1
|
Liang W, Zhou C, Zhang H, Bai J, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Pioneering nanomedicine in orthopedic treatment care: a review of current research and practices. Front Bioeng Biotechnol 2024; 12:1389071. [PMID: 38860139 PMCID: PMC11163052 DOI: 10.3389/fbioe.2024.1389071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Luo H, Diao X, Qian F, Shi W, Li K, Liu H, Wu Y, Shen J, Xin H. Fabrication of a micro/nanocomposite structure on the surface of high oxygen concentration titanium to promote bone formation. BIOMATERIALS ADVANCES 2023; 154:213631. [PMID: 37757645 DOI: 10.1016/j.bioadv.2023.213631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/27/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
This study investigated the properties of the micro/nano composite structure on the surface of high oxygen concentration titanium (HOC-Ti) after anodic oxidation modification (HOC-NT) and evaluated its biocompatibility as a dental implant material in vitro and in vivo. HOC-Ti was produced by titanium powders and rutile powders using the powder metallurgy method. Its surface was modified by anodic oxidation. After detecting the electrochemical characteristics, the surface properties of HOC-NT were investigated. MC3T3 and MLO-Y4 cells were employed to evaluate the biocompatibility of HOC-NT and cocultured to study the effects of the changes in osteocytes induced by HOC-NT on osteoblasts. While, its possible mechanism was investigated. In addition, osseointegration around the HOC-NT implant was investigated through in vivo experiments. The results showed that a unique micronano composite structure on the HOC-Ti surface with excellent hydrophilicity and suitable surface roughness was created after anodic oxidation promoted by its electrochemical characteristics. The YAP protein may play an important role in regulating bone remodeling by β-catenin and Rankl/OPG Signaling Pathways. An in vivo study also revealed an accelerated formation rate of new bone and more stable osseointegration around the HOC-NT implant. In view of all experimental results, it could be concluded that the unique morphology of HOC-NT has enhanced physicochemical and biological properties. The promotion of bone formation around implants indicated the feasibility of HOC-NT for applications in oral implants.
Collapse
Affiliation(s)
- Huiwen Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fei Qian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wendi Shi
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jianghua Shen
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Li S, Liu H, Siddiqui MA, Li Y, Wang H, Zhang SY, Ren L, Yang K. Corrosion Behavior and Bio-Functions of the Ultrafine-Grained Ti6Al4V-5Cu Alloy with a Dual-Phase Honeycomb Shell Structure in Simulated Body Fluid. ACS Biomater Sci Eng 2023; 9:2362-2375. [PMID: 37024434 DOI: 10.1021/acsbiomaterials.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Titanium alloys are widely used in biomedical applications. However, cases of implant failure due to fatigue fracture and bacterial infection are common. In addition, implants are susceptible to metal ions (Al, V) released by long-term exposure to human body fluids, which causes neuropathy, mental disorders, and other diseases. Thus, development of novel materials to achieve long-term safety of implants is currently a research hotspot. Recently, our research group has developed an ultrafine-grained Ti6Al4V-5Cu alloy with a unique "dual-phase honeycomb shell" (DPHS) structure, which possesses high fatigue strength and stability. This study further affirmed its higher corrosion behavior, antibacterial properties, and cytocompatibility compared to the coarse-grained Ti6Al4V and Ti6Al4V-5Cu alloys. The ultrafine-grained structure of Ti6Al4V-5Cu having DPHS increased the proportion of phases (Cu-rich phases, β-phase, and Ti2Cu intermetallic phase) with a lower surface potential. It was observed that the developed microstructure was conducive to a stable configuration of the oxide (passive) layer on the alloy surface. In addition, the low-phase interfacial energies of the ultrafine-grained structure with DPHS even facilitated the improvement of the denseness of the protective passive film and eventually enhanced the corrosion behavior. Besides, the fine-Cu-rich phases and the micro-galvanic couples formed between them and the matrix significantly increased the contact frequency of bacteria, thus increasing the contact sterilization efficiency of the ultrafine-grained Ti6Al4V-5Cu alloy. These results showed that the new ultrafine-grained Ti6Al4V-5Cu alloy has excellent corrosion resistance and biological functions for clinical application.
Collapse
Affiliation(s)
- Susu Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Hui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Muhammad Ali Siddiqui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Yi Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Hai Wang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Shu Yuan Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Ling Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Binzhou Institute of Technology, Shandong Key Laboratory of Advanced Aluminum Materials and Technology, Binzhou 256606, China
| | - Ke Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
4
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
5
|
Hashemi PM, Borhani E, Nourbakhsh MS. Commercially pure titanium modification to enhance corrosion behavior and osteoblast response by ECAP for biomedical applications. J Appl Biomater Funct Mater 2022. [DOI: 10.1177/22808000221095234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
When it comes to using bio-metals, the chemical and biocompatibility properties of titanium led to its widespread use in biomedical implants. However, pure titanium possesses lower mechanical properties than Ti alloys containing cytotoxic elements. Severe plastic deformation (SPD) techniques were able to cause a significant strength increase, corrosion behavior improvement, and the release of the alloying elements. In this study, the ECAP process was performed on commercially pure titanium with a square cross-section at two and four passes, which resulted in a finer grain size and a more uniform microstructure. In order to improve cell behaviors, etch treatment was performed to produce nano-rough and nano-texture surfaces for all Ti samples. The effect of surface etching on corrosion, surface roughness, and cell behaviors on ECAP and untreated samples was also investigated. Optical/Field Emission Scanning Electron Microscopy, Atomic Force Microscopy, and X-Ray Diffraction were used to study the microstructural characterizations of samples. In addition, the impact of grain structure on the contact angle, electrochemical corrosion behavior, osteoblast response, and cell viability was investigated. The titanium that was ECAPed four times provided finer grains (200 nm) than the unprocessed sample (25 µm). The potentiodynamic polarization test revealed that corrosion resistance of ECAPed samples was enhanced, which was associated with grain refinement, affecting the passive film formation. Corrosion resistance and wettability experienced an apparent increase after each ECAP pass. In conclusion, improvement of grain size and surface roughness was due to the simultaneous effect of ECAP and etching treatment that led to the osteoblast response and cellular activity of samples.
Collapse
Affiliation(s)
- Peyman Mahmoudi Hashemi
- Biomaterial Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Ehsan Borhani
- Nano-materials Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | | |
Collapse
|
6
|
Abstract
Metallic materials have been widely used as orthopedic implants in clinics for their good mechanical, physical, and chemical properties, but their slow osseointegration rate is still one of the main issues causing implantation failure. Grain refinement has recently attracted wide attention for its effective improvement of cell–material interaction for biometals. In this review, the surface and bulk grain refinement mode and the influence of grain size reduction of various metallic materials including titanium, stainless steel, magnesium, zirconium, tantalum, and their alloys as well as NiTi shape memory alloys on the cell responses is summarized in detail. It is hoped that this review could help biomaterials-related researchers to understand the grain refinement of metallic materials in a timely manner, thus boosting the development of biomedical metals for clinical use.
Collapse
|
7
|
Fatigue Properties of Ti Alloys with an Ultrafine Grained Structure: Challenges and Achievements. METALS 2022. [DOI: 10.3390/met12020312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ultrafine-grained (UFG) structure formation in Ti alloys, by severe plastic deformation (SPD) processing and enhancement of their mechanical properties, including fatigue properties, has been demonstrated in numerous studies in the past 20 years. The present overview analyzes the fatigue properties achieved to date in Ti alloys subjected to SPD. Such aspects are examined as the effect of a UFG structure on the fatigue behavior of commercially pure (CP) Ti, two-phase Ti alloys, using the popular Ti-6Al-4V alloy as an example, as well as on the kinetics and mechanisms of fatigue failure. The prospects and problems of the practical application of UFG Ti materials in medicine and aircraft engine construction are discussed.
Collapse
|
8
|
Ibrahim AMH, Takacova M, Jelenska L, Csaderova L, Balog M, Kopacek J, Svastova E, Krizik P. The effect of surface modification of TiMg composite on the in-vitro degradation response, cell survival, adhesion, and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112259. [PMID: 34225844 DOI: 10.1016/j.msec.2021.112259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
This study is aimed to evaluate the influence of mechanical surface treatment on the degradation response, cell survival, adhesion, and proliferation of a TiMg composite material. Two sets of the TiMg samples with different surface characteristics were studied: i) as-machined samples (TiMg-T) and ii) samples with a mechanically modified surface (TiMg-P). Surface roughness was determined using a confocal microscope. Degradation rates (DR) were evaluated in artificial Plasma, HBSS, and NaCl 0.9%. The cell viability was evaluated using an MTT assay. The initial cell adhesion and spreading were investigated using the direct contact assay. An xCELLigence system was employed to provide real-time cell proliferation. The focal adhesion and cell morphological changes were also examined. The DR of TiMg-P decreased by ⁓5 times compared with that of TiMg-T. Surface of the TiMg-P specimens after 72 h exposure to either HBSS or Plasma was passivated by a layer enriched with bioactive Ca/P species. The cell viability of L929 and Saos-2 after 72 h incubation for TiMg-P was 94.6% and 94.8% compared with 73.8% and 74.3% obtained for TiMg-T, respectively. The direct contact assay showed that the initial adhesion and spreading of the L929 cells incubated with TiMg-P was more pronounced compared with that of TiMg-T. The proliferation rate of Saos-2 cells incubated with TiMg-P was higher when compared with that of TiMg-T, and was almost comparable to that of the DMEM-blank between the 24 and 72 h interval. TiMg-P had a pronounced difference in the number and area of Focal Adhesions (FA) compared with that of TiMg-T. The morphology of cells incubated with TiMg-P was not altered. The results confirmed that the smooth and less strained surface of the TiMg-P samples effectively improved the in-vitro degradation response, cell survival, adhesion, and proliferation.
Collapse
Affiliation(s)
- Ahmed Mohamed Hassan Ibrahim
- Institute of Materials and Machine Mechanics, The Slovak Academy of Sciences, Dubravska cesta 9, 84513 Bratislava, Slovakia; Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia; Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Paulinska 16, 91724 Trnava, Slovakia
| | - Martina Takacova
- Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lenka Jelenska
- Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lucia Csaderova
- Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Martin Balog
- Institute of Materials and Machine Mechanics, The Slovak Academy of Sciences, Dubravska cesta 9, 84513 Bratislava, Slovakia; Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia.
| | - Juraj Kopacek
- Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia; Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Eliska Svastova
- Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia; Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Peter Krizik
- Institute of Materials and Machine Mechanics, The Slovak Academy of Sciences, Dubravska cesta 9, 84513 Bratislava, Slovakia
| |
Collapse
|
9
|
The Effects of Chemical Etching and Ultra-Fine Grain Structure of Titanium on MG-63 Cells Response. METALS 2021. [DOI: 10.3390/met11030510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we study the influence of the surface properties of ultrafine grained (UFG) and coarse grained (CG) titanium on the morphology, viability, proliferation and differentiation of osteoblast-like MG-63 cells. Wet chemical etching in H2SO4/H2O2 and NH4OH/H2O2 solutions was used for producing surfaces with varying morphology, topography, composition and wettability. The topography and morphology have been studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition was determined by time of flight mass-spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). The results showed that it is possible to obtain samples with different compositions, hydrophilicity, topography and nanoscale or/and microscale structures by changing the etching time and the type of etching solution. It was found that developed topography and morphology can improve spreading and proliferation rate of MG-63 cells. A significant advantage of the samples of the UFG series in comparison with CG in adhesion, proliferation at later stages of cultivation (7 days), higher alkaline phosphatase (ALP) activity and faster achievement of its maximum values was found. However, there is no clear benefit of the UFG series on osteopontin (OPN) expression. All studied samples showed no cytotoxicity towards MG-63 cells and promoted their osteogenic differentiation.
Collapse
|
10
|
Chi Y, An S, Xu Y, Liu M, Zhang J. In vitro biocompatibility of a sandblasted, acid-etched HA composite coating on ultrafine-grained titanium. RSC Adv 2021; 11:6124-6130. [PMID: 35423127 PMCID: PMC8694837 DOI: 10.1039/d0ra10146j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
A sandblasted, acid-etching hydroxyapatite (SLA-HA) composite coating on ultrafine-grained titanium was synthesized by the sandblasting, acid etching and electrophoresis deposition. Mouse osteoblasts (MC3T3-E1) were cultured in vitro and inoculated on the SLA-HA composite coating of the ultrafine-grained titanium. Using ultrafine-grained titanium with SLA coating as the control group, the adhesion and proliferation of the osteoblasts were analyzed using the CCK-8 assay. The number and morphology of the cells were observed using a laser confocal microscope. Cells toxicity of the cytotoxicity to osteoblasts was studied by culturing them in an immersion solution of the SLA-HA composite coating. The hemolysis properties of the obtained material were assessed using fresh rabbit blood. Ultrafine-grained titanium with the SLA-HA composite coating was found to have no significant toxicity to osteoblasts, as well as good blood compatibility, playing a positive role in the adhesion of osteoblasts and promoting their proliferation and differentiation.
Collapse
Affiliation(s)
- Yanxia Chi
- Jiamusi University Jiamusi heilongjiang province China
| | - Sipeng An
- Jiamusi University Jiamusi heilongjiang province China
| | - Yunpeng Xu
- Jiamusi University Jiamusi heilongjiang province China
| | - Mingda Liu
- Jiamusi University Jiamusi heilongjiang province China
| | - Jie Zhang
- Jiamusi University Jiamusi heilongjiang province China
| |
Collapse
|
11
|
Wojtas D, Mzyk A, Kawałko J, Imbir G, Trembecka-Wójciga K, Marzec M, Jarzębska A, Maj Ł, Wierzbanowski K, Chulist R, Pachla W, Sztwiertnia K. Texture-Governed Cell Response to Severely Deformed Titanium. ACS Biomater Sci Eng 2021; 7:114-121. [PMID: 33347752 DOI: 10.1021/acsbiomaterials.0c01034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phenomenon of superior biological behavior observed in titanium processed by an unconventional severe plastic deformation method, that is, hydrostatic extrusion, has been described within the present study. In doing so, specimens varying significantly in the crystallographic orientation of grains, yet exhibiting comparable grain refinement, were meticulously investigated. The aim was to find the clear origin of enhanced biocompatibility of titanium-based materials, having microstructures scaled down to the submicron range. Texture, microstructure, and surface characteristics, that is, wettability, roughness, and chemical composition, were examined as well as protein adsorption tests and cell response studies were carried out. It has been concluded that, irrespective of surface properties and mean grain size, the (101̅0) crystallographic plane favors endothelial cell attachment on the surface of the severely deformed titanium. Interestingly, an enhanced albumin, fibronectin, and serum adsorption as well as clearly directional growth of the cells with preferentially oriented cell nuclei have been observed on the surfaces having (0001) planes exposed predominantly. Overall, the biological response of titanium fabricated by severe plastic deformation techniques is derived from the synergistic effect of surface irregularities, being the effect of refined microstructures, surface chemistry, and crystallographic orientation of grains rather than grain refinement itself.
Collapse
Affiliation(s)
- Daniel Wojtas
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, Kraków 30-059, Poland.,Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland
| | - Aldona Mzyk
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland.,Department of Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9700 RB, The Netherlands
| | - Jakub Kawałko
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, Kraków 30-059, Poland
| | - Gabriela Imbir
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland
| | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, Kraków 30-059, Poland
| | - Anna Jarzębska
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland
| | - Łukasz Maj
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland
| | - Krzysztof Wierzbanowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, Kraków 30-059, Poland
| | - Robert Chulist
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland
| | - Wacek Pachla
- Institute of High Pressure Physics (Unipress), Polish Academy of Sciences, Sokołowska 29/37, Warszawa 01-142, Poland
| | - Krzysztof Sztwiertnia
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Kraków 30-059, Poland
| |
Collapse
|
12
|
Perumal G, Grewal HS, Arora HS. Enhanced durability, bio-activity and corrosion resistance of stainless steel through severe surface deformation. Colloids Surf B Biointerfaces 2020; 194:111197. [PMID: 32569888 DOI: 10.1016/j.colsurfb.2020.111197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/27/2022]
Abstract
Owing to its good biocompatibility and low cost, stainless steel is one of the most widely utilized biomaterial. However, longtime assessment of stainless steel has shown problems related to material degradation, especially localized corrosion and bio-film formation. In addition, the leaching of toxic nickel and chromium ions from stainless steel leads to additional health complications. Here, we utilized submerged friction stir processing, a severe surface deformation technique for significantly enhancing its durability, bio-activity as well as antibacterial resistance. The processing was done with a wide variation in strain rates to produce tunable surface microstructure. High strain-rate processing resulted in nearly single-phase fine-grained microstructure, while slow strain-rate processing developed a dual-phase fine-grained microstructure. The bio-corrosion rate of processed steel was reduced by more than 60 % along with significant enhancement in the pitting resistance. The processed steel showed nearly no bacterial adhesion/biofilm formation, evaluated using S. aureus and E. coli bacterial strains. Further, the processed stainless steel surface demonstrated minimum leaching of the toxic elements, significantly enhancing its appeal for bio-implant applications. The observed behavior was explained based on the formation of a stable passive layer, rich in Cr2O3, as determined using x-ray photoelectron microscopy (XPS) and increased hydrophilicity.
Collapse
Affiliation(s)
- G Perumal
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India
| | - H S Grewal
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India
| | - H S Arora
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh, 201314, India.
| |
Collapse
|
13
|
In vitro and in vivo studies on pure Mg, Mg–1Ca and Mg–2Sr alloys processed by equal channel angular pressing. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Developing Nanostructured Ti Alloys for Innovative Implantable Medical Devices. MATERIALS 2020; 13:ma13040967. [PMID: 32098084 PMCID: PMC7078807 DOI: 10.3390/ma13040967] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/24/2022]
Abstract
Recent years have witnessed much progress in medical device manufacturing and the needs of the medical industry urges modern nanomaterials science to develop novel approaches for improving the properties of existing biomaterials. One of the ways to enhance the material properties is their nanostructuring by using severe plastic deformation (SPD) techniques. For medical devices, such properties include increased strength and fatigue life, and this determines nanostructured Ti and Ti alloys to be an excellent choice for the engineering of implants with improved design for orthopedics and dentistry. Various reported studies conducted in this field enable the fabrication of medical devices with enhanced functionality. This paper reviews recent development in the field of nanostructured Ti-based materials and provides examples of the use of ultra-fine grained Ti alloys in medicine.
Collapse
|
15
|
Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110289. [DOI: 10.1016/j.msec.2019.110289] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/19/2022]
|
16
|
On the Use of Functionally Graded Materials to Differentiate the Effects of Surface Severe Plastic Deformation, Roughness and Chemical Composition on Cell Proliferation. METALS 2019. [DOI: 10.3390/met9121344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Additive manufacturing allows the manufacture of parts made of functionally graded materials (FGM) with a chemical gradient. This research work underlines that the use of FGM makes it possible to study mechanical, microstructural or biological characteristics while minimizing the number of required samples. The application of severe plastic deformation (SPD) by surface mechanical attrition treatment (SMAT) on FGM brings new insights on a major question in this field: which is the most important parameter between roughness, chemistry and microstructure modification on biocompatibility? Our study demonstrates that roughness has a large impact on adhesion while microstructure refinement plays a key role during the early stage of proliferation. After several days, chemistry is the main parameter that holds sway in the proliferation stage. With this respect, we also show that niobium has a much better biocompatibility than molybdenum when alloyed with titanium.
Collapse
|
17
|
Feng F, Wu Y, Xin H, Chen X, Guo Y, Qin D, An B, Diao X, Luo H. Surface Characteristics and Biocompatibility of Ultrafine-Grain Ti after Sandblasting and Acid Etching for Dental Implants. ACS Biomater Sci Eng 2019; 5:5107-5115. [PMID: 33455258 DOI: 10.1021/acsbiomaterials.9b00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated the surface characteristics and biocompatibility of ultrafine-grain pure titanium (UFG Ti) after sandblasting and acid etching (SLA) treatment to determine an effective method for modification of UFG Ti dental implants. The UFG Ti was processed by equal-channel angular pressing (ECAP). The micromorphology, roughness, and wettability of its surface were studied after SLA modification in different conditions. Rat bone marrow mesenchymal stem cells were subsequently seeded onto the specimens to evaluate the biocompatibility of cell adhesion, proliferation, and differentiation compared with commercially pure titanium (CP Ti). The results showed that surface characteristics of UFG Ti were affected by the pressure of sandblasting and acid etching time in addition to material properties. The favorable hierarchical porous structure that would benefit cell adhesion was formed on the UFG Ti surface when the pressure of sandblasting was 0.6 MPa and the acid etching time was 5 min; at this time, UFG Ti promoted proliferation and differentiation to a greater extent than CP Ti because of its excellent wettability. From this study, it could be seen that UFG Ti can be used as a dental implant material after proper surface modification.
Collapse
Affiliation(s)
- Fan Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoqiang Chen
- Department of Plastic and Burn Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongyang Qin
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Baili An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiwen Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
18
|
Wu Y, Feng F, Xin H, Li K, Tang Z, Guo Y, Qin D, An B, Diao X, Dou C. Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization. ACS Biomater Sci Eng 2019; 5:4122-4130. [DOI: 10.1021/acsbiomaterials.9b00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Fan Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Kai Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhongbin Tang
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dongyang Qin
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baili An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Chenyun Dou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
19
|
Chemical and Structural Characterization of Sandlasted Surface of Dental Implant using ZrO2 Particle with Different Shape. COATINGS 2019. [DOI: 10.3390/coatings9040223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The clinical success of dental implantation is associated with the phenomenon of osteointegration. Geometry and topography of the implant surface are critical for the short- and long-term success of an implantation. Modification of the surface of endosseous part of the implant with sandblasting was of special interest for our study. Taking into account the advantages of currently used ceramic abrasives: aluminum oxide, titanium oxide, calcium phosphate, these materials are able to break down during collision with the treated surface, the possibility of incorporation of their residues into the implant surface, as well as the difficulty of removing these residues. This paper aimed to determine the preferred composition and the shape of the abrasive, as well as the treatment regime for ZrO2 sandblasting modification of the surface of the endosseous part of the dental implant. Tetragonal and cubic solid solutions are based on ZrO2, as an abrasive that is applied for zirconium-niobium alloy sandblasting under different pressures. Optical and scanning electron microscopy, the physical and chemical state of the surface of implants as well as contact angle measurement and cell viability were used to assess surface after sandblasting. The results demonstrate the potential of using granular powders that are based on zirconium dioxide as an abrasive to create a rough surface on endosseous part of dental implants made from zirconium-based alloys. It does not lead to a significant change in the chemical composition of the surface layer of the alloy and it does not require subsequent etching in order to remove the abrasive particles. Based on structural and chemical characterization, as well as on cell viability and contact angle measurement, sandblasting by tetragonal ZrO2 powder in 4 atm. and an exposure time of 5 s provided the best surface for dental implant application.
Collapse
|
20
|
Perumal G, Chakrabarti A, Grewal HS, Pati S, Singh S, Arora HS. Enhanced antibacterial properties and the cellular response of stainless steel through friction stir processing. BIOFOULING 2019; 35:187-203. [PMID: 30913919 DOI: 10.1080/08927014.2019.1584794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Biofilm related bacterial infection is one of the primary causes of implant failure. Limiting bacterial adhesion and colonization of pathogenic bacteria is a challenging task in health care. Here, a highly simplistic processing technique for imparting antibacterial properties on a biomedical grade stainless steel is demonstrated. Low-temperature high strain-rate deformation achieved using submerged friction stir processing resulted in a nearly single phase ultra-fine grain structure. The processed stainless steel demonstrated improved antibacterial properties for both Gram-positive and Gram-negative bacteria, significantly impeding biofilm formation during the in vitro study. Also, the processed stainless steel showed better compatibility with human fibroblasts manifested through apparent cell spreading and proliferation. The substantial antibacterial properties of the processed steel are explained in terms of the favorable electronic characteristics of the metal-oxide and by using classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and the extended DLVO (XDLVO) approach at the cell-substrate interface.
Collapse
Affiliation(s)
- Gopinath Perumal
- a Surface Science and Tribology Laboratory, School of Mechanical Engineering , Shiv Nadar University , Greater Noida , Uttar Pradesh , India
| | - Amrita Chakrabarti
- b Department of Life Sciences, School of Natural Sciences , Shiv Nadar University , Greater Noida , Uttar Pradesh , India
| | - Harpreet S Grewal
- a Surface Science and Tribology Laboratory, School of Mechanical Engineering , Shiv Nadar University , Greater Noida , Uttar Pradesh , India
| | - Soumya Pati
- b Department of Life Sciences, School of Natural Sciences , Shiv Nadar University , Greater Noida , Uttar Pradesh , India
| | - Shailja Singh
- b Department of Life Sciences, School of Natural Sciences , Shiv Nadar University , Greater Noida , Uttar Pradesh , India
- c Special Center for Molecular Medicine , Jawaharlal Nehru University , New Delhi , India
| | - Harpreet S Arora
- a Surface Science and Tribology Laboratory, School of Mechanical Engineering , Shiv Nadar University , Greater Noida , Uttar Pradesh , India
| |
Collapse
|
21
|
Palán J, Procházka R, Džugan J, Nacházel J, Duchek M, Németh G, Máthis K, Minárik P, Horváth K. Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 Titanium Wires. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2522. [PMID: 30545032 PMCID: PMC6316910 DOI: 10.3390/ma11122522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022]
Abstract
This paper describes the mechanical properties and microstructure of commercially pure titanium (Grade 2) processed with Conform severe plastic deformation (SPD) and rotary swaging techniques. This technology enables ultrafine-grained to nanocrystalline wires to be produced in a continuous process. A comprehensive description is given of those properties which should enable straightforward implementation of the material in medical applications. Conform SPD processing has led to a dramatic refinement of the initial microstructure, producing equiaxed grains already in the first pass. The mean grain size in the transverse direction was 320 nm. Further passes did not lead to any additional appreciable grain refinement. The subsequent rotary swaging caused fine grains to become elongated. A single Conform SPD pass and subsequent rotary swaging resulted in an ultimate strength of 1060 MPa and elongation of 12%. The achieved fatigue limit was 396 MPa. This paper describes the production possibilities of ultrafine to nanocrystalline wires made of pure titanium and points out the possibility of serial production, particularly in medical implants.
Collapse
Affiliation(s)
- Jan Palán
- COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic.
| | - Radek Procházka
- COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic.
| | - Jan Džugan
- COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic.
| | - Jan Nacházel
- COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic.
| | - Michal Duchek
- COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic.
| | - Gergely Németh
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague, Czech Republic.
- Nuclear Physics Institute of the CAS, Husinec-Řež 130, 250 68 Řež, Czech Republic.
| | - Kristián Máthis
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague, Czech Republic.
| | - Peter Minárik
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague, Czech Republic.
| | - Klaudia Horváth
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague, Czech Republic.
- Nuclear Physics Institute of the CAS, Husinec-Řež 130, 250 68 Řež, Czech Republic.
| |
Collapse
|
22
|
Chappuis V, Maestre L, Bürki A, Barré S, Buser D, Zysset P, Bosshardt D. Osseointegration of ultrafine-grained titanium with a hydrophilic nano-patterned surface: an in vivo examination in miniature pigs. Biomater Sci 2018; 6:2448-2459. [PMID: 30065987 DOI: 10.1039/c8bm00671g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in biomaterials science and implant surface technology have made dental implants more predictable and implant therapy more attractive to patients. Surgical interventions are becoming less invasive, and patients heal faster and suffer less morbidity. In this preclinical in vivo study, we compared a new ultra-fine grained titanium (ufgTi) implant material with a hydrophilic nano-patterned surface to commercially pure titanium (cpTi) in a well-established animal model. CpTi grade 4 was subjected to Equal Channel Angular Pressing (ECAP), followed by a cold drawing process that provided ultra-fine-grained titanium (ufgTi) with a mean grain size of 300 nm. After metallographic assessment, the surface topography was characterized by laser confocal microscopy and atomic force microscopy. UfgTi and cpTi implants were inserted in the mandible and maxilla of miniature pigs that healed for 4 and for 8 weeks. Osseointegration was assessed by biomechanical torque out analysis, histomorphometric evaluation, and micro-CT analysis. The metallographic properties of UfgTi were significantly better than those of cpTi. Their surface topographies had similar hydrophilic nano-patterned characteristics, with no significant differences in the nanometre range. Histomorphometric and biomechanical torque out analysis revealed no significant differences between ufgTi and cpTi in environments of either low (maxilla) or high (mandible) bone density. We obtained high bone-to-implant contact values irrespective of the bony microarchitecture even when the bone mineral density was low. Overall, this investigation suggests that ufgTi forms a hydrophilic nano-patterned surface with superior metallographic properties compared to cpTi and high levels of osseointegration. Thus, ufgTi has therapeutic potential as a future strategy for the development of small diameter implants to enable less invasive treatment concepts, reduce patient morbidity and may also lower the costs of patient care.
Collapse
Affiliation(s)
- Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Günay-Bulutsuz A, Berrak Ö, Yeprem HA, Arisan ED, Yurci ME. Biological responses of ultrafine grained pure titanium and their sand blasted surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:382-388. [DOI: 10.1016/j.msec.2018.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
|
24
|
Proliferation of Osteoblasts on Laser-Modified Nanostructured Titanium Surfaces. MATERIALS 2018; 11:ma11101827. [PMID: 30261588 PMCID: PMC6213816 DOI: 10.3390/ma11101827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Nanostructured titanium has become a useful material for biomedical applications such as dental implants. Certain surface properties (grain size, roughness, wettability) are highly expected to promote cell adhesion and osseointegration. The aim of this study was to compare the biocompatibilities of several titanium materials using human osteoblast cell line hFOB 1.19. Eight different types of specimens were examined: machined commercially pure grade 2 (cpTi2) and 4 (cpTi4) titanium, nanostructured titanium of the same grades (nTi2, nTi4), and corresponding specimens with laser-treated surfaces (cpTi2L, cpTi4L, nTi2L, nTi4L). Their surface topography was evaluated by means of scanning electron microscopy. Surface roughness was measured using a mechanical contact profilometer. Specimens with laser-treated surfaces had significantly higher surface roughness. Wettability was measured by the drop contact angle method. Nanostructured samples had significantly higher wettability. Cell proliferation after 48 hours from plating was assessed by viability and proliferation assay. The highest proliferation of osteoblasts was found in nTi4 specimens. The analysis of cell proliferation revealed a difference between machined and laser-treated specimens. The mean proliferation was lower on the laser-treated titanium materials. Although plain laser treatment increases surface roughness and wettability, it does not seem to lead to improved biocompatibility.
Collapse
|
25
|
Bahl S, Meka SRK, Suwas S, Chatterjee K. Surface Severe Plastic Deformation of an Orthopedic Ti–Nb–Sn Alloy Induces Unusual Precipitate Remodeling and Supports Stem Cell Osteogenesis through Akt Signaling. ACS Biomater Sci Eng 2018; 4:3132-3142. [DOI: 10.1021/acsbiomaterials.8b00406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sumit Bahl
- Department of Materials Engineering Indian Institute of Science, Bangalore, India 560012
| | - Sai Rama Krishna Meka
- Department of Materials Engineering Indian Institute of Science, Bangalore, India 560012
| | - Satyam Suwas
- Department of Materials Engineering Indian Institute of Science, Bangalore, India 560012
| | - Kaushik Chatterjee
- Department of Materials Engineering Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
26
|
Huo WT, Zhao LZ, Zhang W, Lu JW, Zhao YQ, Zhang YS. In vitro corrosion behavior and biocompatibility of nanostructured Ti6Al4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:268-279. [PMID: 30184751 DOI: 10.1016/j.msec.2018.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
Ti6Al4V (TC4) alloy has long been used as a bone interfacing implant material in dentistry and orthopedics due to its excellent biocompatibility and mechanical properties. The performance of TC4 can be further tailored by altering its grain structures. In this study, by means of sliding friction treatment (SFT), a nano-grained (NG) surface layer with an average grain size of ≤100 nm on the topmost surface was successfully generated on coarse-grained (CG) TC4 alloy sheet. It was shown that the NG surface possessed notably enhanced corrosion resistance in physiological solution compared to the CG surface, due to the formation of thicker and denser passive film facilitated by surface nanocrystallization. Additionally, the NG surface with stronger hydrophilicity favorably altered the absorption of anchoring proteins such as fibronectin (Fn) and vitronectin (Vn) that can mediate subsequent osteoblast functions. The in vitro results indicated that the NG surface exhibited remarkable enhancement in osteoblast adherence, spreading and proliferation, and obviously accelerated the osteoblast differentiation as compared to CG surface. Moreover, the NG surface also demonstrated good hemocompatibility. These findings suggest that SFT can endure bio-metals with advanced multifunctional properties for biomedical applications.
Collapse
Affiliation(s)
- W T Huo
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - L Z Zhao
- State key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - W Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - J W Lu
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y Q Zhao
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Y S Zhang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| |
Collapse
|
27
|
Ran Q, Yang W, Hu Y, Shen X, Yu Y, Xiang Y, Cai K. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater 2018; 84:1-11. [PMID: 29709846 DOI: 10.1016/j.jmbbm.2018.04.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 01/02/2023]
Abstract
Selective laser melting (SLM) is one of the three-dimensional (3D) printing techniques that manufacturing versatile porous scaffolds with precise architectures for potential orthopedic application. To understand how the pore sizes of porous Ti6Al4V scaffolds affect their biological performances, we designed and fabricated porous Ti6Al4V implants with straightforward pore dimensions (500, 700, and 900 µm) via SLM, termed as p500, p700, and p900 respectively. The morphological characteristics of Ti6Al4V scaffolds were assessed showing that the actual pore sizes of these scaffolds were 401 ± 26 µm, 607 ± 24 µm, 801 ± 33 µm, respectively. The mechanical properties of Ti6Al4V scaffolds were also evaluated showing that they were comparable to that of bone tissues. Meanwhile, the effect of pore size on biological responses was systematically investigated in vitro and in vivo. It was verified that 3D printing technique was able to fabricate porous Ti6Al4V implants with proper mechanical properties analogous to human bone. The in vitro results revealed that scaffolds with appropriate pore dimension were conducive to cell adhesion, proliferation and early differentiation. Furthermore, the porous Ti6Al4V scaffolds were implanted into the rabbit femur to investigate bone regeneration performance, the in vivo experiment showed the p700 sample was in favor of bone ingrowth into implant pores and bone-implant fixation stability. Taken together, the biological performance of p700 group with actual pore size of about 600 µm was superior to other two groups. The obtained findings provide basis to individually design and fabricate suitable porous Ti6Al4V with specific geometries for orthopedic application.
Collapse
Affiliation(s)
- Qichun Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yonglin Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yang Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
28
|
Gui N, Xu W, Abraham AN, Myers DE, Mayes ELH, Xia K, Shukla R, Qian M. A comparative study of the effect of submicron porous and smooth ultrafine-grained Ti-20Mo surfaces on osteoblast responses. J Biomed Mater Res A 2018; 106:2020-2033. [PMID: 29569836 DOI: 10.1002/jbm.a.36402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Accepted: 03/15/2018] [Indexed: 11/08/2022]
Abstract
The surface of an orthopaedic implant plays a crucial role in determining the adsorption of proteins and cell functions. A detailed comparative study has been made of the in vitro osteoblast responses to coarse-grained (grain size: 500 μm), ultrafine-grained (grain size: 100 nm), coarse-porous (pore size: 350 nm), and fine-porous (pore size: 155 nm) surfaces of Ti-20Mo alloy. The purpose was to provide essential experimental data for future design of orthopaedic titanium implants for rapid osseointegration. Systematic original experimental data was produced for each type of surfaces in terms of surface wettability, cell morphology, adhesion, growth, and differentiation. Microscopic evidence was collected to reveal the detailed interplay between each characteristic surface with proteins or cells. Various new observations were discussed and compared with literature data. It was concluded that the coarse-porous surfaces offered the optimum topographical environment for osteoblasts and that the combination of ultrafine grains and considerable grain boundary areas is not an effective way to enhance cell growth and osteogenic capacity. Moreover, pore features (size and depth) have a greater effect than smooth surfaces on cell growth and osteogenic capacity. It proves that cells can discern the difference in pore size in the range of 100-350 nm. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2020-2033, 2018.
Collapse
Affiliation(s)
- Na Gui
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wei Xu
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Mechanical Engineering, University of Melbourne, Victoria, 3010, Australia
| | - Amanda N Abraham
- Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Damian E Myers
- Australian Institute for Musculoskeletal Science, Department of Medicine, Western Health, University of Melbourne, Melbourne, Victoria, 3010, Australia.,College of Health and Biomedicine, Victoria University; Western Centre for Health and Research Education, Sunshine Hospital, Victoria, 3021, Australia
| | - Edwin L H Mayes
- RMIT Microscopy and Microanalysis Facility (RMMF), GPO Box 2467V, Melbourne, Victoria, 3000, Australia
| | - Kenong Xia
- Department of Mechanical Engineering, University of Melbourne, Victoria, 3010, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ma Qian
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
29
|
Zhu C, Lv Y, Qian C, Ding Z, Jiao T, Gu X, Lu E, Wang L, Zhang F. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. Int J Nanomedicine 2018; 13:1881-1898. [PMID: 29636607 PMCID: PMC5880573 DOI: 10.2147/ijn.s154260] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The interaction between the material and the organism affects the survival rate of the orthopedic or dental implant in vivo. Friction stir processing (FSP) is considered a new solid-state processing technology for surface modification. Purpose This study aims to strengthen the surface mechanical properties and promote the osteogenic capacity of the biomaterial by constructing a Ti-6Al-4V (TC4)/zinc (Zn) surface nanocomposites through FSP. Methods FSP was used to modify the surface of TC4. The microstructures and mechanical properties were analyzed by scanning electron microscopy, transmission electron microscopy, nanoindentation and Vickers hardness. The biological properties of the modified surface were evaluated by the in vitro and in vivo study. Results The results showed that nanocrystalline and numerous β regions, grain boundary α phase, coarser acicular α phase and finer acicular martensite α′ appeared because of the severe plastic deformation caused by FSP, resulting in a decreased elastic modulus and an increased surface hardness. With the addition of Zn particles and the enhancement of hydrophilicity, the biocompatibility was greatly improved in terms of cell adhesion and proliferation. The in vitro osteogenic differentiation of rat bone marrow stromal cells and rapid in vivo osseointegration were enhanced on the novel TC4/Zn metal matrix nanocomposite surface. Conclusion These findings suggest that this novel TC4/Zn surface nanocomposite achieved by FSP has significantly improved mechanical properties and biocompatibility, in addition to promoting osseointegration and thus has potential for dental and orthopedic applications.
Collapse
Affiliation(s)
- Chenyuan Zhu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Yuting Lv
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai.,College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Chao Qian
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Zihao Ding
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai.,Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ting Jiao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Xiaoyu Gu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Eryi Lu
- Department of Stomatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| |
Collapse
|
30
|
Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci 2017; 508:603-616. [DOI: 10.1016/j.jcis.2017.07.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
|
31
|
Perumal G, Ayyagari A, Chakrabarti A, Kannan D, Pati S, Grewal HS, Mukherjee S, Singh S, Arora HS. Friction Stir Processing of Stainless Steel for Ascertaining Its Superlative Performance in Bioimplant Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36615-36631. [PMID: 28972737 DOI: 10.1021/acsami.7b11064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Substrate-cell interactions for a bioimplant are driven by substrate's surface characteristics. In addition, the performance of an implant and resistance to degradation are primarily governed by its surface properties. A bioimplant typically degrades by wear and corrosion in the physiological environment, resulting in metallosis. Surface engineering strategies for limiting degradation of implants and enhancing their performance may reduce or eliminate the need for implant removal surgeries and the associated cost. In the current study, we tailored the surface properties of stainless steel using submerged friction stir processing (FSP), a severe plastic deformation technique. FSP resulted in significant microstructural refinement from 22 μm grain size for the as-received alloy to 0.8 μm grain size for the processed sample with increase in hardness by nearly 1.5 times. The wear and corrosion behavior of the processed alloy was evaluated in simulated body fluid. The processed sample demonstrated remarkable improvement in both wear and corrosion resistance, which is explained by surface strengthening and formation of a highly stable passive layer. The methylthiazol tetrazolium assay demonstrated that the processed sample is better in supporting cell attachment, proliferation with minimal toxicity, and hemolysis. The athrombogenic characteristic of the as-received and processed samples was evaluated by fibrinogen adsorption and platelet adhesion via the enzyme-linked immunosorbent assay and lactate dehydrogenase assay, respectively. The processed sample showed less platelet and fibrinogen adhesion compared with the as-received alloy, signifying its high thromboresistance. The current study suggests friction stir processing to be a versatile toolbox for enhancing the performance and reliability of currently used bioimplant materials.
Collapse
Affiliation(s)
| | - A Ayyagari
- Department of Materials Science and Engineering, University of North Texas , Denton, Texas 76203, United States
| | | | | | | | | | - S Mukherjee
- Department of Materials Science and Engineering, University of North Texas , Denton, Texas 76203, United States
| | - S Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University , New Delhi 110067, India
| | | |
Collapse
|
32
|
Fernandes DJ, Marques RG, Elias CN. Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:164. [PMID: 28914397 DOI: 10.1007/s10856-017-5977-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this work was to investigate the influence of acid treatment on the surface properties and in vivo performance of titanium grade 5 (Ti6Al4V) alloy. Mini-implants with surface treatment were inserted into New Zealand rabbit tibia for 1, 4 and 8 weeks. SEM analysis showed intercommunicated micropores in acid treated samples. AFM showed micron and sub-micron roughness. The thickness of the titanium oxide layer increased with surface treatment, with a significant reduction of Al and V concentration. Acid treated implant removal torque was larger than without treatment. The implants/bone interface of acid treated implants showed dense adhered Ca/P particles with spreading osteoblasts after 4 weeks and newly formed bone trabeculae after 8 weeks. Analysis of rabbit blood that received treated implant showed lower Al and V contents at all times. Acid treatment improved surface morphology and mechanical stability, which allowed initial events of osseointegration, while Al-V ion release was reduced. GRAPHICAL ABTSRACT.
Collapse
Affiliation(s)
- Daniel J Fernandes
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 2290-270, Brazil.
| | - Ruy G Marques
- Laboratory of Experimental Surgery, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20561-030, Brazil
| | - Carlos N Elias
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 2290-270, Brazil
| |
Collapse
|
33
|
Enhanced Surface Precipitates on Ultrafine-Grained Titanium in Physiological Solution. METALS 2017. [DOI: 10.3390/met7070245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Dimić I, Cvijović‐Alagić I, Hohenwarter A, Pippan R, Kojić V, Bajat J, Rakin M. Electrochemical and biocompatibility examinations of high‐pressure torsion processed titanium and
T
i–13
N
b–13
Z
r alloy. J Biomed Mater Res B Appl Biomater 2017; 106:1097-1107. [DOI: 10.1002/jbm.b.33919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 04/07/2017] [Accepted: 04/22/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ivana Dimić
- University of Belgrade, Faculty of Technology and Metallurgy11120Belgrade Serbia
| | | | - Anton Hohenwarter
- Department of Materials PhysicsMontanuniversität Leoben8700Leoben Austria
| | - Reinhard Pippan
- Austrian Academy of Sciences, Erich Schmid Institute of Materials Science8700Leoben Austria
| | - Vesna Kojić
- Oncology Institute of Vojvodina21204Sremska Kamenica Serbia
| | - Jelena Bajat
- University of Belgrade, Faculty of Technology and Metallurgy11120Belgrade Serbia
| | - Marko Rakin
- University of Belgrade, Faculty of Technology and Metallurgy11120Belgrade Serbia
| |
Collapse
|
35
|
Um HY, Park BH, Ahn DH, Abd El Aal MI, Park J, Kim HS. Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion. J Mech Behav Biomed Mater 2017; 68:203-209. [DOI: 10.1016/j.jmbbm.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
|
36
|
Medvedev A, Neumann A, Ng H, Lapovok R, Kasper C, Lowe T, Anumalasetty V, Estrin Y. Combined effect of grain refinement and surface modification of pure titanium on the attachment of mesenchymal stem cells and osteoblast-like SaOS-2 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:483-497. [DOI: 10.1016/j.msec.2016.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/17/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023]
|
37
|
Significantly enhanced osteoblast response to nano-grained pure tantalum. Sci Rep 2017; 7:40868. [PMID: 28084454 PMCID: PMC5233963 DOI: 10.1038/srep40868] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
Tantalum (Ta) metal is receiving increasing interest as biomaterial for load-bearing orthopedic applications and the synthetic properties of Ta can be tailored by altering its grain structures. This study evaluates the capability of sliding friction treatment (SFT) technique to modulate the comprehensive performances of pure Ta. Specifically, novel nanocrystalline (NC) surface with extremely small grains (average grain size of ≤20 nm) was fabricated on conventional coarse-grained (CG) Ta by SFT. It shows that NC surface possessed higher surface hydrophilicity and enhanced corrosion resistance than CG surface. Additionally, the NC surface adsorbed a notably higher percentage of protein as compared to CG surface. The in vitro results indicated that in the initial culture stages (up to 24 h), the NC surface exhibited considerably enhanced osteoblast adherence and spreading, consistent with demonstrated superior hydrophilicity on NC surface. Furthermore, within the 14 days culture period, NC Ta surface exhibited a remarkable enhancement in osteoblast cell proliferation, maturation and mineralization as compared to CG surface. Ultimately, the improved osteoblast functions together with the good mechanical and anti-corrosion properties render the SFT-processed Ta a promising alternative for the load-bearing bone implant applications.
Collapse
|
38
|
An B, Li Z, Diao X, Xin H, Zhang Q, Jia X, Wu Y, Li K, Guo Y. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:34-41. [PMID: 27287096 DOI: 10.1016/j.msec.2016.04.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/30/2016] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the surface characterization of ultrafine-grain pure titanium (UFG-Ti) after sandblasting and acid-etching (SLA) and to evaluate its biocompatibility as dental implant material in vitro and in vivo. UFG-Ti was produced by equal channel angular pressing (ECAP) using commercially pure titanium (CP-Ti). Microstructure and yield strength were investigated. The morphology, wettability and roughness of the specimens were analyzed after they were modified by SLA. MC3T3-E1 osteoblasts were seeded onto the specimens to evaluate its biocompatibility in vitro. For the in vivo study, UFG-Ti implants after SLA were embedded into the femurs of New Zealand rabbits. Osseointegration was investigated though micro-CT analysis, histological assessment and pull-out test. The control group was CP-Ti. UFG-Ti with enhanced mechanical properties was produced by four passes of ECAP in BC route at room temperature. After SLA modification, the hierarchical porous structure on its surface exhibited excellent wettability. The adhesion, proliferation and viability of cells cultured on the UFG-Ti were superior to that of CP-Ti. In the in vivo study, favorable osseointegration occurred between the implant and bone in CP and UFG-Ti groups. The combination intensity of UF- Ti with bone was higher according to the pull-out test. This study supports the claim that UFG-Ti has grain refinement with outstanding mechanical properties and, with its excellent biocompatibility, has potential for use as dental implant material.
Collapse
Affiliation(s)
- Baili An
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhirui Li
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Qiang Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaorui Jia
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Kai Li
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710032, China
| |
Collapse
|
39
|
Medvedev A, Ng H, Lapovok R, Estrin Y, Lowe T, Anumalasetty V. Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching. J Mech Behav Biomed Mater 2016; 57:55-68. [DOI: 10.1016/j.jmbbm.2015.11.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
40
|
Holbrook SE. Model-Guided Flapless Immediate Implant Placement and Provisionalization in the Esthetic Zone Utilizing a Nanostructured Titanium Implant: A Case Report. J ORAL IMPLANTOL 2016; 42:98-103. [DOI: 10.1563/aaid-joi-d-14-00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Qi Y, Contreras KG, Jung HD, Kim HE, Lapovok R, Estrin Y. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:754-765. [DOI: 10.1016/j.msec.2015.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
|
42
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
43
|
Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A. Nanomedicine applications in orthopedic medicine: state of the art. Int J Nanomedicine 2015; 10:6039-53. [PMID: 26451110 PMCID: PMC4592034 DOI: 10.2147/ijn.s73737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges.
Collapse
Affiliation(s)
- Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Niloofar Eslahi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Farideh Ordikhani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran ; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
44
|
Matykina E, Arrabal R, Valiev R, Molina-Aldareguia J, Belov P, Sabirov I. Electrochemical Anisotropy of Nanostructured Titanium for Biomedical Implants. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Goriainov V, Cook R, M. Latham J, G. Dunlop D, Oreffo RO. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater 2014; 10:4043-57. [PMID: 24932769 DOI: 10.1016/j.actbio.2014.06.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022]
Abstract
The area of implant osseointegration is of major importance, given the predicted significant rise in the number of orthopaedic procedures and an increasingly ageing population. Osseointegration is a complex process involving a number of distinct mechanisms affected by the implant bulk properties and surface characteristics. Our understanding and ability to modify these mechanisms through alterations in implant design is continuously expanding. The following review considers the main aspects of material and surface alterations in metal implants, and the extent of their subsequent influence on osseointegration. Clinically, osseointegration results in asymptomatic stable durable fixation of orthopaedic implants. The complexity of achieving this outcome through incorporation and balance of contributory factors is highlighted through a clinical case report.
Collapse
|
46
|
Lowe TC, A Reiss R. Understanding the biological responses of nanostructured metals and surfaces. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1757-899x/63/1/012172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Toker SM, Canadinc D. Evaluation of the biocompatibility of NiTi dental wires: a comparison of laboratory experiments and clinical conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:142-7. [PMID: 24857476 DOI: 10.1016/j.msec.2014.03.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/11/2014] [Accepted: 03/07/2014] [Indexed: 11/26/2022]
Abstract
Effects of intraoral environment on the surface degradation of nickel-titanium (NiTi) shape memory alloy orthodontic wires was simulated through ex situ static immersion experiments in artificial saliva. The tested wires were compared to companion wires retrieved from patients in terms of chemical changes and formation of new structures on the surface. Results of the ex situ experiments revealed that the acidic erosion effective at the earlier stages of immersion led to the formation of new structures as the immersion period approached 30 days. Moreover, comparison of these results with the analysis of wires utilized in clinical treatment evidenced that ex situ experiments are reliable in terms predicting C-rich structure formation on the wire surfaces. However, the formation of C pileups at the contact sites of arch wires and brackets could not be simulated with the aid of static immersion experiments, warranting the simulation of the intraoral environment in terms of both chemical and physical conditions, including mechanical loading, when evaluating the biocompatibility of NiTi orthodontic arch wires.
Collapse
Affiliation(s)
- S M Toker
- Advanced Materials Group (AMG), Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
| | - D Canadinc
- Advanced Materials Group (AMG), Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey.
| |
Collapse
|
48
|
Bagherifard S, Ghelichi R, Khademhosseini A, Guagliano M. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7963-7985. [PMID: 24755013 DOI: 10.1021/am501119k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cell-substrate interface is known to control the cell response and subsequent cell functions. Among the various biophysical signals, grain structure, which indicates the repeating arrangement of atoms in the material, has also proved to play a role of significant importance in mediating the cell activities. Moreover, refining the grain size through severe plastic deformation is known to provide the processed material with novel mechanical properties. The potential application of such advanced materials as biomedical implants has recently been evaluated by investigating the effect of different substrate grain sizes on a wide variety of cell activities. In this review, recent advances in biomedical applications of severe plastic deformation techniques are highlighted with special attention to the effect of the obtained nano/ultra-fine-grain size on cell-substrate interactions. Various severe plastic deformation techniques used for this purpose are discussed presenting a brief description of the mechanism for each process. The results obtained for each treatment on cell morphology, adhesion, proliferation, and differentiation, as well as the in vivo studies, are discussed. Finally, the advantages and challenges regarding the application of these techniques to produce multifunctional bio-implant materials are addressed.
Collapse
Affiliation(s)
- Sara Bagherifard
- Department of Mechanical Engineering, Politecnico di Milano , Via G. La Masa, 1, 20156, Milan, Italy
| | | | | | | |
Collapse
|
49
|
Chan CW, Hussain I, Waugh DG, Lawrence J, Man HC. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:254-63. [PMID: 25063117 DOI: 10.1016/j.msec.2014.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 01/16/2023]
Abstract
The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology.
Collapse
Affiliation(s)
- C W Chan
- School of Mechanical and Aerospace Engineering, Queen's University, Belfast, Northern Ireland, UK.
| | - I Hussain
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TU, UK
| | - D G Waugh
- Laser Engineering and Manufacturing Research Group, Faculty of Science and Engineering, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| | - J Lawrence
- Laser Engineering and Manufacturing Research Group, Faculty of Science and Engineering, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| | - H C Man
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
50
|
Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:118-29. [DOI: 10.1016/j.msec.2013.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/31/2013] [Accepted: 11/28/2013] [Indexed: 02/07/2023]
|