1
|
Comelles J, Fernández-Majada V, Acevedo V, Rebollo-Calderon B, Martínez E. Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance. Mater Today Bio 2023; 19:100593. [PMID: 36923364 PMCID: PMC10009736 DOI: 10.1016/j.mtbio.2023.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffness-dependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons.
Collapse
Affiliation(s)
- Jordi Comelles
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| | - Vanesa Fernández-Majada
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), Feixa Llarga, 08907, L'Hospitalet de Llobregat, Spain
| | - Verónica Acevedo
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Beatriz Rebollo-Calderon
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Martí I Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Aldhameer A, El-Eskandarany MS, Kishk M, Alajmi F, Banyan M. Mechanical Alloying Integrated with Cold Spray Coating for Fabrication Cu 50(Ti 50-xNi x), x; 10, 20, 30, and 40 at.% Antibiofilm Metallic Glass Coated/SUS304 Sheets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1681. [PMID: 35630903 PMCID: PMC9142950 DOI: 10.3390/nano12101681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Antibacterial agents derived from conventional organic compounds have traditionally been employed as a biofilm protective coating for many years. These agents, on the other hand, often include toxic components that are potentially hazardous to humans. Multiple approaches have been investigated over the last two decades, including the use of various metallic and oxide materials, in order to produce a diverse variety of usable coating layers. When it comes to material coating approaches, the cold spray technique, which is a solid-state method that works well with nanopowders, has shown superior performance. Its capacity to produce unique material coating in ways that are not possible with other thermal methods is the primary reason for its importance in contemporary production. The present work has been addressed in part to explore the possibility of employing mechanically alloyed Cu50(Ti50-xNix)x; x = 10, 20, 30, and 40 at.% metallic glass powders, for producing an antibiofilm/SUS304 surface protective coating, using the cold spray approach. In this study, elemental Cu, Ti, and Ni powders were low-energy ball milled for 100 h to fabricate metallic glassy powders with different Ni contents. The as-prepared metallic glassy powders were utilized to coat SUS304 sheets, using the cold spraying process. With high nanohardness values, the as-fabricated coating material, in particular Cu50Ti20Ni30, demonstrated remarkable performance in comparison to other materials in its class. Furthermore, it displayed excellent wear resistance while maintaining a low coefficient of friction, with values ranging from 0.32 to 0.45 in the tested range. E. coli biofilms were formed on 20 mm2 SUS304 sheet coated coupons, which had been injected with 1.5 108 CFU mL-1 of the bacterium. With the use of nanocrystalline Cu-based powders, it is feasible to achieve considerable biofilm inhibition, which is a practical strategy for accomplishing the suppression of biofilm formation.
Collapse
Affiliation(s)
- Ahmad Aldhameer
- Biotechnology Program, Environment & Life Science Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Mohamed Sherif El-Eskandarany
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.S.E.-E.); (F.A.); (M.B.)
| | - Mohamed Kishk
- Biotechnology Program, Environment & Life Science Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait;
| | - Fahad Alajmi
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.S.E.-E.); (F.A.); (M.B.)
| | - Mohmmad Banyan
- Nanotechnology and Advanced Materials Program, Energy and Building Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.S.E.-E.); (F.A.); (M.B.)
| |
Collapse
|
3
|
Robo I, Heta S, Papakozma D, Ostreni V. Modification of implant surfaces to stimulate mesenchymal cell activation. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:52. [PMID: 35261541 PMCID: PMC8894561 DOI: 10.1186/s42269-022-00743-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The process of osteointegration, as key point has the activation of mesenchymal cells at implant-bone interspace, their differentiation into osteoblasts and connection between the implant surface and the surrounding bone. MAIN TEXT Implant surfaces composed by biocompatible, organism-friendly materials require changes in content and surface morphology; changes that may further stimulate mesenchymal cell activation. The way the implant surfaces are affected with advantages and disadvantages, that typically bring each methodology, is also the purpose of this study. The study is of review type, based on finding articles about implant surface modification, with the aim of promoting the mesenchymal cell activation, utilizing keyword combination. CONCLUSIONS Implant success beyond the human element of the practicioner and the protocol element of implant treatment, also relies on the application of the right type of implant, at the right implant site, in accordance with oral and individual health status of the patient. Implant success does not depend on type of "coating" material of the implants. Based at this physiological process, the success or implant failure is not a process depending on the type of selected implant, because types of synthetic or natural materials that promote osteointegration are relatively in large number.
Collapse
Affiliation(s)
- Ilma Robo
- Faculty of Dental Medicine, University of Medicine, Tiranë, Albania
| | - Saimir Heta
- Pediatric Surgery, Pediatric Surgeon, University Hospital, QSUT, Tiranë, Albania
| | | | - Vera Ostreni
- Pediatric Surgery, Pediatric Surgeon, University Hospital, QSUT, Tiranë, Albania
- Department of Morphology, University of Medicine, Tiranë, Albania
| |
Collapse
|
4
|
Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110995. [DOI: 10.1016/j.msec.2020.110995] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/04/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
|
5
|
Liu Y, Xu L, Hu L, Chen D, Yu L, Li X, Chen H, Zhu J, Chen C, Luo Y, Wang B, Li G. Stearic acid methyl ester promotes migration of mesenchymal stem cells and accelerates cartilage defect repair. J Orthop Translat 2020; 22:81-91. [PMID: 32440503 PMCID: PMC7231966 DOI: 10.1016/j.jot.2019.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) can be easily expanded without losing the ability of multilineage differentiation, including oesteogenic, chondrogenic and adipogenic differentiation. These characters make MSCs a promising cell resource for cartilage defect repair. MSCs could be recruited by inflammatory stimulation, then home to the injury tissues. However, its capacity of homing is extremely limited. Thus, it has become extremely necessary to develop an agent or a method, which can be used to enhance the efficiency of MSCs homing. This study investigates the effect of stearic acid methyl ester (SAME) on MSCs mobilisation and cartilage regeneration. Methods MSCs were isolated from femurs of Sprague-Dawley (SD) rats. MTT assay was used to detect effect of SAME on viability of MSCs. Transwell assay and wound healing assay were used to detect effect of SAME on migration of MSCs. RNA-seq, quantitative real-time PCR and western blot were performed to analyze the expression of RNAs and proteins. Colony forming assay and flow cytometry were used to evaluate the effect of SAME on MSCs mobilisation in vivo. A rat cartilage defect model was created to evaluate the effect of SAME on cartilage regeneration. Results We found that SAME could promote the migration of MSCs. Interestingly, we found SAME significantly increased the expression levels of Vav1 in MSCs. On the other hand, the enhanced migration ability of MSCs induced by SAME was retarded by Vav1 small interfering RNA (siRNA) and Rho-associated protein kinase 2 (ROCK2) inhibitor. In addition, we also checked the effect of SAME on mobilisation of MSCs in vivo. The results showed that SAME increased the number of MSCs in peripheral blood and enhanced the capacity of colony formation. Finally, using a cartilage defect model in rats, we found SAME could improve cartilage repair. Conclusion Our study demonstrates that SAME can enhance MSCs migration ability mainly through the Vav1/ROCK2 signaling pathway, which could contribute to the accelerated cartilage regeneration. The translational potential of this article These findings provide evidence that SAME could be used as a therapeutic reagent for MSCs mobilisation and cartilage regeneration.
Collapse
Affiliation(s)
- Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liuchao Hu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijuan Yu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongtai Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Junlang Zhu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Chen Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yiwen Luo
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Bin Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
6
|
Anisotropic stiffness gradient-regulated mechanical guidance drives directional migration of cancer cells. Acta Biomater 2020; 106:181-192. [PMID: 32044461 DOI: 10.1016/j.actbio.2020.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Interfacial interactions between cancer cells and surrounding microenvironment involve complex mechanotransduction mechanisms that are directly associated with tumor invasion and metastasis. Matrix remodeling triggers heterogeneity of stiffness in tumor microenvironment and thus generates anisotropic stiffness gradient (ASG). The migration of cancer cells mediated by ASG, however, still remains elusive. Based on a multi-layer polymerization method of microstructured hydrogels with surface topology, we develop an in vitro experimental platform for mechanical interactions of cancer cells with ASG matrix microenvironment. We show that mechanical guidance of mesenchymal cells is essentially modulated by ASG, leading to a spontaneous directional migration along the orientation parallel to the maximum stiffness although there is no stiffness gradient in the direction. The ASG-regulated mechanical guidance presents an alternative way of cancer cell directional migration. Further, our findings indicate that the mechanical guidance occurs only in mesenchymal cancer cells, but not in epithelial cancer cells, implying that cell contractility may contribute to ASG-regulated migration of cells. This work is not only helpful for elucidating the role of matrix remodeling in mediating tumor cell invasion and metastasis, but has potential implications for developing specific cancer treatments. STATEMENT OF SIGNIFICANCE: Local extracellular matrix (ECM) stiffening triggers mechanical heterogeneity in tumor microenvironment, which can exert a crucial impact on interfacial interactions between tumor cells and surrounding ECM. The underlying mechanobiological mechanism that tumor cells are modulated by mechanically heterogeneous ECM, however, still remains mysterious to a great extent. Through our established in vitro platform and analysis, we have demonstrated that anisotropic stiffness gradient (ASG) has the ability to elicit directional migration of cells, essentially depending on local stiffness gradients and the corresponding absolute stiffness values. This study is not only crucial for revealing the role of matrix remodeling in regulating tumor invasion and metastasis, but also offers a valuable guidance for developing anti-tumor therapies from the biomechanical perspective.
Collapse
|
7
|
Ghezzi B, Lagonegro P, Fukata N, Parisi L, Calestani D, Galli C, Salviati G, Macaluso GM, Rossi F. Sub-Micropillar Spacing Modulates the Spatial Arrangement of Mouse MC3T3-E1 Osteoblastic Cells. NANOMATERIALS 2019; 9:nano9121701. [PMID: 31795174 PMCID: PMC6955749 DOI: 10.3390/nano9121701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Surface topography is one of the main factors controlling cell responses on implanted devices and a proper definition of the characteristics that optimize cell behavior may be crucial to improve the clinical performances of these implants. Substrate geometry is known to affect cell shape, as cells try to optimize their adhesion by adapting to the irregularities beneath, and this in turn profoundly affects their activity. In the present study, we cultured murine calvaria MC3T3-E1 cells on surfaces with pillars arranged as hexagons with two different spacings and observed their morphology during adhesion and growth. Cells on these highly ordered substrates attached and proliferated effectively, showing a marked preference for minimizing the inter-pillar distance, by following specific pathways across adjacent pillars and displaying consistent morphological modules. Moreover, cell behavior appeared to follow tightly controlled patterns of extracellular protein secretion, which preceded and matched cells and, on a sub-cellular level, cytoplasmic orientation. Taken together, these results outline the close integration of surface features, extracellular proteins alignment and cell arrangement, and provide clues on how to control and direct cell spatial order and cell morphology by simply acting on inter-pillar spacing.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- Correspondence:
| | - Paola Lagonegro
- ISMAC-CNR, Institute for macromolecular studies, Via Corti, 12, 20133 Milano, Italy;
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- Labör für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Klinik, Universität Bern, Freiburgstrasse 7, 3008 Bern, Switzerland
| | - Davide Calestani
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Carlo Galli
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Giancarlo Salviati
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Francesca Rossi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| |
Collapse
|
8
|
Sales A, Picart C, Kemkemer R. Age-dependent migratory behavior of human endothelial cells revealed by substrate microtopography. Exp Cell Res 2018; 374:1-11. [PMID: 30342990 DOI: 10.1016/j.yexcr.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age-dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | - Catherine Picart
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Ralf Kemkemer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany; Reutlingen University, 72762 Reutlingen, Germany.
| |
Collapse
|
9
|
Regulation of osteogenesis by micro/nano hierarchical titanium surfaces through a Rock-Wnt5a feedback loop. Colloids Surf B Biointerfaces 2018; 170:1-10. [DOI: 10.1016/j.colsurfb.2018.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/19/2018] [Accepted: 05/26/2018] [Indexed: 12/18/2022]
|
10
|
Gui N, Xu W, Myers DE, Shukla R, Tang HP, Qian M. The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomater Sci 2018; 6:250-264. [DOI: 10.1039/c7bm01016h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current understanding of the role of ordered and partially ordered surface topography in bone cell responses for bone implant design.
Collapse
Affiliation(s)
- N. Gui
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - W. Xu
- Department of Engineering
- Macquarie University
- Sydney
- Australia
| | - D. E. Myers
- Australian Institute for Musculoskeletal Science
- Victoria University and University of Melbourne
- Australia
- College of Health and Biomedicine
- Victoria University
| | - R. Shukla
- Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry
- School of Science
- RMIT University
- Melbourne
- Australia
| | - H. P. Tang
- State Key Laboratory of Porous Metal Materials
- Northwest Institute for Nonferrous Metal Research
- and Xi'an Sailong Metal Materials Co. Ltd
- Xi'an 710016
- China
| | - M. Qian
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
11
|
Sales A, Holle AW, Kemkemer R. Initial contact guidance during cell spreading is contractility-independent. SOFT MATTER 2017; 13:5158-5167. [PMID: 28664962 DOI: 10.1039/c6sm02685k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A wide variety of cell types exhibit substrate topography-based behavior, also known as contact guidance. However, the precise cellular mechanisms underlying this process are still unknown. In this study, we investigated contact guidance by studying the reaction of human endothelial cells (ECs) to well-defined microgroove topographies, both during and after initial cell spreading. As the cytoskeleton plays a major role in cellular adaptation to topographical features, two methods were used to perturb cytoskeletal structures. Inhibition of actomyosin contractility with the chemical inhibitor blebbistatatin demonstrated that initial contact guidance events are independent of traction force generation. However, cell alignment to the grooved substrate was altered at later time points, suggesting an initial 'passive' phase of contact guidance, followed by a contractility-dependent 'active' phase that relies on mechanosensitive feedback. The actin cytoskeleton was also perturbed in an indirect manner by culturing cells upside down, resulting in decreased levels of contact guidance and suggesting that a possible loss of contact between the actin cytoskeleton and the substrate could lead to cytoskeleton impairment. The process of contact guidance at the microscale was found to be primarily lamellipodia driven, as no bias in filopodia extension was observed on micron-scale grooves.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
12
|
Wang J, Schneider IC. Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells. Biomaterials 2017; 120:81-93. [PMID: 28039755 PMCID: PMC5291342 DOI: 10.1016/j.biomaterials.2016.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
During cancer progression the extracellular matrix is remodeled, forming aligned collagen fibers that proceed radially from the tumor, resulting in invasion. We have recently shown that different invasive breast cancer cells respond to epitaxially grown, aligned collagen fibrils differently. This article develops insight into why these cells differ in their contact guidance fidelity. Small changes in contractility or adhesion dramatically alter directional persistence on aligned collagen fibrils, while migration speed remains constant. The directionality of highly contractile and adhesive MDA-MB-231 cells can be diminished by inhibiting Rho kinase or β1 integrin binding. Inversely, the directionality of less contractile and adhesive MTLn3 cells can be enhanced by activating contractility or integrins. Subtle, but quantifiable alterations in myosin II regulatory light chain phosphorylation on stress fibers explain the tuning of contact guidance fidelity, separate from migration per se indicating that the contractile and adhesive state of the cell in combination with collagen organization in the tumor microenvironment determine the efficiency of migration. Understanding how distinct cells respond to contact guidance cues will not only illuminate mechanisms for cancer invasion, but will also allow for the design of environments to separate specific subpopulations of cells from patient-derived tissues by leveraging differences in responses to directional migration cues.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA; Department of Genetics, Development and Cell Biology, Iowa State University, USA.
| |
Collapse
|
13
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
14
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
15
|
Li G, Song Y, Shi M, Du Y, Wang W, Zhang Y. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography. Acta Biomater 2017; 49:235-246. [PMID: 27890731 DOI: 10.1016/j.actbio.2016.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022]
Abstract
Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. STATEMENT OF SIGNIFICANCE Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration.
Collapse
|
16
|
Lauria I, Kramer M, Schröder T, Kant S, Hausmann A, Böke F, Leube R, Telle R, Fischer H. Inkjet printed periodical micropatterns made of inert alumina ceramics induce contact guidance and stimulate osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2016; 44:85-96. [PMID: 27498177 DOI: 10.1016/j.actbio.2016.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
Bioinert high performance ceramics exhibit detrimental features for implant components with direct bone contact because of their low osseointegrating capability. We hypothesized that periodical microstructures made of inert alumina ceramics can influence the osteogenic differentiation of human mesenchymal stromal cells (hMSC). In this study, we manufactured pillared arrays made of alumina ceramics with periodicities as low as 100μm and pillar heights of 40μm employing direct inkjet printing (DIP) technique. The response of hMSC to the microstructured surfaces was monitored by measuring cell morphology, viability and formation of focal adhesion complexes. Osteogenic differentiation of hMSCs was investigated by alkaline phosphatase activity, mineralization assays and expression analysis of respective markers. We demonstrated that MSCs react to the pillars with contact guidance. Subsequently, cells grow onto and form connections between the microstructures, and at the same time are directly attached to the pillars as shown by focal adhesion stainings. Cells build up tissue-like constructs with heights up to the micropillars resulting in increased cell viability and osteogenic differentiating properties. We conclude that periodical micropatterns on the micrometer scale made of inert alumina ceramics can mediate focal adhesion dependent cell adhesion and stimulate osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Ines Lauria
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Michael Kramer
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Mauerstrasse 5, 52064 Aachen, Germany.
| | - Teresa Schröder
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Sebastian Kant
- Department of Molecular and Cellular Anatomy, RWTH Aachen University Hospital, Wendlingweg 2, 52057 Aachen, Germany.
| | - Anne Hausmann
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Frederik Böke
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Rudolf Leube
- Department of Molecular and Cellular Anatomy, RWTH Aachen University Hospital, Wendlingweg 2, 52057 Aachen, Germany.
| | - Rainer Telle
- Department of Ceramics and Refractory Materials, Institute of Mineral Engineering, RWTH Aachen University, Mauerstrasse 5, 52064 Aachen, Germany.
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
17
|
Clavell RS, de Llano JJM, Carda C, Ribelles JLG, Vallés-Lluch A. In vitro
assessment of the biological response of Ti6Al4V implants coated with hydroxyapatite microdomains. J Biomed Mater Res A 2016; 104:2723-9. [DOI: 10.1002/jbm.a.35817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/31/2023]
Affiliation(s)
- R. Salvador Clavell
- Centre for Biomaterials and Tissue Engineering; Universitat Politècnica De València; Spain
- Biomedical Research Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Valencia Spain
| | - J. J. Martín de Llano
- Department of D'Anatomia Patològica; Facultat De Medicina I Odontologia, Universitat De València and INCLIVA; Spain
| | - C. Carda
- Department of D'Anatomia Patològica; Facultat De Medicina I Odontologia, Universitat De València and INCLIVA; Spain
| | - J. L. Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering; Universitat Politècnica De València; Spain
- Biomedical Research Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Valencia Spain
| | - A. Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering; Universitat Politècnica De València; Spain
| |
Collapse
|
18
|
Role of RhoA/Rho kinase signaling pathway in microgroove induced stem cell myogenic differentiation. Biointerphases 2015; 10:021003. [DOI: 10.1116/1.4916624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Monje A, González-García R, Fernández-Calderón MC, Hierro-Oliva M, González-Martín ML, Del Amo FSL, Galindo-Moreno P, Wang HL, Monje F. Surface Topographical Changes of a Failing Acid-Etched Long-Term in Function Retrieved Dental Implant. J ORAL IMPLANTOL 2015; 42:12-6. [PMID: 25642739 DOI: 10.1563/aaid-joi-d-14-00156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to report the main topographical and chemical changes of a failing 18-year in function retrieved acid-etching implant in the micro- and nanoscales. A partially edentulous 45 year old rehabilitated with a dental implant at 18 years of age exhibited mobility. After careful examination, a 3.25 × 13-mm press-fit dental implant was retrieved. Scanning electron microscope (SEM) analysis was carried out to study topographical changes of the retrieved implant compared with an unused implant with similar topographical characteristics. Moreover, X-ray photoelectron spectroscopy (XPS) analysis was used to study the surface composition of the retrieved failing implant. Clear changes related to the dual dioxide layer are present as visible in ≥×500 magnification. In addition, it was found that, for the retrieved implant, the surface composition consisted mainly of Ti2p, O1s, C1s, and Al2p. Also, a meaningful decrease of N and C was noticed, whereas the peaks of Ti2p, Al2p, and O1s increased when analyzing deeper (up to ×2000s) in the sample. It was shown that the superficial surface of a retrieved press-fit dual acid-etched implant 18 years after placement is impaired. However, the causes and consequences for these changes cannot be determined.
Collapse
Affiliation(s)
- Alberto Monje
- 1 Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Mich
| | - Raúl González-García
- 2 Centro de Implantología, Cirugía Oral y Maxilofacial/Centre for Implantology, Oral and Maxillofacial Surgery, Badajoz, Spain
| | - María Coronada Fernández-Calderón
- 3 Department of Applied Physics, University of Extremadura and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - Margarita Hierro-Oliva
- 4 Department of Biomedical Sciences, University of Extremadura and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - María Luisa González-Martín
- 4 Department of Biomedical Sciences, University of Extremadura and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | | | | | - Hom-Lay Wang
- 1 Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Mich
| | - Florencio Monje
- 2 Centro de Implantología, Cirugía Oral y Maxilofacial/Centre for Implantology, Oral and Maxillofacial Surgery, Badajoz, Spain
| |
Collapse
|
20
|
Raghunathan VK, Dreier B, Morgan JT, Tuyen BC, Rose BW, Reilly CM, Russell P, Murphy CJ. Involvement of YAP, TAZ and HSP90 in contact guidance and intercellular junction formation in corneal epithelial cells. PLoS One 2014; 9:e109811. [PMID: 25290150 PMCID: PMC4188597 DOI: 10.1371/journal.pone.0109811] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022] Open
Abstract
The extracellular environment possesses a rich milieu of biophysical and biochemical signaling cues that are simultaneously integrated by cells and influence cellular phenotype. Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (WWTR1; TAZ), two important signaling molecules of the Hippo pathway, have been recently implicated as nuclear relays of cytoskeletal changes mediated by substratum rigidity and topography. These proteins intersect with other important intracellular signaling pathways (e.g. Wnt and TGFβ). In the cornea, epithelial cells adhere to the stroma through a 3-dimensional topography-rich basement membrane, with features in the nano-submicron size-scale that are capable of profoundly modulating a wide range of fundamental cell behaviors. The influences of substratum-topography, YAP/TAZ knockdown, and HSP90 inhibition on cell morphology, YAP/TAZ localization, and the expression of TGFβ2 and CTGF, were investigated. The results demonstrate (a) that knockdown of TAZ enhances contact guidance in a YAP dependent manner, (b) that CTGF is predominantly regulated by YAP and not TAZ, and (c) that TGFβ2 is regulated by both YAP and TAZ in these cells. Additionally, inhibition of HSP90 resulted in nuclear localization and subsequent transcriptional-activation of YAP, formation of cell-cell junctions and co-localization of E-cadherin and β-catenin at adherens junctions. Results presented in this study reflect the complexities underlying the molecular relationships between the cytoskeleton, growth factors, heat shock proteins, and co-activators of transcription that impact mechanotransduction. The data reveal the importance of YAP/TAZ on the cell behaviors, and gene and protein expression.
Collapse
Affiliation(s)
- Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Britta Dreier
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Joshua T. Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Binh C. Tuyen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Brad W. Rose
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher M. Reilly
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
21
|
RhoA controls Wnt upregulation on microstructured titanium surfaces. BIOMED RESEARCH INTERNATIONAL 2014; 2014:401859. [PMID: 24949442 PMCID: PMC4052847 DOI: 10.1155/2014/401859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/20/2014] [Indexed: 01/12/2023]
Abstract
Rough topography enhances the activation of Wnt canonical signaling in vitro, and this mediates its effects on cell differentiation. However, the molecular mechanisms underlying topography-dependent control of Wnt signaling are still poorly understood. As the small GTPase RhoA controls cytoskeletal reorganization and actomyosin-induced tensional forces, we hypothesized that RhoA could affect the activation of Wnt signaling in cells on micropatterned titanium surfaces. G-LISA assay revealed that RhoA activation was higher in C2C12 cells on rough (SLA) surfaces under basal conditions than on smooth (Polished) titanium. Transfection with dominant negative RhoA decreased Wnt activation by normalized TCF-Luc activity on SLA, whilst transfection with constitutively active RhoA increased TCF-Luc activation on Polished titanium. One mM Myosin II inhibitor Blebbistatin increased RhoA activation but decreased Wnt activation on SLA surfaces, indicating that tension-generating structures are required for canonical Wnt modulation on titanium surfaces. Actin inhibitor Cytochalasin markedly enhanced RhoA and TCF-Luc activation on both surfaces and increased the expression of differentiation markers in murine osteoblastic MC3T3 cells. Taken together, these data show that RhoA is upregulated in cells on rough surfaces and it affects the activation of Wnt canonical signaling through Myosin II modulation.
Collapse
|
22
|
Calzado-Martín A, Crespo L, Saldaña L, Boré A, Gómez-Barrena E, Vilaboa N. Human bone-lineage cell responses to anisotropic Ti6Al4V surfaces are dependent on their maturation state. J Biomed Mater Res A 2013; 102:3154-66. [DOI: 10.1002/jbm.a.34987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/01/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Alicia Calzado-Martín
- Hospital Universitario La Paz-IdiPAZ; Paseo de la Castellana 261 28046 Madrid Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Lara Crespo
- Hospital Universitario La Paz-IdiPAZ; Paseo de la Castellana 261 28046 Madrid Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Laura Saldaña
- Hospital Universitario La Paz-IdiPAZ; Paseo de la Castellana 261 28046 Madrid Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Alba Boré
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Hospital Universitario La Paz-IdiPAZ; Paseo de la Castellana 261 28046 Madrid Spain
| | - Enrique Gómez-Barrena
- Hospital Universitario La Paz-IdiPAZ; Paseo de la Castellana 261 28046 Madrid Spain
- Departamento de Cirugía; Universidad Autónoma de Madrid; Calle del Arzobispo Morcillo 4 28029 Madrid Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ; Paseo de la Castellana 261 28046 Madrid Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| |
Collapse
|
23
|
The role of filopodia in the recognition of nanotopographies. Sci Rep 2013; 3:1658. [PMID: 23584574 PMCID: PMC3625890 DOI: 10.1038/srep01658] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023] Open
Abstract
Substrate-exploring functions of filopodia were previously suggested based on cell studies on flat surfaces, but their role in topography sensing especially within nanofibrillar environments remained elusive. Here we have grown highly flexible hairy silicon nanowires on micropatterned islands on otherwise flat glass surfaces and coated them both with the extracellular matrix (ECM) protein fibronectin. This allowed us to visualize how filopodia steer fundamental cell functions such as cell adhesion, spreading, migration and division in the absence of lamellipodia. Shortly after seeding, transient filopodia protrude from the still spherical cells. Once filopodia contact nanowires, they bend and align them, while most filopodia peel off from flat surfaces. A zipping mechanism regulated by traction forces is proposed to explain how force-induced changes in filopodia-substrate contact angles enable topography sensing, including the still elusive phenomenon of contact guidance. Filopodia thus play a central role in steering transient topographic preferences.
Collapse
|
24
|
Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids Surf B Biointerfaces 2013; 106:248-57. [DOI: 10.1016/j.colsurfb.2013.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
|
25
|
Saldaña L, Crespo L, Bensiamar F, Arruebo M, Vilaboa N. Mechanical forces regulate stem cell response to surface topography. J Biomed Mater Res A 2013; 102:128-40. [PMID: 23613185 DOI: 10.1002/jbm.a.34674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
The interactions between bone tissue and orthopedic implants are strongly affected by mechanical forces at the bone-implant interface, but the interplay between surface topographies, mechanical stimuli, and cell behavior is complex and not well understood yet. This study reports on the influence of mechanical stretch on human mesenchymal stem cells (hMSCs) attached to metallic substrates with different roughness. Controlled forces were applied to plasma membrane of hMSCs cultured on smooth and rough stainless steel surfaces using magnetic collagen-coated particles and an electromagnet system. Degree of phosphorylation of focal adhesion kinase (p-FAK) on the active form (Tyr-397), prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) levels increased on rough samples under static conditions. Cell viability and fibronectin production decreased on rough substrates, while hMSCs maturated to the osteoblastic lineage to a similar extent on both surfaces. PGE2 production and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand ratio increased after force application on both surfaces, although to a greater extent on smooth substrates. p-FAK on Tyr-397 was induced fairly rapidly by mechanical stimulation on rough surfaces while cells cultured on smooth samples failed to activate this kinase in response to tensile forces. Mechanical forces enhanced VEGF secretion and reduced cell viability, fibronetin levels and osteoblastic maturation on smooth surfaces but not on rough samples. The magnetite beads model used in this study is well suited to characterize the response of hMSCs cultured on metallic surfaces to tensile forces and collected data suggest a mechanism whereby mechanotransduction driven by FAK is essential for stem cell growth and functioning on metallic substrates.
Collapse
Affiliation(s)
- Laura Saldaña
- Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | |
Collapse
|
26
|
Feng CH, Cheng YC, Chao PHG. The influence and interactions of substrate thickness, organization and dimensionality on cell morphology and migration. Acta Biomater 2013. [PMID: 23201017 DOI: 10.1016/j.actbio.2012.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells reside in a complex microenvironment in situ, with a number of chemical and physical parameters interacting to modulate cell phenotype and activities. To understand cell behavior in three dimensions recent studies have utilized natural or synthetic hydrogel or fibrous materials. Taking cues from the nucleation and growth characteristics of collagen fibrils in shear flow, we generate cell-laden three-dimensional collagen hydrogels with aligned collagen fibrils using a simple microfluidic device driven by hydrostatic flow. Furthermore, by regulating the collagen hydrogel thickness, the effective surface stiffness can be modulated to change the mechanical environment of the cell. Dimensionality, topography, and substrate thickness/stiffness change cell morphology and migration. Interactions amongst these parameters further influence cell behavior. For instance, while cells responded similarly to the change in substrate thickness/stiffness on two-dimensional random gels, dimensionality and fiber alignment both interacted with substrate thickness/stiffness to change cell morphology and motility. This economical, simple to use, and fully biocompatible platform highlights the importance of well-controlled physical parameters in the cellular microenvironment.
Collapse
Affiliation(s)
- Chia-hsiang Feng
- Institute of Biomedical Engineering, School and Medicine and School of Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
27
|
Li H, Wong YS, Wen F, Ng KW, Ng GKL, Venkatraman SS, Boey FYC, Tan LP. Human Mesenchymal Stem-Cell Behaviour On Direct Laser Micropatterned Electrospun Scaffolds with Hierarchical Structures. Macromol Biosci 2012; 13:299-310. [DOI: 10.1002/mabi.201200318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/16/2012] [Indexed: 12/28/2022]
|
28
|
Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, Schwartz Z, Sandhage KH, Boyan BD. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials 2012; 33:8986-94. [PMID: 22989383 DOI: 10.1016/j.biomaterials.2012.08.059] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/24/2012] [Indexed: 12/31/2022]
Abstract
Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MSCs) or immature osteoblasts as possible initial colonizers. Here we show that in the absence of any exogenous soluble factors, osteoblastic maturation of primary human osteoblasts (HOBs) but not osteoblastic differentiation of MSCs is strongly influenced by nanostructures superimposed onto a microrough Ti6Al4V (TiAlV) alloy. The sensitivity of osteoblasts to both surface microroughness and nanostructures led to a synergistic effect on maturation and local factor production. Osteoblastic differentiation of MSCs was sensitive to TiAlV surface microroughness with respect to production of differentiation markers, but no further enhancement was found when cultured on micro/nanostructured surfaces. Superposition of nanostructures to microroughened surfaces affected final MSC numbers and enhanced production of vascular endothelial growth factor (VEGF) but the magnitude of the response was lower than for HOB cultures. Our results suggest that the differentiation state of osteoblast-lineage cells determines the recognition of surface nanostructures and subsequent cell response, which has implications for clinical evaluation of new implant surface nanomodifications.
Collapse
Affiliation(s)
- Rolando A Gittens
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Galli C, Piemontese M, Lumetti S, Ravanetti F, Macaluso GM, Passeri G. Actin cytoskeleton controls activation of Wnt/β-catenin signaling in mesenchymal cells on implant surfaces with different topographies. Acta Biomater 2012; 8:2963-8. [PMID: 22564787 DOI: 10.1016/j.actbio.2012.04.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/15/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
Abstract
Surface topography affects cell function and differentiation. It has been previously shown that rough surfaces can enhance the activation of canonical Wnt signaling, an important pathway for osteoblast differentiation and bone maintenance, but the underlying mechanisms are still poorly understood. The present paper investigates whether cytoskeletal organization contributes to regulating this pathway. Rho-associated protein kinase (ROCK), an important controller of actin microfilaments, was inhibited with 2mM specific antagonist Y-27632 in mesenchymal and osteoblastic cells growing on titanium discs with a polished or acid-etched, sand-blasted (SLA) surface. Y-27632 subverted the morphology of the cytoskeleton on polished and, to a lesser extent, on SLA surfaces, as evidenced by fluorescence microscopy. Although ROCK inhibition did not affect cell viability, it increased activation of Wnt signaling in uncommitted C2C12 mesenchymal cells on polished surfaces but not on SLA discs upon reporter assay. Consistently with this, real-time polymerase chain reaction analysis showed that MC3T3 cells on polished surfaces expressed higher mRNA levels for β-catenin and alkaline phosphatase, a known Wnt target gene, and for the osteoblastic differentiation marker osteocalcin after ROCK inhibition. Taken together, these data demonstrate that cytoskeletal organization mediates activation of Wnt canonical signaling in cells on titanium surfaces with different topographies.
Collapse
Affiliation(s)
- C Galli
- Sez. Odontostomatologia, University of Parma, Via Gramsci 14, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|