, Russia
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
38
|
Hydroxyapatite or Fluorapatite—Which Bioceramic Is Better as a Base for the Production of Bone Scaffold?—A Comprehensive Comparative Study. Int J Mol Sci 2023; 24:ijms24065576. [PMID: 36982648 PMCID: PMC10059826 DOI: 10.3390/ijms24065576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Hydroxyapatite (HAP) is the most common calcium phosphate ceramic that is used in biomedical applications, e.g., as an inorganic component of bone scaffolds. Nevertheless, fluorapatite (FAP) has gained great attention in the area of bone tissue engineering in recent times. The aim of this study was a comprehensive comparative evaluation of the biomedical potential of fabricated HAP- and FAP-based bone scaffolds, to assess which bioceramic is better for regenerative medicine applications. It was demonstrated that both biomaterials had a macroporous microstructure, with interconnected porosity, and were prone to slow and gradual degradation in a physiological environment and in acidified conditions mimicking the osteoclast-mediated bone resorption process. Surprisingly, FAP-based biomaterial revealed a significantly higher degree of biodegradation than biomaterial containing HAP, which indicated its higher bioabsorbability. Importantly, the biomaterials showed a similar level of biocompatibility and osteoconductivity regardless of the bioceramic type. Both scaffolds had the ability to induce apatite formation on their surfaces, proving their bioactive property, that is crucial for good implant osseointegration. In turn, performed biological experiments showed that tested bone scaffolds were non-toxic and their surfaces promoted cell proliferation and osteogenic differentiation. Moreover, the biomaterials did not exert a stimulatory effect on immune cells, since they did not generate excessive amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS), indicating a low risk of inflammatory response after implantation. In conclusion, based on the obtained results, both FAP- and HAP-based scaffolds have an appropriate microstructure and high biocompatibility, being promising biomaterials for bone regeneration applications. However, FAP-based biomaterial has higher bioabsorbability than the HAP-based scaffold, which is a very important property from the clinical point of view, because it enables a progressive replacement of the bone scaffold with newly formed bone tissue.
Collapse
|
39
|
Zhu Y, Guo J, Sheng Y, Xu J, Qin L, Ngai T. Injectable magnesium oxychloride cement foam-derived scaffold for augmenting osteoporotic defect repair. J Colloid Interface Sci 2023; 640:199-210. [PMID: 36863177 DOI: 10.1016/j.jcis.2023.02.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
HYPOTHESIS Cement augmentation has been widely applied to promote osteoporotic fracture healing, whereas the existing calcium-based products suffer from the excessively slow degradation, which may impede bone regeneration. Magnesium oxychloride cement (MOC) shows promising biodegradation tendency and bioactivity, which is expected to be a potential alternative to the classic calcium-based cement for hard-tissue-engineering applications. EXPERIMENTS Here, a hierarchical porous MOC foam (MOCF)-derived scaffold with favorable bio-resorption kinetic and superior bioactivity is fabricated through Pickering foaming technique. Then, a systematic characterization in terms of material properties and in vitro biological performance have been conducted to evaluate the feasibility of the as-prepared MOCF scaffold to be a bone-augmenting material for treating osteoporotic defects. FINDINGS The developed MOCF shows excellent handling performance in the paste state, while exhibiting sufficient load-bearing capacity after solidification. In comparison with the traditional bone cement, calcium deficient hydroxyapatite (CDHA), our porous MOCF scaffold demonstrates a much higher biodegradation tendency and better cell recruitment ability. Additionally, the eluted bioactive ions by MOCF commits to a biologically inductive microenvironment, where the in vitro osteogenesis is significantly enhanced. It is anticipated that this advanced MOCF scaffold will be competitive for clinical therapies to augment osteoporotic bone regeneration.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, PR China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, PR China
| | - Yifeng Sheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, PR China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, PR China.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong 999077, PR China.
| |
Collapse
|
40
|
Pádua AS, Figueiredo L, Silva JC, Borges JP. Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Prog Biomater 2023; 12:137-153. [PMID: 36757613 PMCID: PMC10154456 DOI: 10.1007/s40204-023-00217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.
Collapse
Affiliation(s)
- Ana Sofia Pádua
- I3N/CENIMAT, Materials Science Department, NOVA School of Science and Technology, New University of Lisbon, Lisbon, Portugal
| | - Lígia Figueiredo
- Bioceramed S.A., Rua José Gomes Ferreira 1, Arm D, São Julião Do Tojal, 2660-360, Loures, Portugal
| | - Jorge Carvalho Silva
- I3N/CENIMAT, Physics Department, NOVA School of Science and Technology, New University of Lisbon, Caparica, Portugal.
| | - João Paulo Borges
- I3N/CENIMAT, Materials Science Department, NOVA School of Science and Technology, New University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
41
|
Sordi MB, Fredel MC, da Cruz ACC, Sharpe PT, de Souza Magini R. Enhanced bone tissue regeneration with hydrogel-based scaffolds by embedding parathyroid hormone in mesoporous bioactive glass. Clin Oral Investig 2023; 27:125-137. [PMID: 36018448 DOI: 10.1007/s00784-022-04696-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/18/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To evaluate hydrogel-based scaffolds embedded with parathyroid hormone (PTH)-loaded mesoporous bioactive glass (MBG) on the enhancement of bone tissue regeneration in vitro. MATERIALS AND METHODS MBG was produced via sol-gel technique followed by PTH solution imbibition. PTH-loaded MBG was blended into the hydrogels and submitted to a lyophilisation process associated with a chemical crosslinking reaction to the production of the scaffolds. Characterisation of the MBG and PTH-loaded MBG scaffolds, including the scanning electron microscope (SEM) connected with an X-ray detector (EDX), Fourier transform infrared (FTIR), compression strength, rheological measurements, swelling and degradation rates, and PTH release analysis, were performed. Also, bioactivity using simulated-body fluid (SBF), biocompatibility (MTT), and osteogenic differentiation analyses (von Kossa and Alizarin Red stainings, and μ-computed tomography, μCT) of the scaffolds were carried out. RESULTS SEM images demonstrated MBG particles dispersed into the hydrogel-based scaffold structure, which was homogeneously porous and well interconnected. EDX and FTIR revealed large amounts of carbon, oxygen, sodium, and silica in the scaffold composition. Bioactivity experiments revealed changes on sample surfaces over the analysed period, indicating the formation of carbonated hydroxyapatite; however, the chemical composition remained stable. PTH-loaded hydrogel-based scaffolds were biocompatible for stem cells from human-exfoliated deciduous teeth (SHED). A high quantity of calcium deposits on the extracellular matrix of SHED was found for PTH-loaded hydrogel-based scaffolds. μCT images showed MBG particles dispersed into the scaffolds' structure, and a porous, lamellar, and interconnected hydrogel architecture. CONCLUSIONS PTH-loaded hydrogel-based scaffolds demonstrated consistent morphology and physicochemical properties for bone tissue regeneration, as well as bioactivity, biocompatibility, and osteoinductivity in vitro. Thus, the scaffolds presented here are recommended for future studies on 3D printing. CLINICAL RELEVANCE Bone tissue regeneration is still a challenge for several approaches to oral and maxillofacial surgeries, though tissue engineering applying SHED, scaffolds, and osteoinductive mediators might help to overcome this clinical issue.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Centre for Dental Implants Research (CEPID), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy's Hospital, King's College London, London, UK
- Applied Virology Laboratory (LVA), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
| | - Márcio Celso Fredel
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- Centre for Dental Implants Research (CEPID), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil.
- Applied Virology Laboratory (LVA), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil.
| | - Paul Thomas Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy's Hospital, King's College London, London, UK
| | - Ricardo de Souza Magini
- Centre for Dental Implants Research (CEPID), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
| |
Collapse
|
42
|
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Indexed: 12/23/2022]
Abstract
As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Chengbin Yue
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin, 150080, P. R. China
| |
Collapse
|
43
|
Development and Characterization of Functional Polylactic Acid/Chitosan Porous Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14235079. [PMID: 36501473 PMCID: PMC9739485 DOI: 10.3390/polym14235079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we developed and characterized various open-cell composite scaffolds for bone regeneration. These scaffolds were made from Polylactic acid (PLA) as the scaffold matrix biopolymeric phase, and chitosan (CS) and chitosan-grafted-PLA (CS-g-PLA) copolymer as the dispersed biopolymeric phase. As a first step, successful grafting of PLA onto CS backbone was executed and confirmed by both FTIR and XPS. Mechanical characterization confirmed that adding CS or CS-g-PLA to the intrinsically rigid PLA made their corresponding PLA/CS and PLA/CS-g-PLA composite scaffolds more flexible under compression. This flexibility was higher for the latter due to the improved compatibility between PLA and CS-g-PLA copolymer. The hydrolytic stability of both PLA/CS and PLA/CS-g-PLA composite scaffolds inside phosphate-buffered saline (PBS) solution, as well as MG-63 osteoblast cell adhesion and proliferation inside both scaffolds, were characterized. The corresponding results revealed that PLA/CS composite scaffolds showed hydrolytic degradation due to the cationic properties of CS. However, modified PLA/CS-g-PLA scaffolds were hydrolytically stable due to the improved interfacial adhesion between the PLA matrix and CS-g-PLA copolymer. Finally, biological characterization was done for both PLA/CS and PLA/CS-g-PLA composite scaffolds. Contrarily to what was observed for uncompatibilized PLA/CS scaffolds, compatibilized PLA/CS-g-PLA scaffolds showed a high MG-63 osteoblast cell proliferation after three and five days of cell culture. Moreover, it was observed that cell proliferation increased with CS-g-PLA content. This suggests that the PLA/CS-g-PLA composite scaffolds could be a potential solution for bone regeneration.
Collapse
|
44
|
Chen H, Shen M, Shen J, Li Y, Wang R, Ye M, Li J, Zhong C, Bao Z, Yang X, Li X, Gou Z, Xu S. A new injectable quick hardening anti-collapse bone cement allows for improving biodegradation and bone repair. BIOMATERIALS ADVANCES 2022; 141:213098. [PMID: 36063576 DOI: 10.1016/j.bioadv.2022.213098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The development of injectable cement-like biomaterials via a minimally invasive approach has always attracted considerable clinical interest for modern bone regeneration and repair. Although α-tricalcium phosphate (α-TCP) powders may readily react with water to form hydraulic calcium-deficient hydroxyapatite (CDHA) cement, its long setting time, poor anti-collapse properties, and low biodegradability are suboptimal for a variety of clinical applications. This study aimed to develop new injectable α-TCP-based bone cements via strontium doping, α-calcium sulfate hemihydrate (CSH) addition and liquid phase optimization. A combination of citric acid and chitosan was identified to facilitate the injectable and anti-washout properties, enabling higher resistance to structure collapse. Furthermore, CSH addition (5 %-15 %) was favorable for shortening the setting time (5-20 min) and maintaining the compressive strength (10-14 MPa) during incubation in an aqueous buffer medium. These α-TCP-based composites could also accelerate the biodegradation rate and new bone regeneration in rabbit lateral femoral bone defect models in vivo. Our studies demonstrate that foreign ion doping, secondary phase addition and liquid medium optimization could synergistically improve the physicochemical properties and biological performance of α-TCP-based bone cements, which will be promising biomaterials for repairing bone defects in situations of trauma and diseased bone.
Collapse
Affiliation(s)
- Huaizhi Chen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Jian Shen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Yifan Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Ruo Wang
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Meihan Ye
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Jiafeng Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Cheng Zhong
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xigong Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Sanzhong Xu
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
45
|
Dellago B, Altun AA, Liska R, Baudis S. Exploring the limits of toughness enhancers for
3D
printed photopolymers as bone replacement materials. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Barbara Dellago
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing Vienna Austria
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Altan Alpay Altun
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing Vienna Austria
- Lithoz GmbH Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Stefan Baudis
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing Vienna Austria
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| |
Collapse
|
46
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
47
|
Walther AR, Ditzel N, Kassem M, Andersen MØ, Hedegaard MAB. In vivo non-invasive monitoring of tissue development in 3D printed subcutaneous bone scaffolds using fibre-optic Raman spectroscopy. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100059. [PMID: 36824488 PMCID: PMC9934492 DOI: 10.1016/j.bbiosy.2022.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022] Open
Abstract
The development of novel biomaterials for regenerative therapy relies on the ability to assess tissue development, quality, and similarity with native tissue types in in vivo experiments. Non-invasive imaging modalities such as X-ray computed tomography offer high spatial resolution but limited biochemical information while histology and biochemical assays are destructive. Raman spectroscopy is a non-invasive, label-free and non-destructive technique widely applied for biochemical characterization. Here we demonstrate the use of fibre-optic Raman spectroscopy for in vivo quantitative monitoring of tissue development in subcutaneous calcium phosphate scaffolds in mice over 16 weeks. Raman spectroscopy was able to quantify the time dependency of different tissue components related to the presence, absence, and quantity of mesenchymal stem cells. Scaffolds seeded with stem cells produced 3-5 times higher amount of collagen-rich extracellular matrix after 16 weeks implantation compared to scaffolds without. These however, showed a 2.5 times higher amount of lipid-rich tissue compared to implants with stem cells. Ex vivo micro-computed tomography and histology showed stem cell mediated collagen and bone development. Histological measures of collagen correlated well with Raman derived quantifications (correlation coefficient in vivo 0.74, ex vivo 0.93). In the absence of stem cells, the scaffolds were largely occupied by adipocytes. The technique developed here could potentially be adapted for a range of small animal experiments for assessing tissue engineering strategies at the biochemical level.
Collapse
Affiliation(s)
- Anders Runge Walther
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Nicholas Ditzel
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Moustapha Kassem
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Morten Østergaard Andersen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Martin Aage Barsøe Hedegaard
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
48
|
Yusoff NISM, Tham WH, Wahit MU, Abdul Kadir MR, Wong T. The effect of hydroxyapatite filler on biodegradable poly(sorbitol sebacate malate) composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Noor Izyan Syazana Mohd Yusoff
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Weng Hong Tham
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Johor Malaysia
| |
Collapse
|
49
|
Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering. Int J Biol Macromol 2022; 218:9-21. [PMID: 35835309 DOI: 10.1016/j.ijbiomac.2022.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Poly (L-lactic acid) (PLLA)-based biocomposites have been used in tissue engineering applications because of their reasonable biocompatibility and mechanical properties. However, the imperfect bioactive and mechanical properties of the composite make it difficult to be used in the region of bone defects that require high load-bearing. Therefore, this study introduced two fabricating strategies to induce mechanically and biologically enhanced hydroxyapatite (HA)/PLLA biocomposites. By introducing an in situ plasma treatment, which was simultaneously applied during the 3D-printing process, followed by the thermal annealing process, the flexural modulus of the composite was increased by 2.1-fold compared to the normal HA/PLLA composite. Furthermore, using the combinational process, efficient coating of bioactive material [decellularized extracellular matrix (dECM) derived from porcine bones] was possible. The fabricated biocomposite scaffold was assessed for various in vitro cellular activities such as cell proliferation and osteogenic activity. Based on the mechanical and biological studies, the HA/PLLA/dECM biocomposite scaffold is one of the promising scaffolds that can be applied in bone tissue regeneration.
Collapse
|
50
|
Lavagnini IR, Campos JV, Osiro D, Ferreira JA, Colnago LA, Pallone EMJA. Influence of alumina substrates open porosity on calcium phosphates formation produced by the biomimetic method. Prog Biomater 2022; 11:263-271. [PMID: 35739413 DOI: 10.1007/s40204-022-00193-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
We evaluated the influence of the open porosity of alumina (Al2O3) substrates on the phase formation of calcium phosphates deposited onto it surface. The Al2O3 substrates were prepared with different porosities by the foam-gelcasting method associated with different amounts of polyethylene beads. The substrates were coated biomimetically for 14 and 21 days of incubation in a simulated body fluid (SBF). Scanning electron microscopy characterisation and X-ray computed microtomography showed that the increase in the number of beads provided an increase in the open porosity. The X-ray diffraction and infrared spectroscopy showed that the biomimetic method was able to form different phases of calcium phosphates. It was observed that the increase in the porosity favoured the formation of β-tricalcium phosphate for both incubation periods. The incubation period and the porosity of the substrates can influence the phases and the amount of calcium phosphates formed. Thus, it is possible to target the best application for the biomaterial produced.
Collapse
Affiliation(s)
- Isabela R Lavagnini
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.
| | - João V Campos
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Denise Osiro
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Julieta A Ferreira
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Luiz A Colnago
- Brazilian Agricultural Research Corporation, EMBRAPA Instrumentation, Rua Quinze de novembro, 1500/1501, São Carlos, SP, 13561-206, Brazil
| | - Eliria M J A Pallone
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.,Department of Biosystem Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|