1
|
Liu Z, Liu L, Liu J, Wu J, Tang R, Wolfram J. Electrospun meshes for abdominal wall hernia repair: Potential and challenges. Acta Biomater 2025:S1742-7061(25)00036-4. [PMID: 39826853 DOI: 10.1016/j.actbio.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Surgical meshes are widely used in abdominal wall hernia repairs. However, consensus on mesh treatment remains elusive due to varying repair outcomes, especially with the introduction of new meshes, posing a substantial challenge for surgeons. Addressing these issues requires communicating the features of emerging candidates with a focus on clinical considerations. Electrospinning is a versatile technique for producing meshes with biomechanical architectures that closely mimic the extracellular matrix and enable incorporation of bioactive and therapeutic agents into the interconnective porous network, providing a favorable milieu for tissue integration and remodeling. Although this promising technique has drawn considerable interest in mesh fabrication and functionalization, currently developed electrospun meshes have limitations in meeting clinical requirements for hernia repair. This review summarizes the advantages and limitations of meshes prepared through electrospinning based on biomechanical, biocompatible, and bioactive properties/functions, offering interdisciplinary insights into challenges and future directions toward clinical mesh-aided hernia repair. STATEMENT OF SIGNIFICANCE: Consensus for hernia treatments using surgical meshes remains elusive based on varying repair outcomes, presenting significant challenges for researchers and surgeons. Differences in understanding mesh between specialists, particularly regarding material characteristics and clinical requirements, contribute to this issue. Electrospinning has been increasingly applied in mesh preparation through various approaches and strategies, aiming to improve abdominal wall hernia by restoring mechanical, morphological and functional integrity. However, there is no comprehensive overview of these emerging meshes regarding their features, functions, and clinical potentials, emphasizing the necessity of interdisciplinary discussions on this topic that build upon recent developments in electrospun mesh and provide insights from clinically practical prospectives.
Collapse
Affiliation(s)
- Zhengni Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| | - Lei Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Liu Z, Rütten S, Buhl EM, Zhang M, Liu J, Rojas-González DM, Mela P. Development of a Silk Fibroin-Small Intestinal Submucosa Small-Diameter Vascular Graft with Sequential VEGF and TGF-β1 Inhibitor Delivery for In Situ Tissue Engineering. Macromol Biosci 2023; 23:e2300184. [PMID: 37262314 DOI: 10.1002/mabi.202300184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Proper endothelialization and limited collagen deposition on the luminal surface after graft implantation plays a crucial role to prevent the occurrence of stenosis. To achieve these conditions, a biodegradable graft with adequate mechanical properties and the ability to sequentially deliver therapeutic agents isfabricated. In this study, a dual-release system is constructed through coaxial electrospinning by incorporating recombinant human vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) inhibitor into silk fibroin (SF) nanofibers to form a bioactive membrane. The functionalized SF membrane as the inner layer of the graft is characterized by the release profile, cell proliferation and protein expression. It presents excellent biocompatibility and biodegradation, facilitating cell attachment, proliferation, and infiltration. The core-shell structure enables rapid VEGF release within 10 days and sustained plasmid delivery for 21 days. A 2.0-mm-diameter vascular graft is fabricated by integrating the SF membrane with decellularized porcine small intestinal submucosa (SIS), aiming to facilitate the integration process under a stable extracellular matrix structure. The bioengineered graft is functionalized with the sequential administration of VEGF and TGF-β1, and with the reinforced and compatible mechanical properties, thereby offers an orchestrated solution for stenosis with potential for in situ vascular tissue engineering applications.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, Jimo road 150, Shanghai, 200120, PR China
| | - Stephan Rütten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Pauwelsstrasse, 30, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Pauwelsstrasse, 30, 52074, Aachen, Germany
| | - Minjun Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju road 639, Shanghai, 200011, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, Jimo road 150, Shanghai, 200120, PR China
| | - Diana M Rojas-González
- Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| |
Collapse
|
3
|
Chernonosova V, Khlebnikova M, Popova V, Starostina E, Kiseleva E, Chelobanov B, Kvon R, Dmitrienko E, Laktionov P. Electrospun Scaffolds Enriched with Nanoparticle-Associated DNA: General Properties, DNA Release and Cell Transfection. Polymers (Basel) 2023; 15:3202. [PMID: 37571096 PMCID: PMC10421399 DOI: 10.3390/polym15153202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Biomaterial-mediated, spatially localized gene delivery is important for the development of cell-populated scaffolds used in tissue engineering. Cells adhering to or penetrating into such a scaffold are to be transfected with a preloaded gene that induces the production of secreted proteins or cell reprogramming. In the present study, we produced silica nanoparticles-associated pDNA and electrospun scaffolds loaded with such nanoparticles, and studied the release of pDNA from scaffolds and cell-to-scaffold interactions in terms of cell viability and pDNA transfection efficacy. The pDNA-coated nanoparticles were characterized with dynamic light scattering and transmission electron microscopy. Particle sizes ranging from 56 to 78 nm were indicative of their potential for cell transfection. The scaffolds were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, stress-loading tests and interaction with HEK293T cells. It was found that the properties of materials and the pDNA released vary, depending on the scaffold's composition. The scaffolds loaded with pDNA-nanoparticles do not have a pronounced cytotoxic effect, and can be recommended for cell transfection. It was found that (pDNA-NPs) + PEI9-loaded scaffold demonstrates good potential for cell transfection. Thus, electrospun scaffolds suitable for the transfection of inhabiting cells are eligible for use in tissue engineering.
Collapse
Affiliation(s)
- Vera Chernonosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Marianna Khlebnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Victoriya Popova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Ekaterina Starostina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Elena Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Boris Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Ren Kvon
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Elena Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (V.P.); (B.C.); (E.D.)
| |
Collapse
|
4
|
Xu J, Wu C, Han K, Zhang X, Ye Z, Jiang J, Yan X, Su W, Zhao J. Radiological and Histological Analyses of Nonrigid Versus Rigid Fixation for Free Bone Block Procedures in a Rabbit Model of Glenoid Defects. Am J Sports Med 2023; 51:743-757. [PMID: 36752692 DOI: 10.1177/03635465221145695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Nonrigid fixation techniques have been recently introduced in free bone block (FBB) procedures to treat substantial glenoid bone loss in patients with anterior shoulder instability. However, the radiological and histological effectiveness of nonrigid fixation versus conventional rigid fixation have not been comprehensively understood in vivo. PURPOSE To (1) explore the radiological and histological characteristics of nonrigid fixation for FBB procedures in a rabbit model of glenoid defects and (2) further compare them with those of conventional rigid fixation. STUDY DESIGN Controlled laboratory study. METHODS Unilateral shoulder glenoid defects were created in 36 mature New Zealand White rabbits, of which 24 underwent FBB procedures using allogenic iliac crest bone and were randomly divided into rigid fixation (RF) and nonrigid fixation (N-RF) groups, with the remaining divided into 2 control groups: 6 with sham surgery for glenoid defects (GD group) and 6 native glenoids (normal group). In the RF and N-RF groups, 6 rabbits were sacrificed at 6 or 12 weeks postoperatively for radiological and histological analyses of the reconstructed glenoid, and all rabbits in the GD and normal groups were sacrificed at 12 weeks. The radiological glenoid morphology was evaluated via micro-computed tomography. Moreover, the graft-glenoid healing and graft remodeling processes were determined using histological staining. RESULTS At 6 weeks, both the N-RF and RF groups had similarly improved radiological axial radian and en face area of the glenoid compared with the GD group, but the N-RF group showed superiority in restoration of the glenoid radian and area compared with the RF group at 12 weeks, with the native glenoid as the baseline. Histologically, the bone graft in both groups was substantively integrated into the deficient glenoid neck at 6 and 12 weeks, showing similar osseous healing processes at the graft-glenoid junction. Moreover, the bone graft histologically presented similar regenerated vascular density, total graft bone, and integrated graft bone in both groups. In contrast, the N-RF group had a different remodeling profile on radiological and histological analyses regarding regional bone resorption, mineralization, and fibrous tissue replacement during osseointegration. CONCLUSION Compared with rigid fixation, nonrigid fixation resulted in superior reconstructed glenoid morphology radiologically and similar graft-glenoid osseous healing histologically, showing different graft remodeling profiles of regional bone resorption, mineralization, and fibrous tissue replacement. CLINICAL RELEVANCE The nonrigid fixation technique can be feasible for FBB procedures to treat glenoid bone loss in anterior shoulder instability. More clinical evidence is required to determine its pros and cons compared with conventional rigid fixation.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenliang Wu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueying Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 2022; 10:rbac105. [PMID: 36683757 PMCID: PMC9845530 DOI: 10.1093/rb/rbac105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Even with many advances in design strategies over the past three decades, an enormous gap remains between existing tissue engineering skin and natural skin. Currently available in vitro skin models still cannot replicate the three-dimensionality and heterogeneity of the dermal microenvironment sufficiently to recapitulate many of the known characteristics of skin disorder or disease in vivo. Three-dimensional (3D) bioprinting enables precise control over multiple compositions, spatial distributions and architectural complexity, therefore offering hope for filling the gap of structure and function between natural and artificial skin. Our understanding of wound healing process and skin disease would thus be boosted by the development of in vitro models that could more completely capture the heterogeneous features of skin biology. Here, we provide an overview of recent advances in 3D skin bioprinting, as well as design concepts of cells and bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering physiological or pathological skin model, focusing more specifically on the function of skin appendages and vasculature. We conclude with current challenges and the technical perspective for further development of 3D skin bioprinting.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, China,School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, China
| | - Sha Huang
- Correspondence address. Tel: +86-10-66867384, E-mail:
| |
Collapse
|
6
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Rajkumar N, El‐Hamshary H, El‐Newehy M. Electrospun nanofibers for drug delivery applications: Methods and mechanism. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Syed Ali Padusha Mohamed Khan
- PG and Research Department of Chemistry Jamal Mohamed College (Affiliated to Bharathidasan University) Tiruchirappalli India
| | - Badr M. Thamer
- Department of Chemistry College of Science, King Saud University Saudi Arabia
| | - Nirmala Rajkumar
- Department of Biotechnology Hindustan College of Arts and Science (Affiliated to University of Madras) Chennai India
| | - Hany El‐Hamshary
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| | - Mohamed El‐Newehy
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| |
Collapse
|
8
|
Xia D, Chen J, Zhang Z, Dong M. Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine. AGGREGATE 2022; 3. [DOI: 10.1002/agt2.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractThe current demand for patients’ organ and tissue repair and regeneration is continually increasing, where autologous or allograft is the golden standard treatment in the clinic. However, due to the shortage of donors, mismatched size and modality, functional loss of the donor region, possible immune rejection, and so forth, the application of auto‐/allo‐grafts is frequently hindered in many cases. In order to solve these problems, artificial constructs structurally and functionally imitating the extracellular matrix have been developed as substitutes to promoting cell attachment, proliferation, and differentiation, and ultimately forming functional tissues or organs for better tissue regeneration. Particularly, polymeric materials have been widely utilized in regenerative medicine because of their ease of manufacturing, flexibility, biocompatibility, as well as good mechanical, chemical, and thermal properties. This review presents a comprehensive overview of a variety of polymeric materials, their fabrication methods as well applications in regenerative medicine. Finally, we discussed the future challenges and perspectives in the development and clinical transformation of polymeric biomaterials.
Collapse
Affiliation(s)
- Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Jiatian Chen
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering Hebei University of Technology Tianjin China
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus Denmark
| |
Collapse
|
9
|
Abpeikar Z, Alizadeh AA, Ahmadyousefi Y, Najafi AA, Safaei M. Engineered cells along with smart scaffolds: critical factors for improving tissue engineering approaches. Regen Med 2022; 17:855-876. [PMID: 36065834 DOI: 10.2217/rme-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, gene delivery and its applications are discussed in tissue engineering (TE); also, new techniques such as the CRISPR-Cas9 system, synthetics biology and molecular dynamics simulation to improve the efficiency of the scaffolds have been studied. CRISPR-Cas9 is expected to make significant advances in TE in the future. The fundamentals of synthetic biology have developed powerful and flexible methods for programming cells via artificial genetic circuits. The combination of regenerative medicine and artificial biology allows the engineering of cells and organisms for use in TE, biomaterials, bioprocessing and scaffold development. The dynamics of protein adsorption at the scaffold surface at the atomic level can provide valuable guidelines for the future design of TE scaffolds /implants.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advance Medical Science & Technology, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Yaghoub Ahmadyousefi
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838687, Iran
| | - Ali Akbar Najafi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7919693116, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| |
Collapse
|
10
|
Cojocaru E, Ghitman J, Stan R. Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers (Basel) 2022; 14:2647. [PMID: 35808692 PMCID: PMC9269101 DOI: 10.3390/polym14132647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gene-based therapy represents the latest advancement in medical biotechnology. The principle behind this innovative approach is to introduce genetic material into specific cells and tissues to stimulate or inhibit key signaling pathways. Although enormous progress has been achieved in the field of gene-based therapy, challenges connected to some physiological impediments (e.g., low stability or the inability to pass the cell membrane and to transport to the desired intracellular compartments) still obstruct the exploitation of its full potential in clinical practices. The integration of gene delivery technologies with electrospun fibrous architectures represents a potent strategy that may tackle the problems of stability and local gene delivery, being capable to promote a controlled and proficient release and expression of therapeutic genes in the targeted cells, improving the therapeutic outcomes. This review aims to outline the impact of electrospun-fibrous-architecture-mediated gene therapy drug delivery, and it emphatically discusses the latest advancements in their formulation and the therapeutic outcomes of these systems in different fields of regenerative medicine, along with the main challenges faced towards the translation of promising academic results into tangible products with clinical application.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitzescu”, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
11
|
Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022; 183:114161. [PMID: 35183657 PMCID: PMC9724629 DOI: 10.1016/j.addr.2022.114161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Electrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production. However, immunogenicity, off-target effects, and low delivery efficiencies slow the progression of gene delivery strategies to clinical settings. The delivery of genetic material from electrospun fibers overcomes such limitations by allowing for localized, tunable delivery of genetic material. However, the process of electrospinning is harsh, and care must be taken to retain genetic material bioactivity. This review presents an up-to-date summary of strategies to incorporate genetic material onto or within electrospun fiber platforms to improve delivery efficiency and enhance the regenerative potential of electrospun fibers for various tissue engineering applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Divya Mohanraj
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Derek W Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
12
|
Weng T, Wang J, Yang M, Zhang W, Wu P, You C, Han C, Wang X. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing. BURNS & TRAUMA 2022; 10:tkab049. [PMID: 36960274 PMCID: PMC8944711 DOI: 10.1093/burnst/tkab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Indexed: 11/14/2022]
Abstract
Dermal substitutes provide a template for dermal regeneration and reconstruction. They constitutes an ideal clinical treatment for deep skin defects. However, rapid vascularization remains as a major hurdle to the development and application of dermal substitutes. Several bioactive factors play an important regulatory role in the process of angiogenesis and an understanding of the mechanism of achieving their effective delivery and sustained function is vital. Nanomaterials have great potential for tissue engineering. Effective delivery of bioactive factors (including growth factors, peptides and nucleic acids) by nanomaterials is of increasing research interest. This paper discusses the process of dermal substitute angiogenesis and the roles of related bioactive factors in this process. The application of nanomaterials for the delivery of bioactive factors to enhance angiogenesis and accelerate wound healing is also reviewed. We focus on new systems and approaches for delivering bioactive factors for enhancing angiogenesis in dermal substitutes.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Min Yang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Pan Wu
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chuangang You
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | | |
Collapse
|
13
|
Shafiee S, Shariatzadeh S, Zafari A, Majd A, Niknejad H. Recent Advances on Cell-Based Co-Culture Strategies for Prevascularization in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:745314. [PMID: 34900955 PMCID: PMC8655789 DOI: 10.3389/fbioe.2021.745314] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the fabrication of a functional vascular network to maintain the viability of engineered tissues is a major bottleneck in the way of developing a more advanced engineered construct. Inspired by vasculogenesis during the embryonic period, the in vitro prevascularization strategies have focused on optimizing communications and interactions of cells, biomaterial and culture conditions to develop a capillary-like network to tackle the aforementioned issue. Many of these studies employ a combination of endothelial lineage cells and supporting cells such as mesenchymal stem cells, fibroblasts, and perivascular cells to create a lumenized endothelial network. These supporting cells are necessary for the stabilization of the newly developed endothelial network. Moreover, to optimize endothelial network development without impairing biomechanical properties of scaffolds or differentiation of target tissue cells, several other factors, including target tissue, endothelial cell origins, the choice of supporting cell, culture condition, incorporated pro-angiogenic factors, and choice of biomaterial must be taken into account. The prevascularization method can also influence the endothelial lineage cell/supporting cell co-culture system to vascularize the bioengineered constructs. This review aims to investigate the recent advances on standard cells used in in vitro prevascularization methods, their co-culture systems, and conditions in which they form an organized and functional vascular network.
Collapse
Affiliation(s)
- Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zafari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Majd
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
15
|
Liu Z, Liu X, Bao L, Liu J, Zhu X, Mo X, Tang R. The evaluation of functional small intestinal submucosa for abdominal wall defect repair in a rat model: Potent effect of sequential release of VEGF and TGF-β1 on host integration. Biomaterials 2021; 276:120999. [PMID: 34273685 DOI: 10.1016/j.biomaterials.2021.120999] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Ineffective vessel penetration and extracellular matrix (ECM) remodeling are responsible for the failure of porcine small intestinal submucosa (SIS)-repaired abdominal wall defects. Combined growth factors could be used as directing signals in a nature-mimicking strategy to improve this repair through mesh functionalization. In this work, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) were incorporated into a silk fibroin membrane via coaxial aqueous electrospinning to exploit their benefits of biological interactions. The membrane was sandwiched into the SIS bilayer as a functional mesh to repair partial-thickness defects in a rat model. Membrane characterization demonstrated that the core-shell structure ensured the independent distribution and sequential release of two regulators and protection of their bioactivities, which were confirmed by cell viability and protein expression. The mesh was further assessed to facilitate vasculature formation and collagen secretion in vitro, and exhibited better host integration than VEGF- or TGF-β1-containing mesh and developed reinforced mechanical properties compared with the VEGF-containing mesh after 28 days in vivo. Determination of the underlying biological interactions revealed that rapid VEGF release promotes angiogenesis and collagen secretion but initially potentiates the inflammatory response. Sustained TGF-β1 release at relatively low concentrations promoted VEGF for vessel permeation and maturation and steadily induced ECM remodeling under milder foreign body reactions. The functionalization of SIS improves repair by sufficient integration with timely remodeling and helps elucidate the related regulatory interactions.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Xuezhe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Luhan Bao
- Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| |
Collapse
|
16
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
17
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
18
|
Luo H, Jie T, Zheng L, Huang C, Chen G, Cui W. Electrospun Nanofibers for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:163-190. [PMID: 33543460 DOI: 10.1007/978-3-030-58174-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lately, a remarkable progress has been recorded in the field of electrospinning for the preparation of numerous types of nanofiber scaffolds. These scaffolds present some remarkable features including high loading capacity and encapsulation efficiency, superficial area and porosity, potential for modification, structure for the co-delivery of various therapies, and cost-effectiveness. Their present and future applications for cancer diagnosis and treatment are promising and pioneering. In this chapter we provide a comprehensive overview of electrospun nanofibers (ESNFs) applications in cancer diagnosis and treatment, covering diverse types of drug-loaded electrospun nanofibers.
Collapse
Affiliation(s)
- Huanhuan Luo
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tianyang Jie
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zheng
- The central laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenglong Huang
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Wang P, Sui HJ, Li XJ, Bai LN, Bi J, Lai H. Melatonin ameliorates microvessel abnormalities in the cerebral cortex and hippocampus in a rat model of Alzheimer's disease. Neural Regen Res 2021; 16:757-764. [PMID: 33063739 PMCID: PMC8067916 DOI: 10.4103/1673-5374.295349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melatonin can attenuate cardiac microvascular ischemia/reperfusion injury, but it remains unclear whether melatonin can also ameliorate cerebral microvascular abnormalities. Rat models of Alzheimer’s disease were established by six intracerebroventricular injections of amyloid-beta 1–42, administered once every other day. Melatonin (30 mg/kg) was intraperitoneally administered for 13 successive days, with the first dose given 24 hours prior to the first administration of amyloid-beta 1–42. Melatonin ameliorated learning and memory impairments in the Morris water maze test, improved the morphology of microvessels in the cerebral cortex and hippocampus, increased microvessel density, alleviated pathological injuries of cerebral neurons, and decreased the expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2. These findings suggest that melatonin can improve microvessel abnormalities in the cerebral cortex and hippocampus by lowering the expression of vascular endothelial growth factor and its receptors, thereby improving the cognitive function of patients with Alzheimer’s disease. This study was approved by the Animal Care and Use Committee of Jinzhou Medical University, China (approval No. 2019015) on December 6, 2018.
Collapse
Affiliation(s)
- Pan Wang
- Department of Anatomy, China Medical University, Shenyang; Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hai-Juan Sui
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xiao-Jia Li
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Li-Na Bai
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jing Bi
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hong Lai
- Department of Anatomy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
20
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
21
|
Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat Commun 2020; 11:4504. [PMID: 32908131 PMCID: PMC7481196 DOI: 10.1038/s41467-020-18265-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
The strategies concerning modification of the complex immune pathological inflammatory environment during acute spinal cord injury remain oversimplified and superficial. Inspired by the acidic microenvironment at acute injury sites, a functional pH-responsive immunoregulation-assisted neural regeneration strategy was constructed. With the capability of directly responding to the acidic microenvironment at focal areas followed by triggered release of the IL-4 plasmid-loaded liposomes within a few hours to suppress the release of inflammatory cytokines and promote neural differentiation of mesenchymal stem cells in vitro, the microenvironment-responsive immunoregulatory electrospun fibers were implanted into acute spinal cord injury rats. Together with sustained release of nerve growth factor (NGF) achieved by microsol core-shell structure, the immunological fiber scaffolds were revealed to bring significantly shifted immune cells subtype to down-regulate the acute inflammation response, reduce scar tissue formation, promote angiogenesis as well as neural differentiation at the injury site, and enhance functional recovery in vivo. Overall, this strategy provided a delivery system through microenvironment-responsive immunological regulation effect so as to break through the current dilemma from the contradiction between immune response and nerve regeneration, providing an alternative for the treatment of acute spinal cord injury.
Collapse
|
22
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
23
|
Mulholland EJ. Electrospun Biomaterials in the Treatment and Prevention of Scars in Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:481. [PMID: 32582653 PMCID: PMC7283777 DOI: 10.3389/fbioe.2020.00481] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is a promising method for the rapid and cost-effective production of nanofibers from a wide variety of polymers given the high surface area morphology of these nanofibers, they make excellent wound dressings, and so have significant potential in the prevention and treatment of scars. Wound healing and the resulting scar formation are exceptionally well-characterized on a molecular and cellular level. Despite this, novel effective anti-scarring treatments which exploit this knowledge are still clinically absent. As the process of electrospinning can produce fibers from a variety of polymers, the treatment avenues for scars are vast, with therapeutic potential in choice of polymers, drug incorporation, and cell-seeded scaffolds. It is essential to show the new advances in this field; thus, this review will investigate the molecular processes of wound healing and scar tissue formation, the process of electrospinning, and examine how electrospun biomaterials can be utilized and adapted to wound repair in the hope of reducing scar tissue formation and conferring an enhanced tensile strength of the skin. Future directions of the research will explore potential novel electrospun treatments, such as gene therapies, as targets for enhanced tissue repair applications. With this class of biomaterial gaining such momentum and having such promise, it is necessary to refine our understanding of its process to be able to combine this technology with cutting-edge therapies to relieve the burden scars place on world healthcare systems.
Collapse
Affiliation(s)
- Eoghan J. Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Yao T, Baker MB, Moroni L. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E887. [PMID: 32380699 PMCID: PMC7279151 DOI: 10.3390/nano10050887] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
The biofabrication of biomimetic scaffolds for tissue engineering applications is a field in continuous expansion. Of particular interest, nanofibrous scaffolds can mimic the mechanical and structural properties (e.g., collagen fibers) of the natural extracellular matrix (ECM) and have shown high potential in tissue engineering and regenerative medicine. This review presents a general overview on nanofiber fabrication, with a specific focus on the design and application of electrospun nanofibrous scaffolds for vascular regeneration. The main nanofiber fabrication approaches, including self-assembly, thermally induced phase separation, and electrospinning are described. We also address nanofibrous scaffold design, including nanofiber structuring and surface functionalization, to improve scaffolds' properties. Scaffolds for vascular regeneration with enhanced functional properties, given by providing cells with structural or bioactive cues, are discussed. Finally, current in vivo evaluation strategies of these nanofibrous scaffolds are introduced as the final step, before their potential application in clinical vascular tissue engineering can be further assessed.
Collapse
Affiliation(s)
| | | | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands; (T.Y.); (M.B.B.)
| |
Collapse
|
25
|
Rao GSNK, Kurakula M, Yadav KS. Application of Electrospun Materials in Gene Delivery. ELECTROSPUN MATERIALS AND THEIR ALLIED APPLICATIONS 2020:265-306. [DOI: 10.1002/9781119655039.ch10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Hu J, Song Y, Zhang C, Huang W, Chen A, He H, Zhang S, Chen Y, Tu C, Liu J, Xuan X, Chang Y, Zheng J, Wu J. Highly Aligned Electrospun Collagen/Polycaprolactone Surgical Sutures with Sustained Release of Growth Factors for Wound Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:965-976. [DOI: 10.1021/acsabm.9b01000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyu Hu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yi Song
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Cuiyun Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wen Huang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Anqi Chen
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Susu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanxin Chen
- College of Chemistry and Materials Engineering Wenzhou University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chaodong Tu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jianhui Liu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xuan Xuan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
27
|
Liu W, Zhang G, Wu J, Zhang Y, Liu J, Luo H, Shao L. Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications. J Nanobiotechnology 2020; 18:9. [PMID: 31918719 PMCID: PMC6950937 DOI: 10.1186/s12951-019-0570-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
The vascular system, which transports oxygen and nutrients, plays an important role in wound healing, cardiovascular disease treatment and bone tissue engineering. Angiogenesis is a complex and delicate regulatory process. Vascular cells, the extracellular matrix (ECM) and angiogenic factors are indispensable in the promotion of lumen formation and vascular maturation to support blood flow. However, the addition of growth factors or proteins involved in proangiogenic effects is not effective for regulating angiogenesis in different microenvironments. The construction of biomaterial scaffolds to achieve optimal growth conditions and earlier vascularization is undoubtedly one of the most important considerations and major challenges among engineering strategies. Nanomaterials have attracted much attention in biomedical applications due to their structure and unique photoelectric and catalytic properties. Nanomaterials not only serve as carriers that effectively deliver factors such as angiogenesis-related proteins and mRNA but also simulate the nano-topological structure of the primary ECM of blood vessels and stimulate the gene expression of angiogenic effects facilitating angiogenesis. Therefore, the introduction of nanomaterials to promote angiogenesis is a great helpful to the success of tissue regeneration and some ischaemic diseases. This review focuses on the angiogenic effects of nanoscaffolds in different types of tissue regeneration and discusses the influencing factors as well as possible related mechanisms of nanomaterials in endothelial neovascularization. It contributes novel insights into the design and development of novel nanomaterials for vascularization and therapeutic applications.
Collapse
Affiliation(s)
- Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Guilan Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Haiyun Luo
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Shahriar SMS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning Nanofibers for Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E532. [PMID: 30987129 PMCID: PMC6523943 DOI: 10.3390/nano9040532] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
The limitations of conventional therapeutic drugs necessitate the importance of developing novel therapeutics to treat diverse diseases. Conventional drugs have poor blood circulation time and are not stable or compatible with the biological system. Nanomaterials, with their exceptional structural properties, have gained significance as promising materials for the development of novel therapeutics. Nanofibers with unique physiochemical and biological properties have gained significant attention in the field of health care and biomedical research. The choice of a wide variety of materials for nanofiber fabrication, along with the release of therapeutic payload in sustained and controlled release patterns, make nanofibers an ideal material for drug delivery research. Electrospinning is the conventional method for fabricating nanofibers with different morphologies and is often used for the mass production of nanofibers. This review highlights the recent advancements in the use of nanofibers for the delivery of therapeutic drugs, nucleic acids and growth factors. A detailed mechanism for fabricating different types of nanofiber produced from electrospinning, and factors influencing nanofiber generation, are discussed. The insights from this review can provide a thorough understanding of the precise selection of materials used for fabricating nanofibers for specific therapeutic applications and also the importance of nanofibers for drug delivery applications.
Collapse
Affiliation(s)
- S M Shatil Shahriar
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Mohammad Nazmul Hasan
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Vishnu Revuri
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea.
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea.
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| |
Collapse
|
29
|
Sarker MD, Naghieh S, Sharma NK, Ning L, Chen X. Bioprinting of Vascularized Tissue Scaffolds: Influence of Biopolymer, Cells, Growth Factors, and Gene Delivery. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:9156921. [PMID: 31065331 PMCID: PMC6466897 DOI: 10.1155/2019/9156921] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
Over the past decades, tissue regeneration with scaffolds has achieved significant progress that would eventually be able to solve the worldwide crisis of tissue and organ regeneration. While the recent advancement in additive manufacturing technique has facilitated the biofabrication of scaffolds mimicking the host tissue, thick tissue regeneration remains challenging to date due to the growing complexity of interconnected, stable, and functional vascular network within the scaffold. Since the biological performance of scaffolds affects the blood vessel regeneration process, perfect selection and manipulation of biological factors (i.e., biopolymers, cells, growth factors, and gene delivery) are required to grow capillary and macro blood vessels. Therefore, in this study, a brief review has been presented regarding the recent progress in vasculature formation using single, dual, or multiple biological factors. Besides, a number of ways have been presented to incorporate these factors into scaffolds. The merits and shortcomings associated with the application of each factor have been highlighted, and future research direction has been suggested.
Collapse
Affiliation(s)
- M. D. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - N. K. Sharma
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Liqun Ning
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
30
|
Zhao Q, Wang M. Manipulating the release of growth factors from biodegradable microspheres for potentially different therapeutic effects by using two different electrospray techniques for microsphere fabrication. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics 2018; 11:E5. [PMID: 30586852 PMCID: PMC6358861 DOI: 10.3390/pharmaceutics11010005] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/26/2023] Open
Abstract
The electrospinning process has gained popularity due to its ease of use, simplicity and diverse applications. The properties of electrospun fibers can be controlled by modifying either process variables (e.g., applied voltage, solution flow rate, and distance between charged capillary and collector) or polymeric solution properties (e.g., concentration, molecular weight, viscosity, surface tension, solvent volatility, conductivity, and surface charge density). However, many variables affecting electrospinning are interdependent. An optimized electrospinning process is one in which these parameters remain constant and continuously produce nanofibers consistent in physicochemical properties. In addition, nozzle configurations, such as single nozzle, coaxial, multi-jet electrospinning, have an impact on the fiber characteristics. The polymeric solution could be aqueous, a polymeric melt or an emulsion, which in turn leads to different types of nanofiber formation. Nanofiber properties can also be modified by polarity inversion and by varying the collector design. The active moiety is incorporated into polymeric fibers by blending, surface modification or emulsion formation. The nanofibers can be further modified to deliver multiple drugs, and multilayer polymer coating allows sustained release of the incorporated active moiety. Electrospun nanofibers prepared from polymers are used to deliver antibiotic and anticancer agents, DNA, RNA, proteins and growth factors. This review provides a compilation of studies involving the use of electrospun fibers in biomedical applications with emphasis on nanoparticle-impregnated nanofibers.
Collapse
Affiliation(s)
- Rajan Sharma Bhattarai
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Rinda Devi Bachu
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 2758, UAE.
| | - Sarit Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43614, USA.
- Department of Surgery (Dentistry), University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
32
|
Zhang N, Chin JS, Chew SY. Localised non-viral delivery of nucleic acids for nerve regeneration in injured nervous systems. Exp Neurol 2018; 319:112820. [PMID: 30195695 DOI: 10.1016/j.expneurol.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Axons damaged by traumatic injuries are often unable to spontaneously regenerate in the adult central nervous system (CNS). Although the peripheral nervous system (PNS) has some regenerative capacity, its ability to regrow remains limited across large lesion gaps due to scar tissue formation. Nucleic acid therapy holds the potential of improving regeneration by enhancing the intrinsic growth ability of neurons and overcoming the inhibitory environment that prevents neurite outgrowth. Nucleic acids modulate gene expression by over-expression of neuronal growth factor or silencing growth-inhibitory molecules. Although in vitro outcomes appear promising, the lack of efficient non-viral nucleic acid delivery methods to the nervous system has limited the application of nucleic acid therapeutics to patients. Here, we review the recent development of efficient non-viral nucleic acid delivery platforms, as applied to the nervous system, including the transfection vectors and carriers used, as well as matrices and scaffolds that are currently used. Additionally, we will discuss possible improvements for localised nucleic acid delivery.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore.
| |
Collapse
|
33
|
Hadjianfar M, Semnani D, Varshosaz J. Polycaprolactone/chitosan blend nanofibers loaded by 5-fluorouracil: An approach to anticancer drug delivery system. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4417] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehdi Hadjianfar
- Department of Textile Engineering; Isfahan University of Technology; Isfahan Iran
| | - Dariush Semnani
- Department of Textile Engineering; Isfahan University of Technology; Isfahan Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| |
Collapse
|
34
|
Goonoo N. Vascularization and angiogenesis in electrospun tissue engineered constructs: towards the creation of long-term functional networks. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaab03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Wu P, Chen H, Jin R, Weng T, Ho JK, You C, Zhang L, Wang X, Han C. Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 2018; 16:29. [PMID: 29448962 PMCID: PMC5815227 DOI: 10.1186/s12967-018-1402-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Critical tissue defects frequently result from trauma, burns, chronic wounds and/or surgery. The ideal treatment for such tissue loss is autografting, but donor sites are often limited. Tissue engineering (TE) is an inspiring alternative for tissue repair and regeneration (TRR). One of the current state-of-the-art methods for TRR is gene therapy. Non-viral gene delivery systems (nVGDS) have great potential for TE and have several advantages over viral delivery including lower immunogenicity and toxicity, better cell specificity, better modifiability, and higher productivity. However, there is no ideal nVGDS for TRR, hence, there is widespread research to improve their properties. This review introduces the basic principles and key aspects of commonly-used nVGDSs. We focus on recent advances in their applications, current challenges, and future directions.
Collapse
Affiliation(s)
- Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Jon Kee Ho
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Liping Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
36
|
Gizaw M, Thompson J, Faglie A, Lee SY, Neuenschwander P, Chou SF. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications. Bioengineering (Basel) 2018; 5:E9. [PMID: 29382065 PMCID: PMC5874875 DOI: 10.3390/bioengineering5010009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds.
Collapse
Affiliation(s)
- Mulugeta Gizaw
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Jeffrey Thompson
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Shih-Yu Lee
- School of Nursing, College of Nursing and Health Sciences, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Pierre Neuenschwander
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| |
Collapse
|
37
|
Li W, Wu D, Tan J, Liu Z, Lu L, Zhou C. A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. J Mater Chem B 2018; 6:6977-6992. [DOI: 10.1039/c8tb02006j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A gene-activated porous nanofibrous scaffold for effectively promoting vascularization, epidermalization and dermal wound healing by sustained release of dual plasmid DNAs.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- College of Life Science and Technology
| | - Dongwei Wu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Jianwang Tan
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Zhibin Liu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Lu Lu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| |
Collapse
|
38
|
Iwai S, Kurosu S, Sasaki H, Kato K, Maekawa T. Trapping and proliferation of target cells on C 60 fullerene nano fibres. Heliyon 2017; 3:e00386. [PMID: 28840196 PMCID: PMC5558543 DOI: 10.1016/j.heliyon.2017.e00386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
The ratio of the surface area to the volume of materials increases in inverse proportion to their size and therefore the surface area of nanostructures and nanomaterials is extremely large compared to that of macroscopic materials of the same volume, thanks to which it is supposed that chemical and biochemical reactions may be greatly enhanced and target molecules and cells may be efficiently trapped on the surface of nanomaterials. It is well known that C60 molecules are stable both physically and chemically and the affinity of C60 molecules with biomolecules is rather high. Here, we synthesise fibres composed of C60 and sulphur and immobilise the surface of the fibres with the primary antibody; i.e., epithelial cell adhesion molecules (anti-EpCAM), to trap target cells. The primary antibody is evenly immobilised on the fibres confirmed by a fluorescent secondary antibody attached to the primary one and then TE2 esophageal and DLD-1 colon cancer cells are successfully trapped by the primary antibody immobilised on the fibres thanks to its high affinity with TE2 and DLD-1 cells, whereas few IM9 B lymphoblast cells are captured on the fibres since the affinity of the primary antibody with IM9 cells is extremely low. Furthermore, those cells trapped by the primary antibody immobilised on the fibres proliferate faster than native cells thanks to the primary antibody acting as a growth factor. The present result suggests that different types of cells can be trapped and grown on nano fibres by immobilising appropriate antibody molecules on the surface of the fibres. Even an extremely small number of cells in sample fluids may be analysed and characterised for the detection of diseases such as cancer in the early stage by trapping and proliferating target cells on the fibres.
Collapse
Affiliation(s)
- Seiki Iwai
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Shunji Kurosu
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Hideki Sasaki
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Kazunori Kato
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| |
Collapse
|
39
|
Zhang Q, Li Y, Lin ZYW, Wong KKY, Lin M, Yildirimer L, Zhao X. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov Today 2017; 22:1351-1366. [PMID: 28552498 DOI: 10.1016/j.drudis.2017.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Electrospun polymeric micro/nanofibrous scaffolds have been investigated extensively as drug delivery platforms capable of controlled and sustained release of therapeutic agents in situ. Such scaffolds exhibit excellent physicochemical and biological properties and can encapsulate and release various drugs in a controlled fashion. This article reviews recent advances in the design and manufacture of electrospun scaffolds for long-term drug release, placing particular emphasis on polymer selection, types of incorporated drugs and the latest drug-loading techniques. Finally, applications of such devices in traumatic or disease states requiring effective and sustained drug action are discussed and critically appraised in their biomedical context.
Collapse
Affiliation(s)
- Qiang Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingchun Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi Yuan William Lin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Kenneth K Y Wong
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Min Lin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lara Yildirimer
- Barnet General Hospital, Royal Free NHS Trust Hospital, Wellhouse Lane, Barnet EN5 3DJ, London, UK.
| | - Xin Zhao
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
40
|
|
41
|
Gu X, Matsumura Y, Tang Y, Roy S, Hoff R, Wang B, Wagner WR. Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart. Biomaterials 2017; 133:132-143. [PMID: 28433936 DOI: 10.1016/j.biomaterials.2017.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023]
Abstract
Biodegradable and elastomeric patches have been applied to the surface of infarcted hearts as temporary mechanical supports to effectively alter adverse left ventricular remodeling processes. In this report, recombinant adeno-associated virus (AAV), known for its persistent transgene expression and low pathogenicity, was incorporated into elastomeric polyester urethane urea (PEUU) and polyester ether urethane urea (PEEUU) and processed by electrospinning into two formats (solid fibers and core-sheath fibers) designed to influence the controlled release behavior. The extended release of AAV encoding green fluorescent protein (GFP) was assessed in vitro. Sustained and localized viral particle delivery was achieved over 2 months in vitro. The biodegradable cardiac patches with or without AAV-GFP were implanted over rat left ventricular lesions three days following myocardial infarction to evaluate the transduction effect of released viral vectors. AAV particles were directly injected into the infarcted hearts as a control. Cardiac function and remodeling were significantly improved for 12 weeks after patch implantation compared to AAV injection. More GFP genes was expressed in the AAV patch group than AAV injection group, with both α-SMA positive cells and cardiac troponin T positive cells transduced in the patch group. Overall, the extended release behavior, prolonged transgene expression, and elastomeric mechanical properties make the AAV-loaded scaffold an attractive option for cardiac tissue engineering where both gene delivery and appropriate mechanical support are desired.
Collapse
Affiliation(s)
- Xinzhu Gu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Souvik Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard Hoff
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
42
|
Hadjizadeh A, Ghasemkhah F, Ghasemzaie N. Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1292402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzaneh Ghasemkhah
- Institute of Nanotechnology, Amirkabir University of Technology, Tehran, Iran
| | - Niloofar Ghasemzaie
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
43
|
Rychter M, Baranowska-Korczyc A, Lulek J. Progress and perspectives in bioactive agent delivery via electrospun vascular grafts. RSC Adv 2017. [DOI: 10.1039/c7ra04735e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The review discusses the progress in the design and synthesis of bioactive agents incorporated into vascular grafts obtained by the electrospinning process.
Collapse
Affiliation(s)
- Marek Rychter
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- Poznan University of Medical Sciences
- 60-780 Poznan
- Poland
| | | | - Janina Lulek
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- Poznan University of Medical Sciences
- 60-780 Poznan
- Poland
| |
Collapse
|
44
|
Xia Y, Zhou P, Wang F, Qiu C, Wang P, Zhang Y, Zhao L, Xu S. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration. Int J Nanomedicine 2016; 11:3435-49. [PMID: 27555766 PMCID: PMC4968986 DOI: 10.2147/ijn.s105645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, bioactive scaffold of nano magnesium phosphate (nMP)/wheat protein (WP) composite (MWC) was fabricated. The results revealed that the MWC scaffolds had interconnected not only macropores (sized 400–600 μm) but also micropores (sized 10–20 μm) on the walls of macropores. The MWC scaffolds containing 40 w% nMP had an appropriate degradability in phosphate-buffered saline and produced a weak alkaline microenvironment. In cell culture experiments, the results revealed that the MWC scaffolds significantly promoted the MC3T3-E1 cell proliferation, differentiation, and growth into the scaffolds. The results of synchrotron radiation microcomputed tomography and analysis of the histological sections of the in vivo implantation revealed that the MWC scaffolds evidently improved the new bone formation and bone defects repair as compared with WP scaffolds. Moreover, it was found that newly formed bone tissue continued to increase with the gradual reduction of materials residual in the MWC scaffolds. Furthermore, the immunohistochemical analysis further offered the evidence of the stimulatory effects of MWC scaffolds on osteogenic-related cell differentiation and new bone regeneration. The results indicated that MWC scaffolds with good biocompability and degradability could promote osteogenesis in vivo, which would have potential for bone tissue repair.
Collapse
Affiliation(s)
| | | | - Fei Wang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University
| | - Chao Qiu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University
| | | | | | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuogui Xu
- Department of Emergency; Department of Orthopedics, Changhai Hospital, Second Military Medical University
| |
Collapse
|
45
|
Yang Y, Yang Q, Zhou F, Zhao Y, Jia X, Yuan X, Fan Y. Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:106. [PMID: 27107890 DOI: 10.1007/s10856-016-5705-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 03/05/2016] [Indexed: 05/05/2023]
Abstract
One of the major challenges in tissue engineering of small-diameter vascular grafts is to inhibit intimal hyperplasia and keep long-term patency after implantation. Rapid endothelialization of the grafts could be an effective approach. In this study, QK, a peptide mimicking vascular endothelial growth factor, was selected as the bioactive substrate and loaded in electrospun membranes for enhancement of vascular endothelial cell growth. In detail, QK peptide was firstly introduced with poly(ethylene glycol) diacrylate into a thiolated chitosan solution that could transfer into hydrogel. Then, suspensions or emulsions of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) containing QK peptide (with or without chitosan hydrogel) were electrospun into fibrous membranes. For comparison, the electrospun PELCL membrane without QK was also fabricated. Results of release behaviors showed that the electrospun membranes, especially that contained chitosan hydrogel prepared by suspension electrospinning, could successfully encapsulate QK peptide and maintain its secondary structure after released. In vitro cell culture studies exhibited that the release of QK peptide could accelerate the proliferation of vascular endothelial cells in the 9 days. It was suggested that the electrospun PELCL membranes loaded with QK peptide might have potential applications in vascular tissue engineering.
Collapse
Affiliation(s)
- Yang Yang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Qingmao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Fang Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
- National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
46
|
Mohammadian F, Eatemadi A. Drug loading and delivery using nanofibers scaffolds. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:881-888. [PMID: 27188394 DOI: 10.1080/21691401.2016.1185726] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent times, notable advancement has been made in the field of electrospinning for the fabrication of numerous types of nanofiber scaffolds. Due to the ultrathin fiber diameter, electrospun nanofiber scaffolds are considered to be an operational delivery system for biomolecules, genes, as well as drugs due to the high specific surface area and stereological porous structure. Here, we introduce some of methods for the integration of drugs and biomolecules within electrospun nanofiber scaffolds, such as blending, surface modification, coaxial process, and emulsion methods. Then, we describe some important biomedical applications of nanofibers in drug delivery systems along with their suitable examples in transdermal systems and wound dressings, cancer therapy, growth factor delivery, nucleic acid delivery, and stem cell delivery.
Collapse
Affiliation(s)
- Farideh Mohammadian
- a Department of Medical Biotechnology, Faculty of Advance Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Eatemadi
- b Department of Medical Biotechnology, School of Advance Science in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
47
|
Song B, Xu Q, Wang C, Xu S, Zhang H. Fabrication of polymer/drug-loaded hydroxyapatite particle composite fibers for drug sustained release. J Appl Polym Sci 2015. [DOI: 10.1002/app.42871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710069 People's Republic of China
| | - Qing Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710069 People's Republic of China
| | - Cuiyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710069 People's Republic of China
| | - Shichen Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710069 People's Republic of China
| | - Hongxin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710069 People's Republic of China
| |
Collapse
|
48
|
Germershaus O, Nultsch K. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
49
|
Guo B, Lei B, Li P, Ma PX. Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2015; 2:47-57. [PMID: 25844177 PMCID: PMC4383297 DOI: 10.1093/rb/rbu016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/18/2014] [Accepted: 10/12/2014] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering scaffolds play a vital role in regenerative medicine. It not only provides a temporary 3-dimensional support during tissue repair, but also regulates the cell behavior, such as cell adhesion, proliferation and differentiation. In this review, we summarize the development and trends of functional scaffolding biomaterials including electrically conducting hydrogels and nano-composites of hydroxyapatite (HA) and bioactive glasses (BGs) with various biodegradable polymers. Furthermore, the progress on the fabrication of biomimetic nanofibrous scaffolds from conducting polymers and composites of HA and BG via electrospinning, deposition and thermally induced phase separation is discussed. Moreover, bioactive molecules and surface properties of scaffolds are very important during tissue repair. Bioactive molecule-releasing scaffolds and antimicrobial surface coatings for biomedical implants and scaffolds are also reviewed.
Collapse
Affiliation(s)
- Baolin Guo
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Lei
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peng Li
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X. Ma
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, Department of Biomedical Engineering, University of Michigan, Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Avenue, Room 2209, Macromolecular Science and Engineering Center, University of Michigan, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Sankaran KK, Subramanian A, Krishnan UM, Sethuraman S. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. Biotechnol J 2015; 10:96-108. [DOI: 10.1002/biot.201400415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/27/2014] [Accepted: 12/03/2014] [Indexed: 12/14/2022]
|