1
|
Alhasyimi AA, Rosyida NF, Ana ID. Effect of nanoemulsion carbonated hydroxyapatite-statin administration on Acp 5 and Runx-2 expression during orthodontic relapse in rats. J Oral Biol Craniofac Res 2025; 15:129-135. [PMID: 39866381 PMCID: PMC11758405 DOI: 10.1016/j.jobcr.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Background Retention is an essential element of orthodontic treatment. In the past two decades, numerous biological treatments have been developed to alleviate orthodontic relapse. Pharmacologic bone modulation is a viable approach to mitigate relapse. The aim of this investigation was to determine whether administering nanoemulsion carbonated hydroxyapatite-statin (CHA-statin) would increase Runx-2 expression and decrease Acp 5 expression in rats experiencing experimental orthodontic relapse. Materials & methods Forty-eight rats (n = 48) were assigned to four groups: control, CHA, statin, and CHA-statin, with 12 rats in each group. A 30 g mesial traction was applied for 7 days via a closed-coil spring that connected the first maxillary molar to the maxillary incisor. To maintain the moved teeth, CHA, statin hydrogel, and nanoemulsion CHA-statin were administered intrasulcularly every 3 days for a period of 7 days. The removal of the devices facilitated the occurrence of relapse. The expression of Acp 5 and Runx-2 was evaluated using the immunohistochemistry method. The collected data were evaluated using analysis of variance and post hoc tests, with p < 0.05. Results A significant reduction in Acp 5-positive cells in the CHA-statin group was observed on days 7 and 14 of relapse movement compared with the other groups (p < 0.05), whereas the average Runx-2 expressions in the CHA-statin groups were significantly higher than in the other groups on days 1, 7, and 14 during the relapse phase (p < 0.05). Conclusion The nanoemulsion CHA-statin increased Runx-2 expression and decreased Acp 5 expression, thereby potentially preventing orthodontic relapse in rats.
Collapse
Affiliation(s)
- Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Indonesia
| | | | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM), Indonesia
| |
Collapse
|
2
|
Yu Z, Xie YZ, Huang XL, Huang SZ, Luo XM, Wu JX. Repeated platelet-rich plasma injections improve erectile dysfunction in a rat model of hyperhomocysteinemia. Asian J Androl 2024; 26:622-627. [PMID: 38953713 PMCID: PMC11614170 DOI: 10.4103/aja202418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/26/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Platelet-rich plasma (PRP) shows promise as a regenerative modality for mild-to-moderate erectile dysfunction (ED). However, its efficacy in treating severe ED remains unknown. Blood samples from 8-week-old male rats were used to prepare PRP through a two-step centrifugation procedure, followed by chitosan activation and freeze thaw cycle. A hyperhomocysteinemia (HHcy)-related ED model was established using a methionine-enriched diet, and an apomorphine (APO) test was conducted during the 4 th week. APO-negative rats were divided into two groups and were injected with PRP or saline every 2 weeks. Erectile function and histological analyses of the corpus cavernosum were performed during the 16 th week. The results revealed that erectile function was significantly impaired in rats with HHcy-related ED compared to that in age-matched rats but was improved by repeated PRP injections. Immunofluorescence staining revealed a reduction in reactive oxygen species and additional benefits on the recovery of structures within the corpus cavernosum in rats that received PRP treatment compared to those in the saline-injected control group. Therefore, PRP could enhance functional and structural recovery in a severe HHcy-related ED model. A notable strength of the present study lies in the use of a repeated intracavernous injection method, mirroring protocols used in human studies, which offers more reliable results for translating the findings to humans.
Collapse
Affiliation(s)
- Zhe Yu
- Reproductive Medicine Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yuan-Zhi Xie
- Reproductive Medicine Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xiao-Lan Huang
- Reproductive Medicine Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Su-Zhen Huang
- Reproductive Medicine Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xiang-Min Luo
- Reproductive Medicine Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jin-Xiang Wu
- Reproductive Medicine Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
3
|
McRobb J, Kamil KH, Ahmed I, Dhaif F, Metcalfe A. Influence of platelet-rich plasma (PRP) analogues on healing and clinical outcomes following anterior cruciate ligament (ACL) reconstructive surgery: a systematic review. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:225-253. [PMID: 35020088 PMCID: PMC9928817 DOI: 10.1007/s00590-021-03198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/29/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE To systematically review the effect of PRP on healing (vascularization, inflammation and ligamentization) and clinical outcomes (pain, knee function and stability) in patients undergoing ACL reconstruction and compare the preparation and application of PRP. METHODS Independent systematic searches of online databases (Medline, Embase and Web of Science) were conducted following PRISMA guidelines (final search 10th July 2021). Studies were screened against inclusion criteria and risk of bias assessed using Critical appraisal skills programme (CASP) Randomised controlled trial (RCT) checklist. Independent data extraction preceded narrative analysis. RESULTS 13 RCTs were included. The methods of PRP collection and application were varied. Significant early increases in rate of ligamentization and vascularisation were observed alongside early decreases in inflammation. No significant results were achieved in the later stages of the healing process. Significantly improved pain and knee function was found but no consensus reached. CONCLUSIONS PRP influences healing through early vascularisation, culminating in higher rates of ligamentization. Long-term effects were not demonstrated suggesting the influence of PRP is limited. No consensus was reached on the impact of PRP on pain, knee stability and resultant knee function, providing avenues for further research. Subsequent investigations could incorporate multiple doses over time, more frequent observation and comparisons of different forms of PRP. The lack of standardisation of PRP collection and application techniques makes comparison difficult. Due to considerable heterogeneity, (I2 > 50%), a formal meta-analysis was not possible highlighting the need for further high quality RCTs to assess the effectiveness of PRP. The biasing towards young males highlights the need for a more diverse range of participants to make the study more applicable to the general population. TRAIL REGISTRATION CRD42021242078CRD, 15th March 2021, retrospectively registered.
Collapse
Affiliation(s)
- Jonathon McRobb
- Warwick Medical School, Medical School Building, Coventry, CV4 7HL, UK.
| | | | - Imran Ahmed
- Warwick Clinical Trials Unit, Coventry, CV4 7AL, UK
| | - Fatema Dhaif
- Warwick Clinical Trials Unit, Coventry, CV4 7AL, UK
| | | |
Collapse
|
4
|
Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 2022; 24:285-306. [PMID: 36222966 PMCID: PMC9555256 DOI: 10.1007/s10561-022-10039-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).
Collapse
|
5
|
Platelet-Rich Plasma Lysate-Incorporating Gelatin Hydrogel as a Scaffold for Bone Reconstruction. Bioengineering (Basel) 2022; 9:bioengineering9100513. [PMID: 36290482 PMCID: PMC9598158 DOI: 10.3390/bioengineering9100513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
In implant dentistry, large vertical and horizontal alveolar ridge deficiencies in mandibular and maxillary bone are challenges that clinicians continue to face. One of the limitations of porous blocks for reconstruction of bone in large defects in the oral cavity, and in the musculoskeletal system, is that fibrin clot does not adequately fill the interior pores and does not persist long enough to accommodate cell migration into the center of the block. The objective of our work was to develop a gelatin-based gel incorporating platelet-rich plasma (PRP) lysate, to mimic the role that a blood clot would normally play to attract and accommodate the migration of host osteoprogenitor and endothelial cells into the scaffold, thereby facilitating bone reconstruction. A conjugate of gelatin (Gtn) and hydroxyphenyl propionic acid (HPA), an amino-acid-like molecule, was commended for this application because of its ability to undergo enzyme-mediated covalent cross-linking to form a hydrogel in vivo, after being injected as a liquid. The initiation and propagation of cross-linking were under the control of horseradish peroxidase and hydrogen peroxide, respectively. The objectives of this in vitro study were directed toward evaluating: (1) the migration of rat mesenchymal stem cells (MSCs) into Gtn–HPA gel under the influence of rat PRP lysate or recombinant platelet-derived growth factor (PDGF)-BB incorporated into the gel; (2) the differentiation of MSCs, incorporated into the gel, into osteogenic cells under the influence of PRP lysate and PDGF-BB; and (3) the release kinetics of PDGF-BB from gels incorporating two formulations of PRP lysate and recombinant PDGF-BB. Results: The number of MSCs migrating into the hydrogel was significantly (3-fold) higher in the hydrogel group incorporating PRP lysate compared to the PDGF-BB and the blank gel control groups. For the differentiation/osteogenesis assay, the osteocalcin-positive cell area percentage was significantly higher in both the gel/PRP and gel/PDGF-BB groups, compared to the two control groups: cells in the blank gels grown in cell expansion medium and in osteogenic medium. Results of the ELISA release assay indicated that Gtn–HPA acted as an effective delivery vehicle for the sustained release of PDGF-BB from two different PRP lysate batches, with about 60% of the original PDGF-BB amount in the two groups remaining in the gel at 28 days. Conclusions: Gtn–HPA accommodates MSC migration. PRP-lysate-incorporating hydrogels chemoattract increased MSC migration into the Gtn–HPA compared to the blank gel. PRP-lysate- and the PDGF-BB-incorporating gels stimulate osteogenic differentiation of the MSCs. The release of the growth factors from Gtn–HPA containing PRP lysate can extend over the period of time (weeks) necessary for bone reconstruction. The findings demonstrate that Gtn–HPA can serve as both a scaffold for cell migration and a delivery vehicle that allows sustained and controlled release of the incorporated therapeutic agent over extended periods of time. These findings commend Gtn–HPA incorporating PRP lysate for infusion into porous calcium phosphate blocks for vertical and horizontal ridge reconstruction, and for other musculoskeletal applications.
Collapse
|
6
|
Pan Y, Luo Y, Hong J, He H, Dai L, Zhu H, Wu J. Advances for the treatment of lower extremity arterial disease associated with diabetes mellitus. Front Mol Biosci 2022; 9:929718. [PMID: 36060247 PMCID: PMC9429832 DOI: 10.3389/fmolb.2022.929718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lower extremity arterial disease (LEAD) is a major vascular complication of diabetes. Vascular endothelial cells dysfunction can exacerbate local ischemia, leading to a significant increase in amputation, disability, and even mortality in patients with diabetes combined with LEAD. Therefore, it is of great clinical importance to explore proper and effective treatments. Conventional treatments of diabetic LEAD include lifestyle management, medication, open surgery, endovascular treatment, and amputation. As interdisciplinary research emerges, regenerative medicine strategies have provided new insights to treat chronic limb threatening ischemia (CLTI). Therapeutic angiogenesis strategies, such as delivering growth factors, stem cells, drugs to ischemic tissues, have also been proposed to treat LEAD by fundamentally stimulating multidimensional vascular regeneration. Recent years have seen the rapid growth of tissue engineering technology; tissue-engineered biomaterials have been used to study the treatment of LEAD, such as encapsulation of growth factors and drugs in hydrogel to facilitate the restoration of blood perfusion in ischemic tissues of animals. The primary purpose of this review is to introduce treatments and novel biomaterials development in LEAD. Firstly, the pathogenesis of LEAD is briefly described. Secondly, conventional therapies and therapeutic angiogenesis strategies of LEAD are discussed. Finally, recent research advances and future perspectives on biomaterials in LEAD are proposed.
Collapse
Affiliation(s)
- Yang Pan
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Hong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Lu Dai
- The Fourth Outpatient Department, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Jiang Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Investigating the Effects of Dehydrated Human Amnion-Chorion Membrane on Periodontal Healing. Biomolecules 2022; 12:biom12060857. [PMID: 35740981 PMCID: PMC9221211 DOI: 10.3390/biom12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Each growth factor (GF) has different effects and targets, and plays a critical role in periodontal healing. Dehydrated human amnion-chorion membrane (dHACM) contains various GFs and has been used to enhance wound healing. The purpose of this study was to evaluate the effects of dHACM on periodontal healing, using in vitro and in vivo experimental approaches. Standardized periodontal defects were created in rats. The defects were randomly divided into three groups: Unfilled, filled with hydroxypropyl cellulose (HPC), and dHACM+HPC. At 2 and 4 weeks postoperatively, periodontal healing was analyzed by microcomputed tomography (micro-CT), and histological and immunohistochemical analyses. In vitro, periodontal ligament-derived cells (PDLCs) isolated from rat incisors were incubated with dHACM extract. Cell proliferation and migration were evaluated by WST-1 and wound healing assay. In vivo, micro-CT examination at 2 weeks revealed enhanced formation of new bone in the dHACM+HPC group. At 4 weeks, the proportions of vascular endothelial growth factor (VEGF)-positive cells and α-smooth muscle actin (α-SMA)-positive blood vessels in the dHACM+HPC group were significantly greater than those in the Unfilled group. In vitro, dHACM extracts at 100 µg/mL significantly increased cell proliferation and migration compared with control. These findings suggest that GFs contained in dHACM promote proliferation and migration of PDLCs and angiogenesis, which lead to enhanced periodontal healing.
Collapse
|
8
|
Delivery systems for platelet derived growth factors in wound healing: A review of recent developments and global patent landscape. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ze Y, Li Y, Huang L, Shi Y, Li P, Gong P, Lin J, Yao Y. Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Front Bioeng Biotechnol 2022; 10:856398. [PMID: 35402417 PMCID: PMC8990266 DOI: 10.3389/fbioe.2022.856398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Mature vasculature is important for the survival of bioengineered tissue constructs, both in vivo and in vitro; however, the fabrication of fully vascularized tissue constructs remains a great challenge in tissue engineering. Indirect three-dimensional (3D) bioprinting refers to a 3D printing technique that can rapidly fabricate scaffolds with controllable internal pores, cavities, and channels through the use of sacrificial molds. It has attracted much attention in recent years owing to its ability to create complex vascular network-like channels through thick tissue constructs while maintaining endothelial cell activity. Biodegradable materials play a crucial role in tissue engineering. Scaffolds made of biodegradable materials act as temporary templates, interact with cells, integrate with native tissues, and affect the results of tissue remodeling. Biodegradable ink selection, especially the choice of scaffold and sacrificial materials in indirect 3D bioprinting, has been the focus of several recent studies. The major objective of this review is to summarize the basic characteristics of biodegradable materials commonly used in indirect 3D bioprinting for vascularization, and to address recent advances in applying this technique to the vascularization of different tissues. Furthermore, the review describes how indirect 3D bioprinting creates blood vessels and vascularized tissue constructs by introducing the methodology and biodegradable ink selection. With the continuous improvement of biodegradable materials in the future, indirect 3D bioprinting will make further contributions to the development of this field.
Collapse
Affiliation(s)
- Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Uemoto Y, Taura K, Nakamura D, Xuefeng L, Nam NH, Kimura Y, Yoshino K, Fuji H, Yoh T, Nishio T, Yamamoto G, Koyama Y, Seo S, Tsuruyama T, Iwaisako K, Uemoto S, Tabata Y, Hatano E. Bile duct regeneration with an artificial bile duct made of gelatin hydrogel non-woven fabrics. Tissue Eng Part A 2022; 28:737-748. [PMID: 35383474 DOI: 10.1089/ten.tea.2021.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although choledochojejunostomy is the standard technique for biliary reconstruction, there are various associated problems that need to be solved such as reflux cholangitis. Interposition with an artificial bile duct (ABD) to replace the resected bile duct maintains a physiological conduit for bile and may solve this problem. This study investigated the usefulness of an ABD made of gelatin hydrogel non-woven fabric (GHNF). GHNF was prepared by the solution blow spinning method. The migration and activity of murine fibroblast L929 cells were examined in GHNF sheets. L929 cells migrated into GHNF sheets, where they proliferated and synthesized collagen, suggesting GHNF is a promising scaffold for bile duct regeneration. ABDs made of GHNF were implanted in place of resected bile duct segments in rats. The rats were sacrificed at 2, 6, and 12 weeks post-implantation. The implantation site was histologically evaluated for bile duct regeneration. At postoperative 2 weeks, migrating cells were observed in the ABD pores. The implanted ABD was mostly degraded and replaced by collagen fibers at 6 weeks. Ki67-positive bile duct epithelial cells appeared within the implanted ABD. These were most abundant within the central part of the ABD after 6 weeks. The percentages of Ki67-positive cells were 31.7%±9.1% in the experimental group and 0.8%±0.6% in the sham operation group at 6 weeks (p<0.05), indicating that mature biliary epithelial cells at the stump proliferated to regenerate the biliary epithelium. Biliary epithelial cells had almost completely covered the bile duct lumen at 12 weeks (epithelialization ratios: 10.4%±6.9% at 2 weeks, 93.1%±5.1% at 6 weeks, 99.2%±1.6% at 12 weeks). The regenerated epithelium was positive for the bile duct epithelium marker cytokeratin 19. Bile duct regeneration was accompanied by angiogenesis, as evidenced by the appearance of CD31-positive vascular structures. Capillaries were induced 2 weeks after implantation. The number of capillaries reached a maximum at 6 weeks and decreased to the same level as that of normal bile ducts at 12 weeks. These results showed that an ABD of GHNF contributed to successful bile duct regeneration in rats by facilitating the cell migration required for extracellular matrix synthesis, angiogenesis, and epithelialization.
Collapse
Affiliation(s)
- Yusuke Uemoto
- Kyoto University, 12918, Surgery, Kyoto, Japan.,Kyoto University Institute for Frontier Life and Medical Sciences, 84090, Regeneration Science and Engineering, Kyoto, Kyoto, Japan;
| | | | | | - Li Xuefeng
- Kyoto University, 12918, Surgery, Kyoto, Japan;
| | | | | | - Kenji Yoshino
- Kyoto University, 12918, Surgery, Kyoto, Japan.,Nagahama City Hospital, 37078, Surgery, Nagahama, Shiga, Japan;
| | | | - Tomoaki Yoh
- Kyoto University, 12918, Surgery, Kyoto, Japan;
| | | | | | | | - Satoru Seo
- Kyoto University, 12918, Surgery, Kyoto, Japan;
| | - Tatsuaki Tsuruyama
- Kyoto University Hospital Clinical Bio Resource Center, 593766, Kyoto, Kyoto, Japan;
| | - Keiko Iwaisako
- Doshisha University - Kyotanabe Campus, 358002, Medical Life Systems, Kyotanabe, Kyoto, Japan;
| | - Shinji Uemoto
- Shiga University of Medical Science, 13051, Otsu, Shiga, Japan;
| | - Yasuhiko Tabata
- Kyoto University Institute for Frontier Life and Medical Sciences, 84090, Regeneration Science and Engineering, Kyoto, Kyoto, Japan;
| | | |
Collapse
|
11
|
Imam SS, Al-Abbasi FA, Hosawi S, Afzal M, Nadeem MS, Ghoneim MM, Alshehri S, Alzarea SI, Alquraini A, Gupta G, Kazmi I. Role of platelet rich plasma mediated repair and regeneration of cell in early stage of cardiac injury. Regen Ther 2022; 19:144-153. [PMID: 35229012 PMCID: PMC8856949 DOI: 10.1016/j.reth.2022.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Platelet-rich plasma (PRP) is a widely accepted treatment approach and has heightened the quality of care among physicians. PRP has been used over the last decade to boost clinical results of plastic therapies, periodontal surgery and intra-bony defects. According to certain research, elevated levels of PRP growth factors that could promote tissue repair and have the potential for PRP to be beneficial in regenerating processes that Maxillofacial and Oral Surgeons, Veterinary Officers, Athletic medicine specialists and Dermatologists have long admired. PRP is an autologous whole blood fraction that has a heavy amount of a variety of growth factors such as epidermal growth factor (EGF), Vascular Endothelial Growth Factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factors (FGFs), transforming growth factor beta-1 (TGF-b), insulin-like growth factor-I (IGF-I) and platelet-derived growth factor (PDGF) which can facilitate repair and regeneration. Moreover, a clinical trial of PRP in severe angina patients has shown its excellent safety profile. However, PRP is a very complex biological substance with an array of active biomolecules, its functions are yet to be fully clarified. In-addition, there was insufficient work assessing possible cardiovascular tissue benefits from PRP. Thus, it still remains necessary to identify the most clinically important cardiovascular applications and further research in clinical scenario need to be validated.
Collapse
Key Words
- ADMSC, adipose-derived mesenchymal stem cells
- BMSCs, bone marrow-derived mesenchymal stem cells
- Cardiac injury
- Cell repair and regeneration
- EGF, epidermal growth factor
- FDPs, fibrin degradation products
- FGFs, fibroblast growth factors
- HGF, hepatocyte growth factor
- IGF-I, insulin-like growth factor-I
- IRI, ischemic reperfusion injury
- ISO, Isoproterenol
- LP-PRP, leukocyte-poor PRP
- LR-PRP, leukocyte-rich PRP
- MH, Manuka honey
- MI, myocardial infarction
- MRI, magnetic resonance imaging
- P-PRF, pure platelet-rich fibrin
- PDGF, platelet-derived growth factor
- PRP, platelet-rich plasma
- Platelet-rich plasma
- ROS, reactive oxygen species
- TGF-b, transforming growth factor beta
- VEGF, vascular endothelial growth factor
- nsPEF, nanosecond pulsed electric fields
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf-72341, Saudi Arabia
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
12
|
Alipour M, Aghazadeh Z, Hassanpour M, Ghorbani M, Salehi R, Aghazadeh M. MTA-Enriched Polymeric Scaffolds Enhanced the Expression of Angiogenic Markers in Human Dental Pulp Stem Cells. Stem Cells Int 2022; 2022:7583489. [PMID: 35237330 PMCID: PMC8885263 DOI: 10.1155/2022/7583489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Revascularization of the pulp tissue is one of the fundamental processes and challenges in regenerative endodontic procedures (REPs). In this regard, the current study is aimed at synthesizing the mineral trioxide aggregate- (MTA-) based scaffolds as a biomaterial for REPs. Poly (ε-caprolactone) (PCL)/chitosan (CS)/MTA scaffolds were constructed and evaluated by FTIR, SEM, XRD, and TGA analyses. Proliferation and adhesion of human dental pulp stem cells (hDPSCs) were assessed on these scaffolds by scanning electron microscopy (SEM) and MTT assays, respectively. The expression of angiogenic markers was investigated in gene and protein levels by real-time PCR and western blotting tests. Our results indicated that the obtained appropriate physicochemical characteristics of scaffolds could be suitable for REPs. The adhesion and proliferation level of hDPSCs were significantly increased after seeding on PCL/CS/MTA scaffolds. The expression levels of VEGFR-2, Tie2, and Angiopoietin-1 genes were statistically increased on the PCL/CS/MTA scaffold. In support of these findings, western blotting results showed the upregulation of these markers at protein levels in PCL/CS/MTA scaffold (P < 0.05). The current study results suggested that PCL/CS/MTA scaffolds provide appropriate structures for the adhesion and proliferation of hDPSCs besides induction of the angiogenesis process in these cells.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Yergeshov AA, Zoughaib M, Ishkaeva RA, Savina IN, Abdullin TI. Regenerative Activities of ROS-Modulating Trace Metals in Subcutaneously Implanted Biodegradable Cryogel. Gels 2022; 8:118. [PMID: 35200498 PMCID: PMC8872170 DOI: 10.3390/gels8020118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Divalent trace metals (TM), especially copper (Cu), cobalt (Co) and zinc (Zn), are recognized as essential microelements for tissue homeostasis and regeneration. To achieve a balance between therapeutic activity and safety of administered TMs, effective gel formulations of TMs with elucidated regenerative mechanisms are required. We studied in vitro and in vivo effects of biodegradable macroporous cryogels doped with Cu, Co or Zn in a controllable manner. The extracellular ROS generation by metal dopants was assessed and compared with the intracellular effect of soluble TMs. The stimulating ability of TMs in the cryogels for cell proliferation, differentiation and cytokine/growth factor biosynthesis was characterized using HSF and HUVEC primary human cells. Multiple responses of host tissues to the TM-doped cryogels upon subcutaneous implantation were characterized taking into account the rate of biodegradation, production of HIF-1α/matrix metalloproteinases and the appearance of immune cells. Cu and Zn dopants did not disturb the intact skin organization while inducing specific stimulating effects on different skin structures, including vasculature, whereas Co dopant caused a significant reorganization of skin layers, the appearance of multinucleated giant cells, along with intense angiogenesis in the dermis. The results specify and compare the prooxidant and regenerative potential of Cu, Co and Zn-doped biodegradable cryogels and are of particular interest for the development of advanced bioinductive hydrogel materials for controlling angiogenesis and soft tissue growth.
Collapse
Affiliation(s)
- Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Rezeda A. Ishkaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| | - Irina N. Savina
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK;
| | - Timur I. Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (A.A.Y.); (M.Z.); (R.A.I.)
| |
Collapse
|
14
|
Liu C, Peng Z, Xu H, gao H, Li J, jin Y, wang Y, Wang C, liu Y, hu Y, jiang C, Guo J, Zhu L. 3D print Platelet-rich plasma loaded scaffold with sustained cytokine release for bone defect repair. Tissue Eng Part A 2022; 28:700-711. [PMID: 35152730 DOI: 10.1089/ten.tea.2021.0211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,
| | - Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,
| | - Huiling gao
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China, Guangzhou, Guangdong, China,
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,
| | - yanglei jin
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, 593059, Yiwu, Zhejiang, China,
| | - yihan wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China, guangzhou, China,
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China, No. 253 Industrial Avenue, Guangzhou, China, 510280,
| | - yang liu
- Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Art and Science, xiangyang, China,
| | - yunteng hu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China, guangzhou, China,
| | - cong jiang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China, guangzhou, China,
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
- Key Laboratory of Tissue Construction and Detection of Guangdong Province, Guangzhou, China
- Institute of Bone Biology, Academy of Orthopaedics, Guangdong Province, Guangzhou, China,
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, No. 253, Middle Gongye Avenue, Guangzhou, China, 510280,
| |
Collapse
|
15
|
Garcia-Orue I, Santos-Vizcaino E, Sanchez P, Gutierrez FB, Aguirre JJ, Hernandez RM, Igartua M. Bioactive and degradable hydrogel based on human platelet-rich plasma fibrin matrix combined with oxidized alginate in a diabetic mice wound healing model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112695. [DOI: 10.1016/j.msec.2022.112695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 01/22/2023]
|
16
|
Liu X, Zu E, Chang X, Ma X, Wang Z, Song X, Li X, Yu Q, Kamei KI, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T, Wang DO. Bi-phasic effect of gelatin in myogenesis and skeletal muscle regeneration. Dis Model Mech 2021; 14:273524. [PMID: 34821368 PMCID: PMC8713995 DOI: 10.1242/dmm.049290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle regeneration requires extracellular matrix (ECM) remodeling, including an acute and transient breakdown of collagen that produces gelatin. Although the physiological function of this process is unclear, it has inspired the application of gelatin to injured skeletal muscle for a potential pro-regenerative effect. Here, we investigated a bi-phasic effect of gelatin in skeletal muscle regeneration, mediated by the hormetic effects of reactive oxygen species (ROS). Low-dose gelatin stimulated ROS production from NADPH oxidase 2 (NOX2) and simultaneously upregulated the antioxidant system for cellular defense, reminiscent of the adaptive compensatory process during mild stress. This response triggered the release of the myokine IL-6, which stimulates myogenesis and facilitates muscle regeneration. By contrast, high-dose gelatin stimulated ROS overproduction from NOX2 and the mitochondrial chain complex, and ROS accumulation by suppressing the antioxidant system, triggering the release of TNFα, which inhibits myogenesis and regeneration. Our results have revealed a bi-phasic role of gelatin in regulating skeletal muscle repair mediated by intracellular ROS, the antioxidant system and cytokine (IL-6 and TNFα) signaling. Summary: Application of high- and low-dose gelatin to skeletal muscle revealed a bi-phasic role of gelatin in regulating skeletal muscle repair, which has translational implications for regenerative medicine.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Er Zu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Chang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaowei Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ziqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiangru Li
- School of Life Science and Biopharmaceutic, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ken-Ichiro Kamei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-850, Japan
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Department of Chemistry and Life Science, School of Advance Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan.,Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Center for Biosystems Dynamics Research (BDR), RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
17
|
Stilhano RS, Denapoli PMA, Gallo CC, Samoto VY, Ingham SJM, Abdalla RJ, Koh TJ, Han SW. Regenerative effect of platelet-rich plasma in the murine ischemic limbs. Life Sci 2021; 284:119934. [PMID: 34508762 DOI: 10.1016/j.lfs.2021.119934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/01/2022]
Abstract
AIMS The purpose of this study was to investigate the effect of PPRP (pure PRP) and LPRP (PRP with leukocytes) on recovery from limb ischemia and on expression of growth factors involved in angiogenesis, myogenesis and fibrogenesis. MATERIAL AND METHODS PPRP and LPRP prepared by centrifugation were added to cultures of C2C12 and NIH3T3 cells (1 or 10% PRPs) to evaluate alterations in cell metabolism and expression of growth factors by MTT, ELISA and RT-qPCR, respectively. To evaluate in vivo regenerative effects, PRPs were injected into the ischemic limbs of BALB/c mice and muscle mass/strength and histomorphometry were evaluated after 30 days. KEY FINDINGS Mice treated with PRPs after limb ischemia showed an increase in the size of myofibers and muscle strength, reduced fibrosis and adipocytes, and decreased capillary density and necrosis scores compared to untreated mice. In cell culture, serum deprivation reduced the viability of C2C12 and NIH3T3 cells to about 50%, but the addition of 1% PRPs completely recovered this loss. Both PRPs, downregulated most of the tested genes; however, angiogenic gene Vegfa in C2C12 and the fibrogenic genes Col1a1 and Col3a1 in NIH3T3 cells were upregulated by LPRP. SIGNIFICANCE PPRP and LPRP had similar effects in regulation of genes involved in angiogenesis, myogenesis and fibrogenesis. However, the presence of leucocytes did not significantly affect regenerative activities of PRP in the ischemic limb.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Center for Gene Therapy Investigation, Universidade Federal de São Paulo (UNIFESP), Brazil; Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo (FCMSCSP), Brazil
| | | | | | - Vivian Yochiko Samoto
- Center for Gene Therapy Investigation, Universidade Federal de São Paulo (UNIFESP), Brazil
| | | | - Rene Jorge Abdalla
- Department of Orthopedic Surgery, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Timothy Jon Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, United States of America
| | - Sang Won Han
- Center for Gene Therapy Investigation, Universidade Federal de São Paulo (UNIFESP), Brazil; Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
18
|
Combined therapy of platelet-rich plasma and basic fibroblast growth factor using gelatin-hydrogel sheet for rotator cuff healing in rat models. J Orthop Surg Res 2021; 16:605. [PMID: 34656163 PMCID: PMC8520192 DOI: 10.1186/s13018-021-02771-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction Excellent outcomes of arthroscopic rotator cuff repair for small and medium tears have been recently reported. However, re-tears after surgery have been a common complication after surgical repair of large and massive rotator cuff tears and often occur in early postoperative phase. It was previously reported that basic fibroblast growth factor and platelet-rich plasma enhanced rotator cuff tear healing. We hypothesized that this combined therapy could enhance rotator cuff healing after rotator cuff repair in a rat model. This study aimed to evaluate the efficacy of combined therapy of platelet-rich plasma and basic fibroblast growth factor with gelatin-hydrogel sheet. Methods To create a rotator cuff defect, the infraspinatus tendon of Sprague Dawley rat was resected from the greater tuberosity. The infraspinatus tendons were repaired and covered with gelatin-hydrogel sheet impregnated with PBS (control group), basic fibroblast growth factor (bFGF group), platelet-rich plasma (PRP group), or both basic fibroblast growth factor and platelet-rich plasma (combined group). Histological examinations were conducted using hematoxylin and eosin, safranin O, and immunofluorescence staining, such as Isolectin B4, type II collagen at 2 weeks postoperatively. For mechanical analysis, ultimate failure load of the tendon-humeral head complex was evaluated at 6 weeks postoperatively. Results In the hematoxylin and eosin staining, the tendon maturing score of the combined group was higher than that of the control group at postoperative 2 weeks. In the safranin O staining, stronger proteoglycan staining was observed in the combined group compared with the other groups at postoperative 2 weeks. Vascular staining with isolectin B4 in 3 treatment groups was significantly higher than that in the control group. Type II collagen expression in the combined group was significantly higher than those in the other groups. The ultimate failure load of the combined group was significantly higher than that of the control group. Conclusion Combined therapy of basic fibroblast growth factor and platelet-rich plasma promoted angiogenesis, tendon maturing and fibrocartilage regeneration at the enthesis, which could enhance the mechanical strength. It was suggested that combined basic fibroblast growth factor and platelet-rich plasma might enhance both tendon and bone–tendon junction healing, and basic fibroblast growth factor and platelet-rich plasma might be synergistic.
Collapse
|
19
|
Mitsui R, Matsukawa M, Nakagawa K, Isomura E, Kuwahara T, Nii T, Tanaka S, Tabata Y. Efficient cell transplantation combining injectable hydrogels with control release of growth factors. Regen Ther 2021; 18:372-383. [PMID: 34632010 PMCID: PMC8479297 DOI: 10.1016/j.reth.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The objective of this study is to investigate the effect of gelatin microspheres incorporating growth factors on the therapeutic efficacy in cell transplantation. The strength of this study is to combine gelatin hydrogel microspheres incorporating basic fibroblast growth factor and platelet growth factor mixture (GM/GF) with bioabsorbable injectable hydrogels (iGel) for transplantation of adipose-derived stem cells (ASCs). Methods The rats ASCs suspended in various solutions were transplanted in masseter muscle. Rats were euthanized 2, 7, 14 days after injection for measurement of the number of ASCs retention in the muscle and morphological evaluation of muscle fibers and the inflammation of the injected tissue by histologic and immunofluorescent stain. Results Following the injection into the skeletal muscle, the GM/GF allowed the growth factors to release at the injection site over one week. When ASCs were transplanted into skeletal muscle using iGel incorporating GM/GF (iGel+GM/GF), the number of cells grafted was significantly high compared with other control groups. Moreover, for the groups to which GM/GF was added, the cells transplanted survived, and the Myo-D expression of a myoblast marker was observed at the region of cells transplanted. Conclusions The growth factors released for a long time likely enhance the proliferative and differentiative capacity of cells. The simple combination with iGel and GM/GF allowed ASCs to enhance their survival at the injected site and consequently achieve improved therapeutic efficacy in cell transplantation. The rats adipose-derived stem cells (ASCs) suspended in various solutions were transplanted in masseter muscle. The number of cells transplanted using this study's technology was significantly high compared with other control groups. For the groups with growth factors, the Myo-D (myoblast marker) expression was observed at the region of cells transplanted.
Collapse
Key Words
- ASCs, adipose-derived stem cells
- Adipose-derived stem cells
- DMEM, Dulbecco modified Eagle medium
- Drug delivery system
- ELISA, Enzyme-Linked ImmunoSorbent Assay
- GM, gelatin hydrogel microspheres
- GM/GF, GM containing bFGF and PGFM
- HGF, hepatocyte growth factor
- Injectable hydrogel
- PBS, phosphate-buffered saline solution
- PGFM, platelet growth factor mixture
- Stem cell transplantation
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- iGel+GM/GF, iGel incorporating GM/GF
- iGel, bioabsorbable injectable hydrogels
Collapse
Affiliation(s)
- Ryo Mitsui
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Makoto Matsukawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyoko Nakagawa
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Emiko Isomura
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Teruki Nii
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Corresponding author. 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. Fax: +81-75-751-4646.
| |
Collapse
|
20
|
Chujo K, Jo JI, Tabata Y. Intracellular controlled release prolongs the time period of siRNA-based gene suppression. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2088-2102. [PMID: 34348600 DOI: 10.1080/09205063.2021.1958183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
RNA interference (RNAi) is a gene silencing process by inhibiting a target messenger RNA (mRNA) in the sequence-specific manner in the cell cytoplasm. Small interfering RNA (siRNA) cleaves the target mRNA. However, siRNA is not generally internalized into cells in the native state. The objective of this study is to prepare cationized gelatin nanospheres (cGNS) incorporating small interfering RNA (siRNA) and to prolong the time period of gene expression suppression. The cGNS with different degradabilities were prepared to evaluate the effect on the suppression of gene expression. There was no difference in the apparent size and zeta potential of cGNS among the amounts of glutaraldehyde (GA) added for crosslinking. The degradation of cGNS tended to become slowly with an increase of GA amounts used in preparation. After MC3T3-E1 cells were incubated with cGNS incorporating siRNA, the gene expression of cells was evaluated by real-time polymerase chain reaction (PCR). The time period of gene suppression increased with an increased amount of siRNA incorporated in cGNS. Moreover, the significant gene suppression was extended over 4 days. It is concluded that the intracellular controlled release with the cGNS enabled siRNA to prolong the time period of gene expression suppression.
Collapse
Affiliation(s)
- Kazuki Chujo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Marsico G, Martin‐Saldaña S, Pandit A. Therapeutic Biomaterial Approaches to Alleviate Chronic Limb Threatening Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003119. [PMID: 33854887 PMCID: PMC8025020 DOI: 10.1002/advs.202003119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/24/2020] [Indexed: 05/14/2023]
Abstract
Chronic limb threatening ischemia (CLTI) is a severe condition defined by the blockage of arteries in the lower extremities that leads to the degeneration of blood vessels and is characterized by the formation of non-healing ulcers and necrosis. The gold standard therapies such as bypass and endovascular surgery aim at the removal of the blockage. These therapies are not suitable for the so-called "no option patients" which present multiple artery occlusions with a likelihood of significant limb amputation. Therefore, CLTI represents a significant clinical challenge, and the efforts of developing new treatments have been focused on stimulating angiogenesis in the ischemic muscle. The delivery of pro-angiogenic nucleic acid, protein, and stem cell-based interventions have limited efficacy due to their short survival. Engineered biomaterials have emerged as a promising method to improve the effectiveness of these latter strategies. Several synthetic and natural biomaterials are tested in different formulations aiming to incorporate nucleic acid, proteins, stem cells, macrophages, or endothelial cells in supportive matrices. In this review, an overview of the biomaterials used alone and in combination with growth factors, nucleic acid, and cells in preclinical models is provided and their potential to induce revascularization and regeneration for CLTI applications is discussed.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Sergio Martin‐Saldaña
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
22
|
King W, Cawood K, Bookmiller M. The Use of Autologous Protein Solution (Pro-Stride ®) and Leukocyte-Rich Platelet-Rich Plasma (Restigen ®) in Canine Medicine. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:53-65. [PMID: 33777723 PMCID: PMC7989049 DOI: 10.2147/vmrr.s286913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
The use of autologous orthobiologics is an emerging area of interest in veterinary medicine. In this retrospective study, we reviewed the clinical results achieved using two orthobiologics devices to address orthopedic injuries and tissue repair. Leukocyte (White blood cell)-rich platelet-rich plasma (L-PRP) devices produce outputs containing high concentrations of growth factors from venous blood. The Autologous Protein Solution (APS) device produces an orthobiologic containing high concentrations of growth factors and anti-inflammatory cytokines. L-PRP has commonly been used to address soft tissue injuries. APS has been injected into the joint to address osteoarthritis. In the last five years, our practice has treated 35 dogs (38 treatments) with L-PRP and 98 dogs (108 treatments) with APS. Our group has used L-PRP and APS to address orthopedic conditions including osteoarthritis, bursitis, tendinitis, tendon/ligament rupture/repair procedures, post-surgical femoral head osteotomy/tibial-plateau-leveling osteotomy tissue repair, lumbosacral stenosis, patellar luxation, joint laxity, and osteochondral dissecans. The results achieved with L-PRP and APS have been favorable (observed pain improvement and minimal adverse reactions), but sometimes have not achieved complete pain relief or tissue repair. The most common application for L-PRP was patellar luxation and the most common application for APS was injection post-ACL surgery. Canine OA has been successfully managed in several patients with repeat injections of APS over the course of several years. Future studies on specific conditions are ongoing and including efforts to further characterize these products in canine medicine.
Collapse
Affiliation(s)
| | - Kevin Cawood
- Indian Creek Veterinary Hospital, Fort Wayne, IN, USA
| | | |
Collapse
|
23
|
Mahanani ES, Ulzanah FA. Efficacy of Incorporation Platelet Rich Plasma into Gelatine Hydrogel Scaffold between Impregnated and Drop Method. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tissue Engineering which involve three main component such as scaffold, platelet-rich plasma (PRP) and cells is expected to support in bone regeneration. Gelatin hidrogel scaffold is planted have a function as cell environment and PRP provide growth factor to support differentiation of cells. The success of tissue engineering is affected by number of PRP which is contained in scaffold. The purpose of this study is to compare the incorporation process between impregnated and drop method to gelatin hidrogel scaffold. PRP was prepared from three donors of whole blood, and twice sentrifugation by 450 rcf for 5 minutes and 1500 rcf for 7 minutes. PRP was incorporated into 3 gelatin hidrogel scaffolds for each methods. The remnant of PRP which didn’t incorporate were calculated the number of platelet with giemsa stainning. Platelet which loaded were the reduction result of number platelet before incorporate with platelet remnant. Data of the result were analyzed using independent sample t test. Result show the significant was 0.262 (p>0.05) there’s no significane different between impregnated and drop method for incorporating PRP into gelatin hidrogel scaffold. The number of platelet which incorporated in gelatin hidrogel scaffold were effected by characteristic of scaffold such as structure, interface adherence, porosity and swelling ability. The good characteristic of scaffold could be obtain from synthesis and good fabrication technique.
Collapse
|
24
|
Mendes BB, Daly AC, Reis RL, Domingues RMA, Gomes ME, Burdick JA. Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomater 2021; 119:101-113. [PMID: 33130309 DOI: 10.1016/j.actbio.2020.10.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Towards the repair of damaged tissues, numerous scaffolds have been fabricated to recreate the complex extracellular matrix (ECM) environment to support desired cell behaviors; however, it is often challenging to design scaffolds with the requisite cell-anchorage sites, mechanical stability, and tailorable physicochemical properties necessary for many applications. To address this and to improve on the properties of hyaluronic acid (HA) hydrogels, we combined photocrosslinkable norbornene-modified HA (NorHA) with human platelet lysate (PL). These PL-NorHA hybrid hydrogels supported the adhesion of cells when compared to NorHA hydrogels without PL, exhibited tailorable physicochemical properties based on the concentration of individual components, and released proteins over time. Using microfluidic techniques with on-chip mixing of NorHA and PL and subsequent photocrosslinking, spherical PL-NorHA microgels with a hierarchical fibrillar network were fabricated that exhibited the sustained delivery of PL proteins. Microgels could be jammed into granular hydrogels that exhibited shear-thinning and self-healing properties, enabling ejection from syringes and the fabrication of stable 3D constructs with 3D printing. Again, the inclusion of PL enhanced cellular interactions with the microgel structures. Overall, the combination of biomolecules and fibrin self-assembly arising from the enriched milieu of PL-derived proteins improved the bioactivity of HA-based hydrogels, enabling the formation of dynamic systems with modular design. The granular systems can be engineered to meet the complex demands of functional tissue repair using versatile processing techniques, such as with 3D printing.
Collapse
Affiliation(s)
- Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Andrew C Daly
- Department of Bioengineering, University of Pennsylvania, USA
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal.
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, USA.
| |
Collapse
|
25
|
Chen M, Liu Q, Xu Y, Wang Y, Han X, Wang Z, Liang J, Sun Y, Fan Y, Zhang X. The effect of LyPRP/collagen composite hydrogel on osteogenic differentiation of rBMSCs. Regen Biomater 2020; 8:rbaa053. [PMID: 33732498 PMCID: PMC7947583 DOI: 10.1093/rb/rbaa053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Although platelet-rich plasma (PRP) plays a significant role in the orthopedic clinical application, it still faces two major problems, namely, uncontrollable factors release, frequent preparation and extraction processes as well as the inconvenient form of usage. To overcome these shortcomings, freeze-dried PRP (LyPRP) was encapsulated into bioactive Col I hydrogel to induce osteogenic differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs). And PRP/Col І composite hydrogel was prepared as a control. Compared with Col І hydrogel, the introduction of platelets significantly improved the mechanical properties of hydrogels. Meanwhile, platelets were evenly distributed in the composite hydrogels network. The sustainable release of related factors in the composite hydrogels could last for more than 14 days to maintain its long-term biological activity. Further cell experiments confirmed that PRP and LyPRP could effectively alleviate the contraction of collagen hydrogel in vitro, and promote the adhesion, proliferation and osteogenesis differentiation of rBMSCs. The results of osteogenic gene expression indicated that the 10% LyPRP/Col І composite hydrogel could facilitate the early expression of BMP-2 and late osteogenic associated protein formation with higher expression of alkaline phosphatase and Osteocalcin (OCN). These results might provide new insights for the clinical application of 10% LyPRP/Col І composite hydrogel as practical bone repair injection.
Collapse
Affiliation(s)
- Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Quanying Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xiaowen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Zhe Wang
- Department of Medical Genetics, Zunyi Medical University, No. 6 West Xuefu Road, Zunyi, Guizhou 563000, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.,Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
26
|
Dias FGF, de Almeida SHM, Fávaro W, Latuf P, Ricetto CLZ. Can platelet-rich plasma coating improve polypropylene mesh integration? An immunohistochemical analysis in rabbits. Int Braz J Urol 2020; 47:287-294. [PMID: 33146979 PMCID: PMC7857777 DOI: 10.1590/s1677-5538.ibju.2020.0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: Despite high success rates in the treatment of urinary incontinence, complications related to the use of polypropylene (PP) meshes are still a concern, especially in vaginal prolapses surgeries. The objective of this study was to assess the effect of autologous platelet-rich plasma (PRP) coating on the integration of PP meshes implanted in the vaginal submucosa of rabbits. Materials and Methods: Thirty adult New Zealand rabbits were randomly divided into two groups (n=15): PP, implanted with conventional PP meshes; and PRP, implanted with autologous PRP coated PP meshes. Animals in both groups (n=5) were euthanized at 7, 30 and 90 days postoperatively, the vaginas extracted and sent to immunohistochemical analysis for the assessment of the pro-inflammatory agent TNF-α, anti-inflammatory agents TGF-β and IL-13, collagen metabolism marker MMP-2, and angiogenesis marker CD-31. AxioVision™ image analysis was used for the calculation of the immunoreactive area and density. Statistical analysis was performed with ANOVA followed by Tukey test (p <0.05). Results: Animals in the PRP group showed significantly increased expression of the angiogenesis agent CD-31 at all experimental times when compared to the PP group (p <0.0001). However, no differences concerning the expression of the other markers were observed between the groups. Conclusion: The addition of autologous PRP gel to PP meshes can be simply and safely achieved and seems to have a positive effect on implantation site angiogenesis. Further investigations are required to ascertain PPR coated meshes clinical efficacy in prolapses and stress urinary incontinence surgeries.
Collapse
Affiliation(s)
| | | | - Wagner Fávaro
- Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brasil
| | - Paulo Latuf
- Centro de Investigação em Pediatria (CIPED FCM), Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brasil
| | - Cássio L Z Ricetto
- Departamento de Urologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brasil
| |
Collapse
|
27
|
Fang J, Wang X, Jiang W, Zhu Y, Hu Y, Zhao Y, Song X, Zhao J, Zhang W, Peng J, Wang Y. Platelet-Rich Plasma Therapy in the Treatment of Diseases Associated with Orthopedic Injuries. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:571-585. [PMID: 32380937 DOI: 10.1089/ten.teb.2019.0292] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet-rich plasma (PRP) is an autologous platelet concentrate prepared from the whole blood that is activated to release growth factors (GFs) and cytokines and has been shown to have the potential capacity to reduce inflammation and improve tissue anabolism for regeneration. The use of PRP provides a potential for repair due to its abundant GFs and cytokines, which are key in initiating and modulating regenerative microenvironments for soft and hard tissues. Among outpatients, orthopedic injuries are common and include bone defects, ligament injury, enthesopathy, musculoskeletal injury, peripheral nerve injury, chronic nonhealing wounds, articular cartilage lesions, and osteoarthritis, which are caused by trauma, sport-related or other types of trauma, or tumor resection. Surgical intervention is often required to treat these injuries. However, for numerous reasons regarding limited regeneration capacity and insufficient blood supply of the defect region, these treatments commonly result in unsatisfactory outcomes, and follow-up treatment is challenging. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries. Impact statement In recent years, platelet-rich plasma (PRP) has become widely used in the treatment of diseases associated with orthopedic injuries, and the results of numerous studies are encouraging. Due to diseases associated with orthopedic injuries being common in clinics, as a conservative treatment, more and more doctors and patients are more likely to accept PRP. Importantly, PRP is a biological product of autologous blood that is obtained by a centrifugation procedure to enrich platelets from whole blood, resulting in few complications, such as negligible immunogenicity from an autologous source, and it is also simple to produce through an efficient and cost-effective method in a sterile environment. However, the applicability, advantages, and disadvantages of PRP therapy have not yet been fully elucidated. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries, as well as to provide references for clinics.
Collapse
Affiliation(s)
- Jie Fang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Graduate School of The North China University of Science and Technology, Hebei, P.R. China.,Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xin Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wen Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yongqiang Hu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Xueli Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Jinjuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wenlong Zhang
- Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| |
Collapse
|
28
|
Murata Y, Jo JI, Tabata Y. Molecular Beacon Imaging to Visualize Ki67 mRNA for Cell Proliferation Ability. Tissue Eng Part A 2020; 27:526-535. [PMID: 32723028 DOI: 10.1089/ten.tea.2020.0127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study is to visualize the ability of cell proliferation based on molecular beacons (MB). Two types of MB to detect messenger RNA (mRNA) were used. One is a Ki67 MB of a target for cell proliferation ability. The other one is a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) MB as a control of stable fluorescence in cells. To enhance the MB internalization into cells, the MB were incorporated into cationized gelatin nanospheres (cGNS). There was no difference in the physicochemical properties and the cell internalization between the cGNSKi67 MB and cGNSGAP MB. When basic fibroblast growth factor (bFGF) was added to KUM6 cells of a mouse bone marrow-derived mesenchymal stem cell line, the expression of Ki67 and the cell proliferation increased with the bFGF concentration. After the incubation for the cell internalization of cGNS incorporating MB (cGNSMB), the cells were further incubated for 24 h with or without different concentrations of bFGF. The fluorescence of cGNSKi67 MB significantly increased with the increase of bFGF concentration, whereas that of cGNSGAP MB was constant, irrespective of the bFGF concentration. A time-lapse imaging assay revealed a fast enhancement of cGNSKi67 MB fluorescence after the bFGF addition compared with no bFGF addition. On the other hand, for cGNSGAP MB, a constant fluorescence was observed even at any time point after the bFGF addition. It is concluded that the cGNSMB system is promising for the chronological visualization of proliferation ability in living cells.
Collapse
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Tao J, Liu H, Wu W, Zhang J, Liu S, Zhang J, Huang Y, Xu X, He H, Yang S, Gou M. 3D‐Printed Nerve Conduits with Live Platelets for Effective Peripheral Nerve Repair. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202004272] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Sijia Liu
- Department of Rehabilitation Medicine West China Hospital Sichuan University Chengdu 610041 China
| | - Jing Zhang
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Xin Xu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Hongchen He
- Department of Rehabilitation Medicine West China Hospital Sichuan University Chengdu 610041 China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA Chinese PLA General Hospital Medical College of PLA Beijing 100853 China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| |
Collapse
|
30
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
31
|
Improved viability of murine skin flaps using a gelatin hydrogel sheet impregnated with bFGF. J Artif Organs 2020; 23:348-357. [PMID: 32632506 DOI: 10.1007/s10047-020-01188-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/12/2020] [Indexed: 01/14/2023]
Abstract
Basic fibroblast growth factor (bFGF) promotes epithelial cell proliferation and angiogenesis but its clinical applications are limited by its short half-life and low retention. Recently developed gelatin hydrogel sheets able to release physiologically active substances in a controlled manner have the potential to overcome these issues. In this study, the effects of gelatin hydrogel sheets impregnated with bFGF on flap survival and angiogenesis were examined in a murine skin flap model. A flap of 1 × 3 cm was generated on the backs of 60 C57BL/6 mice. The mice were divided into five groups (n = 12/group): Group I, untreated; Group II, treated with a gelatin hydrogel sheet impregnated with saline; Group III, treated with bFGF (50 µg) without sheets; Groups IV and V, treated with gelatin hydrogel sheets impregnated with 50 and 100 µg of bFGF, respectively. On the seventh day after surgery, the flap survival area and vascular network were examined and hematoxylin and eosin and von Willebrand factor staining were used for histological examinations. The flap survival areas were significantly larger in Groups IV and V than in other groups. The area of new vessels was significantly larger in Group IV than in the other groups. In the murine skin flap model, gelatin hydrogel sheets impregnated with bFGF promoted angiogenesis and improved flap survival. These findings support the use of bFGF-impregnated gelatin hydrogel sheets for improving ischemic flap survival in clinical settings.
Collapse
|
32
|
Mallis P, Alevrogianni V, Sarri P, Velentzas AD, Stavropoulos-Giokas C, Michalopoulos E. Effect of Cord Blood Platelet Gel on wound healing capacity of human Mesenchymal Stromal Cells. Transfus Apher Sci 2020; 59:102734. [PMID: 32005441 DOI: 10.1016/j.transci.2020.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/02/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wound healing is a dynamic process, involving the recruitment of growth factors, cytokines, chemokines and cellular populations. Recently, the Cord Blood Platelet Gel (CBPG) has been applied successfully in wound closure and tissue regeneration. Moreover, its proper combination with stem cell populations such as Mesenchymal Stromal Cells (MSCs) may positively improve the wound healing process. Based on the above data, this study aimed to the evaluation of wound healing capacity of MSCs combined with CBPG under in vitro conditions. METHODS Initially, CBPG was developed from Cord Blood Units (CBUs). The determination of wound healing ability of MSCs was performed using the scratch wound assay. In addition, the morphological features, immunophenotypical characteristics and differentiation capacity of MSCs were evaluated. RESULTS Scratch wound assay results showed, that CBPG could positively stimulate the MSCs migration. Moreover, MSCs cultured in presence of CBPG were characterized by elongated shape and improved stemness properties as it was indicated by flow cytometric analysis and differentiation process. CONCLUSION These results clearly showed the beneficial effect of CBPG in combination with MSCs in wound healing. The proper combination of CBPG with stem cells strategy may enhance the healing process in patients with skin erosions.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece.
| | - Vivian Alevrogianni
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece
| | - Phaedra Sarri
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece
| | - Athanassios D Velentzas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens, Greece
| | | | | |
Collapse
|
33
|
Abstract
Tendon injuries constitute a significant healthcare problem with variable clinical outcomes. The complex interplay of tissue homeostasis, degeneration, repair, and regeneration makes the development of successful delivery therapeutic strategies challenging. Platelet-rich hemoderivatives, a source of supra-physiologic concentrations of human therapeutic factors, are a promising application to treat tendon injuries from the perspective of tendon tissue engineering, although the outcomes remain controversial.
Collapse
|
34
|
Censi R, Casadidio C, Deng S, Gigliobianco MR, Sabbieti MG, Agas D, Laus F, Di Martino P. Interpenetrating Hydrogel Networks Enhance Mechanical Stability, Rheological Properties, Release Behavior and Adhesiveness of Platelet-Rich Plasma. Int J Mol Sci 2020; 21:E1399. [PMID: 32092976 PMCID: PMC7073123 DOI: 10.3390/ijms21041399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Platelet-rich plasma (PRP) has attracted much attention for the treatment of articular cartilage defects or wounds due to its intrinsic content of growth factors relevant for tissue repair. However, the short residence time of PRP in vivo, due to the action of lytic enzymes, its weak mechanical properties and the consequent short-term release of bioactive factors has restricted its application and efficacy. The present work aimed at designing new formulation strategies for PRP, based on the use of platelet concentrate (PC)-loaded hydrogels or interpenetrating polymer networks, directed at improving mechanical stability and sustaining the release of bioactive growth factors over a prolonged time-span. The interpenetrating hydrogels comprised two polymer networks interlaced on a molecular scale: (a) a first covalent network of thermosensitive and biodegradable vinyl sulfone bearing p(hydroxypropyl methacrylamide-lacate)-polyethylene glycol triblock copolymers, tandem cross-linked by thermal gelation and Michael addition when combined with thiolated hyaluronic acid, and (b) a second network composed of cross-linked fibrin. The PC-loaded hydrogels, instead, was formed only by network (a). All the designed and successfully synthesized formulations greatly increased the stability of PRP in vitro, leading to significant increase in degradation time and storage modulus of PRP gel. The resulting viscoelastic networks showed the ability to controllably release platelet derived growth factor and transforming growth factr β1, and to improve the tissue adhesiveness of PRP. The newly developed hydrogels show great potential for application in the field of wound healing, cartilage repair and beyond.
Collapse
Affiliation(s)
- Roberta Censi
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Maria Rosa Gigliobianco
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy; (M.G.S.); (D.A.)
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy; (M.G.S.); (D.A.)
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy;
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (C.C.); (S.D.); (M.R.G.); (P.D.M.)
| |
Collapse
|
35
|
Anamizu M, Tabata Y. Design of injectable hydrogels of gelatin and alginate with ferric ions for cell transplantation. Acta Biomater 2019; 100:184-190. [PMID: 31589929 DOI: 10.1016/j.actbio.2019.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
The objective of this study is to design bioabsorbable injectable hydrogels based on the physico-chemical interaction between biocompatible polymers and ferric ions, and evaluate the survival, proliferation, and osteogenic differentiation of cells encapsulated in the hydrogels. The injectable hydrogels were prepared by simply mixing mixed alginate/gelatin solution at various ratios and FeCl3 solution. The hydrogels prepared disappeared within a few days in the phosphate buffered-saline solution (PBS) with containing collagenase although the disappearance rate increased with an increase of the gelatin ratio in the hydrogel. For the hydrogel of alginate/gelatin low ratio, the survival and proliferation of cells in the hydrogel-encapsulated condition were significantly high compared with those of hydrogel at the higher ratios. The cells collected 3 days after cultured in the hydrogel also proliferated to a significantly higher extent than those collected from other hydrogels. The proliferation ability of cells was similar that of cells cultured on the standard tissue culture polystyrene (TCPS) dish. When evaluated to compare with cells cultured on the TCPS dish, the expression of runt-related transcription factor-2 (RUNX2) gene, the alkaline phosphatase (ALP) activity, and the calcium precipitation were significantly high. The cells were encapsulated by the mixed alginate/gelatin and FeCl3 hydrogel and injected in the back subcutis of mice, the percentage of cells retained in the injected site was higher than that of cells injected in the PBS suspension. It is concluded that the injectable hydrogel prepared by simple mixing mixed alginate/gelatin solution and FeCl3 solution is a promising material for the cell transplantation. STATEMENT OF SIGNIFICANCE: Injectable hydrogels prepared by simple mixing mixed alginate/gelatin solution at various ratios and FeCl3 solution. For the hydrogel of alginate/gelatin low ratio, the survival, the proliferation, and the differentiate properties of cells in the hydrogel-encapsulated condition were similar those of cells cultured on the TCPS dish. When the cells encapsulated hydrogels were injected in the back subcutis of mice, the percentage of cells retained in the injected site was higher than that of cells injected in the PBS suspension. It is concluded that the present injectable hydrogel is a promising material for the cell transplantation.
Collapse
Affiliation(s)
- Mina Anamizu
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
36
|
Bonferoni MC, Rossi S, Sandri G, Caramella C, Del Fante C, Perotti C, Miele D, Vigani B, Ferrari F. Bioactive Medications for the Delivery of Platelet Derivatives to Skin Wounds. Curr Drug Deliv 2019; 16:472-483. [PMID: 30894109 PMCID: PMC6637103 DOI: 10.2174/1381612825666190320154406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/24/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Chronic wounds are the result of alterations in the complex series of events of physiological wound healing. In particular, the prolonged inflammation results in increased protease activity, in the deg-radation of extracellular matrix (ECM) and of growth factors (GFs). The relevance of platelet GFs in maintaining and restoring the complex equilibrium of different moments in wound healing is well recog-nized. Moreover, the observed decrease of their levels in chronic wounds suggested a possible therapeutic role of the external application to the wounds. It has been also pointed out that tissue regeneration can be more efficiently obtained by the synergic use of different GFs. Platelet derivatives such as platelet-rich plasma (PRP) and platelet lysate (PL) are able to release GFs in a balanced pool. Their therapeutic use in regenerative medicine and wound healing has been therefore more and more frequently proposed in clini-cal trials and in the literature. The development of a suitable formulation able to control the GFs release rate, to protect the GFs, and to assure their prolonged contact with the wound site, is of paramount im-portance for the therapeutic success. The present review considers some formulation approaches for PRP and PL application to wounds
Collapse
Affiliation(s)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Claudia Del Fante
- Immunohaematology and Transfusion Service and Cell Therapy Unit of Fondazione IRCCS, S. Matteo, 27100 Pavia, Italy
| | - Cesare Perotti
- Immunohaematology and Transfusion Service and Cell Therapy Unit of Fondazione IRCCS, S. Matteo, 27100 Pavia, Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
37
|
Murata Y, Jo JI, Tabata Y. Intracellular Controlled Release of Molecular Beacon Prolongs the Time Period of mRNA Visualization. Tissue Eng Part A 2019; 25:1527-1537. [DOI: 10.1089/ten.tea.2019.0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Zhang FM, Zhou L, Zhou ZN, Dai C, Fan L, Li CH, Xiao CR, Ning CY, Liu Y, Du JQ, Tan GX. Bioactive glass functionalized chondroitin sulfate hydrogel with proangiogenic properties. Biopolymers 2019; 110:e23328. [PMID: 31454076 DOI: 10.1002/bip.23328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Blood vessels play an important role in bone defect repair and growth, and a critical challenge of bone defect repair is the promotion of blood vessel formation. Most of the current methods promote vascularization by adding specific growth factors, which are costly and easy to inactivate. In this study, we developed a covalently cross-linked aminated bioactive glass nanoparticle-chondroitin sulfate methacrylate (ABGN-CSMA) organic-inorganic composite hydrogel with angiogenic properties. The amino groups of the ABGNs form covalent bonds with the carboxyl groups on CSMA. Surface amination modification of BGNs not only improved the dispersion of BGNs in CSMA but also significantly improved the mechanical properties of the composite hydrogel. The largest storage modulus (1200 Pa), the largest loss modulus (560 Pa) and the strongest resistance to deformation of the hydrogel are seen at 10% concentration of ABGNs. Simultaneously, the local pH stability and sustained ion release of the composite hydrogel are conducive to cell adhesion, proliferation, and angiogenesis. This work provides evidence for the development of covalently cross-linked organic-inorganic composite hydrogels with angiogenic properties.
Collapse
Affiliation(s)
- Feng-Miao Zhang
- Department of Applied Chemistry, Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Lei Zhou
- Department of Applied Chemistry, Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zheng-Nan Zhou
- Department of Applied Chemistry, Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Cong Dai
- Department of Applied Chemistry, Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Lei Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chang-Hao Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Cai-Rong Xiao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Cheng-Yun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yi Liu
- Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Qiang Du
- Department of Nuclear Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Xin Tan
- Department of Applied Chemistry, Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
39
|
Notodihardjo SC, Morimoto N, Kakudo N, Mitsui T, Le TM, Tabata Y, Kusumoto K. Comparison of the efficacy of cryopreserved human platelet lysate and refrigerated lyophilized human platelet lysate for wound healing. Regen Ther 2019; 10:1-9. [PMID: 30525065 PMCID: PMC6260428 DOI: 10.1016/j.reth.2018.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Human platelet lysate (hPL) part of the growth factor cocktail derived from human platelets, which has been applied as a cell growth supplement. The production process is easier in comparison to platelet-rich plasma; thus, hPL is now considered for use in wound healing therapy. However, methods for preserving hPL for more than several months that maintain its bioactivity must be considered, especially for chronic wound treatment. The present study compared the effects of preservation for 9 months using a refrigerator or deep freezer. METHODS We investigated three preservation conditions. In the C-hPL group, hPL was stored at -80 °C in a deep freezer for 9 months; in the CL-hPL group, hPL was cryopreserved for 9 months at -80 °C in a deep freezer then lyophilized; in the L-hPL group, lyophilized hPL was refrigerated at 4 °C for 9 months. The quantity and quality of growth factors in these three groups were measured by an ELISA and in fibroblast cell cultures. Then, gelatin hydrogel discs were impregnated with hPL and its effects with regard to the promotion of wound healing in mice were evaluated by histologic examinations. RESULTS The PDGF-BB concentration in C-hPL, CL-hPL and L-hPL was 18,363 ± 370 pg/ml, 11,325 ± 171 pg/ml, and 12,307 ± 348 pg/ml, respectively; the VEGF concentration was 655 ± 23 pg/ml, 454 ± 27 pg/ml, and 499 ± 23 pg/ml, respectively; and the TGF-β1 concentration was 97,363 ± 5418 pg/ml, 73,198 ± 2442 pg/ml, and 78,034 ± 3885 pg/ml, respectively. In cell culture medium, fibroblast cell cultures were better supported in the hPL groups than in the fetal bovine serum group. In the histologic examination of the wound healing process, no differences were observed among the three preserved hPL groups with regard to epithelialization, or granulation tissue or capillary formation. The wounds in all groups had almost healed by day 14. CONCLUSIONS The stability of growth factors contained in lyophilized hPL is maintained at 4 °C for up to 9 months. This was a versatile preservation method that can be applied in clinical practice.
Collapse
Affiliation(s)
- Sharon Claudia Notodihardjo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Toshihito Mitsui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Tien Minh Le
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-1010, Japan
| |
Collapse
|
40
|
Gao X, Gao L, Groth T, Liu T, He D, Wang M, Gong F, Chu J, Zhao M. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J Biomed Mater Res A 2019; 107:2076-2087. [PMID: 31087770 DOI: 10.1002/jbm.a.36720] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Three-dimensional scaffolds like hydrogels can be employed as cell carriers for in vitro or in vivo colonization and have become a major research topic to replace damaged tissue. In the current study, a novel composite hydrogel composed of sodium alginate (SA) and platelet-rich-plasma (PRP) varying in blending ratios, cross-linked with calcium ions, released from calcium carbonate-D-Glucono-d-lactone (CaCO3 -GDL) was successfully prepared. It was found that addition of PRP changed largely the physical properties and biological performance of the composite hydrogels, which was depending on the blending ratio. The gelation rate and swelling ratio of alginate hydrogels were significantly reduced by the addition of PRP, which produced also a more homogeneous gel structure. Field emission scanning electron microscopy (FE-SEM) investigation confirmed the incorporation of PRP-derived proteins in the hydrogel, where a porous structure with a pore size of 200-300 μm was found. On the other hand, an increase in surface roughness was observed after the addition of PRP. The compressive mechanical strength of SA/PRP composite hydrogel was enhanced in comparison to the pure SA gel. The composite hydrogels with the highest PRP content exhibited at a maximum compressive stress of 0.26 MPa a maximum strain of 55%, while the maximum compressive strain of pure SA hydrogels was only 45% at a stress of 0.08 MPa. It was also found that the in vitro degradation of the alginate gel was accelerated by the addition of PRP. In terms of cellular responses, all gels exhibited an excellent cytocompatibility. Indeed, the composite hydrogels supported bone marrow-derived mesenchymal stem cells proliferation and their chondrogenesis with up-regulation of chondrogenic marker genes Sox9 and Aggrecan. Overall, the present study suggests a great potential of SA/PRP composite hydrogels as cell carriers for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liyang Gao
- School of Life Science, Ningxia University, Yinchuan, China
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Research, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tianfeng Liu
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongning He
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingrui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Gong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
41
|
Seidlits SK, Liang J, Bierman RD, Sohrabi A, Karam J, Holley SM, Cepeda C, Walthers CM. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J Biomed Mater Res A 2019; 107:704-718. [PMID: 30615255 PMCID: PMC8862560 DOI: 10.1002/jbm.a.36603] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 07/26/2023]
Abstract
Neural stem/progenitor cell (NS/PC)-based therapies have shown exciting potential for regeneration of the central nervous system (CNS) and NS/PC cultures represent an important resource for disease modeling and drug screening. However, significant challenges limiting clinical translation remain, such as generating large numbers of cells required for model cultures or transplantation, maintaining physiologically representative phenotypes ex vivo and directing NS/PC differentiation into specific fates. Here, we report that culture of human NS/PCs in 3D, hyaluronic acid (HA)-rich biomaterial microenvironments increased differentiation toward oligodendrocytes and neurons over 2D cultures on laminin-coated glass. Moreover, NS/PCs in 3D culture exhibited a significant reduction in differentiation into reactive astrocytes. Many NS/PC-derived neurons in 3D, HA-based hydrogels expressed synaptophysin, indicating synapse formation, and displayed electrophysiological characteristics of immature neurons. While inclusion of integrin-binding, RGD peptides into hydrogels resulted in a modest increase in numbers of viable NS/PCs, no combination of laminin-derived, adhesive peptides affected differentiation outcomes. Notably, 3D cultures of differentiating NS/PCs were maintained for at least 70 days in medium with minimal growth factor supplementation. In sum, results demonstrate the use of 3D, HA-based biomaterials for long-term expansion and differentiation of NS/PCs toward oligodendroglial and neuronal fates, while inhibiting astroglial fates. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 704-718, 2019.
Collapse
Affiliation(s)
- Stephanie K. Seidlits
- Department of Bioengineering, UCLA, Los Angels, California
- Board Stem Cell Research Center, UCLA, Los Angels, California
- Brain Research Institute, UCLA, Los Angels, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angels, California
- Center for Minimally Invasive Therapeutics, UCLA, Los Angels, California
| | - Jesse Liang
- Department of Bioengineering, UCLA, Los Angels, California
| | | | | | - Joshua Karam
- Department of Bioengineering, UCLA, Los Angels, California
| | - Sandra M. Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | |
Collapse
|
42
|
Intraperitoneal chemotherapy for peritoneal metastases using sustained release formula of cisplatin-incorporated gelatin hydrogel granules. Surg Today 2019; 49:785-794. [PMID: 30847629 DOI: 10.1007/s00595-019-01792-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/13/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE We previously reported the effectiveness of gelatin microspheres incorporating cisplatin in a mouse model of peritoneal metastases. In this study, we report our new complete sustained-release formula of gelatin hydrogel granules incorporating cisplatin (GHG-CDDP), which exerted a good anti-tumor effect with less toxicity. METHODS GHG-CDDP was prepared without organic solvents to enable its future clinical use. The pharmaceutical characterization of GHG-CDDP was performed, and its in vivo degradability was evaluated. The anti-tumor effect was evaluated using a murine peritoneal metastasis model of the human gastric cancer MKN45-Luc cell line. RESULTS Our new manufacturing process dramatically reduced the initial burst of CDDP release to approximately 2% (wt), while the previous product had a 25-30% initial burst. In intraperitoneal degradation tests, approximately 30% of GHG-CDDP remained in the murine abdominal cavity 7 days after intraperitoneal injection and disappeared within 3 weeks. GHG-CDDP significantly suppressed the in vivo tumor growth (p = 0.02) and prolonged the survival time (p = 0.0012) compared with the control. In contrast, free CDDP did not show a significant therapeutic effect at any dose. Weight loss and hematological toxicity were also significantly ameliorated. CONCLUSIONS GHG-CDDP is a promising treatment option for peritoneal metastases through the complete sustained-release of CDDP with less systemic toxicity.
Collapse
|
43
|
Notodihardjo SC, Morimoto N, Kakudo N, Mitsui T, Le TM, Tabata Y, Kusumoto K. Efficacy of Gelatin Hydrogel Impregnated With Concentrated Platelet Lysate in Murine Wound Healing. J Surg Res 2019; 234:190-201. [DOI: 10.1016/j.jss.2018.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
|
44
|
Hsu YY, Liu KL, Yeh HH, Lin HR, Wu HL, Tsai JC. Sustained release of recombinant thrombomodulin from cross-linked gelatin/hyaluronic acid hydrogels potentiate wound healing in diabetic mice. Eur J Pharm Biopharm 2019; 135:61-71. [DOI: 10.1016/j.ejpb.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/11/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
45
|
Washio A, Teshima H, Yokota K, Kitamura C, Tabata Y. Preparation of gelatin hydrogel sponges incorporating bioactive glasses capable for the controlled release of fibroblast growth factor-2. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:49-63. [PMID: 30470163 DOI: 10.1080/09205063.2018.1544474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gelatin hydrogel sponges incorporating bioactive glasses (Gel-BG) were fabricated. We evaluated the characteristics of Gel-BG as scaffolds from the perspective of their mechanical properties and the formation of hydroxyapatite by the incorporation of bioactive glasses (BG). In addition, the Gel-BG degradation and the profile of fibroblast growth factor-2 (FGF-2) release from the Gel-BG were examined. Every Gel-BG showed an interconnected pore structure with the pore size range of 180-200 µm. The compression modulus of sponges incorporating BG increased. The time profiles of degradation for the 72-h crosslinked gelatin hydrogel sponges incorporating 10 wt% BG (Gel-BG(10)) and 50 wt% BG (Gel-BG(50)) were analogous to that of the 24-h crosslinked gelatin hydrogel sponge without BG (Gel-BG(0)). In measuring the release of FGF-2 from Gel-BG, the Gel-BG(10) and Gel-BG(50) showed almost analogous 100% cumulative release within 28 days in vivo. Additionally, a bioactivity evaluation showed that the presence of gelatin does not affect the in vitro bioactivity of Gel-BG. These sponges showed mechanical and chemical functionality as scaffolds, featuring both the controlled release of FGF-2 and the induction of hydroxyapatite crystallization.
Collapse
Affiliation(s)
- Ayako Washio
- a Division of Endodontics and Restorative Dentistry, Department of Oral Functions , Kyushu Dental University , Kitakyushu , Japan
| | - Hiroki Teshima
- b Research and Development Department , Nippon Shika Yakuhin Co., Ltd , Shimonoseki , Japan
| | - Kazuyoshi Yokota
- b Research and Development Department , Nippon Shika Yakuhin Co., Ltd , Shimonoseki , Japan
| | - Chiaki Kitamura
- a Division of Endodontics and Restorative Dentistry, Department of Oral Functions , Kyushu Dental University , Kitakyushu , Japan
| | - Yasuhiko Tabata
- c Laboratory of Biomaterials, Department of Regeneration Science and Engineering , Institute for Frontier Life and Medical Sciences, Kyoto University , Kyoto , Japan
| |
Collapse
|
46
|
Yunoki S, Sugimoto K, Ohyabu Y, Ida H, Hiraoka Y. Accurate and Precise Viscosity Measurements of Gelatin Solutions Using a Rotational Rheometer. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shunji Yunoki
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute
| | - Kiyoji Sugimoto
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute
| | - Yoshimi Ohyabu
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute
| | | | | |
Collapse
|
47
|
Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 2018; 123:62-67. [PMID: 30594490 DOI: 10.1016/j.mvr.2018.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress, which is defined as an imbalance between proxidant and antioxidant systems, is the essential mechanism involving in the ischemic process. During the early stage of brain ischemia, reactive oxygen species (ROS) are increased. Increased ROS are thought of a consequence of brain ischemia and exacerbating disease due to inducing cell death, apoptosis and senescence by oxidative stress. During brain tissue repair, ROS are act as signaling molecules and may be benefical for regulating angiogenesis and preventing tissue injury. New blood vessel formation is essentially required for rescuing tissue from brain ischemia. In ischemic conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products. ROS-induced angiogenesis involves several signaling pathways. This paper reviewed current understanding of the role of ROS as a mediator and modulator of angiogenesis in brain ischemia.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
48
|
Fukuba S, Akizuki T, Hoshi S, Matsuura T, Shujaa Addin A, Okada M, Tabata Y, Matsui M, Tabata MJ, Sugiura‐Nakazato M, Izumi Y. Comparison between different isoelectric points of biodegradable gelatin sponges incorporating β‐tricalcium phosphate and recombinant human fibroblast growth factor‐2 for ridge augmentation: A preclinical study of saddle‐type defects in dogs. J Periodontal Res 2018; 54:278-285. [DOI: 10.1111/jre.12628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Shunsuke Fukuba
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Tatsuya Akizuki
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
- PeriodonticsDental HospitalTokyo Medical and Dental University Tokyo Japan
| | - Shu Hoshi
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Takanori Matsuura
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
- PeriodonticsDental HospitalTokyo Medical and Dental University Tokyo Japan
| | - Ammar Shujaa Addin
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Munehiro Okada
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Yasuhiko Tabata
- Laboratory of BiomaterialsDepartment of Regeneration Science and EngineeringInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Makoto Matsui
- Polymer Chemistry DivisionLaboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology Tokyo Japan
| | - Makoto J. Tabata
- Department of Biostructural ScienceGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Makoto Sugiura‐Nakazato
- Department of Biostructural ScienceGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Yuichi Izumi
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
49
|
Murata Y, Jo JI, Tabata Y. Preparation of cationized gelatin nanospheres incorporating molecular beacon to visualize cell apoptosis. Sci Rep 2018; 8:14839. [PMID: 30287861 PMCID: PMC6172245 DOI: 10.1038/s41598-018-33231-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
The objective of this study is to prepare cationized gelatin nanospheres (cGNS) incorporating a molecular beacon (MB), and visualize cellular apoptosis. Two types of MB to detect the messenger RNA (mRNA) of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (GAP MB), and caspase-3 (casp3 MB) were incorporated in cGNS, respectively. MB incorporated in cGNS showed the DNA sequence specificity in hybridization. The cGNS incorporation enabled MB to enhance the stability against nuclease to a significantly great extent compared with free MB. The cGNS incorporating GAP MB were internalized into the KUM6 of a mouse bone marrow-derived stem cell by an endocytotic pathway. The cGNS were not distributed at the lysosomes. After the incubation with cGNS, the cell apoptosis was induced at different concentrations of camptothecin. No change in the intracellular fluorescence was observed for cGNSGAPMB. On the other hand, for the cGNScasp3MB, the fluorescent intensity significantly enhanced by the apoptosis induction of cells. It is concluded that cGNS incorporating MB is a promising system for the visualization of cellular apoptosis.
Collapse
Affiliation(s)
- Yuki Murata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
50
|
Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, Domingues RM, Reis RL, Gomes ME. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 2018; 77:155-171. [PMID: 30031163 DOI: 10.1016/j.actbio.2018.07.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth. Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions. Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues. STATEMENT OF SIGNIFICANCE Innovative strategies for improved chemotactic and pro-angiogenic features of TE constructs are needed. In this study, we developed an injectable HA/CNC/PL hydrogel with improved structural and biologic properties, that not only provide a sustained release of chemotactic and proangiogenic GFs from PL but also enhance the cells' viability and angiogenic activity. As a result of their unique traits, the developed hydrogels are ideally suited to simultaneously act as a GFs controlled delivery system and as a supportive matrix for cell culture, recruitment, and revascularization induction, holding great potential for the regeneration of vascularized soft tissues, such as the dentin-pulp complex.
Collapse
|