1
|
Lee HS, Samolyk BL, Pins GD. Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis. J Funct Biomater 2025; 16:21. [PMID: 39852577 PMCID: PMC11765554 DOI: 10.3390/jfb16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation. We characterized myoblast alignment, myotube formation, and tensile properties of myothreads as a function of cell-loading density and culture time. We showed that increasing myoblast loading densities enhances myotube formation. Additionally, alignment analyses indicate that the bioprinting process confers myoblast alignment in the constructs. Finally, tensile characterizations suggest that myothreads possess the structural stability to serve as a potential platform for developing scalable muscle scaffolds. We anticipate that our myothread biofabrication approach will enable us to strategically investigate biophysical and biochemical signaling cues and cellular mechanisms that enhance functional skeletal muscle regeneration for the treatment of VML.
Collapse
Affiliation(s)
| | | | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.S.L.); (B.L.S.)
| |
Collapse
|
2
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Carnes ME, Gonyea CR, Coburn JM, Pins GD. A biomimetic approach to modulating the sustained release of fibroblast growth factor 2 from fibrin microthread scaffolds. EXPLORATION OF BIOMAT-X 2024; 1:58-83. [PMID: 39070763 PMCID: PMC11274095 DOI: 10.37349/ebmx.2024.00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2024]
Abstract
Aim The pleiotropic effect of fibroblast growth factor 2 (FGF2) on promoting myogenesis, angiogenesis, and innervation makes it an ideal growth factor for treating volumetric muscle loss (VML) injuries. While an initial delivery of FGF2 has demonstrated enhanced regenerative potential, the sustained delivery of FGF2 from scaffolds with robust structural properties as well as biophysical and biochemical signaling cues has yet to be explored for treating VML. The goal of this study is to develop an instructive fibrin microthread scaffold with intrinsic topographic alignment cues as well as regenerative signaling cues and a physiologically relevant, sustained release of FGF2 to direct myogenesis and ultimately enhance functional muscle regeneration. Methods Heparin was passively adsorbed or carbodiimide-conjugated to microthreads, creating a biomimetic binding strategy, mimicking FGF2 sequestration in the extracellular matrix (ECM). It was also evaluated whether FGF2 incorporated into fibrin microthreads would yield sustained release. It was hypothesized that heparin-conjugated and co-incorporated (co-inc) fibrin microthreads would facilitate sustained release of FGF2 from the scaffold and enhance in vitro myoblast proliferation and outgrowth. Results Toluidine blue staining and Fourier transform infrared spectroscopy confirmed that carbodiimide-conjugated heparin bound to fibrin microthreads in a dose-dependent manner. Release kinetics revealed that heparin-conjugated fibrin microthreads exhibited sustained release of FGF2 over a period of one week. An in vitro assay demonstrated that FGF2 released from microthreads remained bioactive, stimulating myoblast proliferation over four days. Finally, a cellular outgrowth assay suggests that FGF2 promotes increased outgrowth onto microthreads. Conclusions It was anticipated that the combined effects of fibrin microthread structural properties, topographic alignment cues, and FGF2 release profiles will facilitate the fabrication of a biomimetic scaffold that enhances the regeneration of functional muscle tissue for the treatment of VML injuries.
Collapse
Affiliation(s)
- Meagan E. Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Cailin R. Gonyea
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
4
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
5
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Rojas-Murillo JA, Simental-Mendía MA, Moncada-Saucedo NK, Delgado-Gonzalez P, Islas JF, Roacho-Pérez JA, Garza-Treviño EN. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. Int J Mol Sci 2022; 23:ijms23179879. [PMID: 36077276 PMCID: PMC9456199 DOI: 10.3390/ijms23179879] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage is a highly organized tissue that provides remarkable load-bearing and low friction properties, allowing for smooth movement of diarthrodial joints; however, due to the avascular, aneural, and non-lymphatic characteristics of cartilage, joint cartilage has self-regeneration and repair limitations. Cartilage tissue engineering is a promising alternative for chondral defect repair. It proposes models that mimic natural tissue structure through the use of cells, scaffolds, and signaling factors to repair, replace, maintain, or improve the specific function of the tissue. In chondral tissue engineering, fibrin is a biocompatible biomaterial suitable for cell growth and differentiation with adequate properties to regenerate damaged cartilage. Additionally, its mechanical, biological, and physical properties can be enhanced by combining it with other materials or biological components. This review addresses the biological, physical, and mechanical properties of fibrin as a biomaterial for cartilage tissue engineering and as an element to enhance the regeneration or repair of chondral lesions.
Collapse
Affiliation(s)
- Juan Antonio Rojas-Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Mario A. Simental-Mendía
- Servicio de Ortopedia y Traumatología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Nidia K. Moncada-Saucedo
- Departamento de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Paulina Delgado-Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - José Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Jorge A. Roacho-Pérez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Elsa N. Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
- Correspondence: ; Tel.: +52-81-83294173
| |
Collapse
|
7
|
Wang Y, Chen G, Zhang H, Zhao C, Sun L, Zhao Y. Emerging Functional Biomaterials as Medical Patches. ACS NANO 2021; 15:5977-6007. [PMID: 33856205 DOI: 10.1021/acsnano.0c10724] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medical patches have been widely explored and applied in various medical fields, especially in wound healing, tissue engineering, and other biomedical areas. Benefiting from emerging biomaterials and advanced manufacturing technologies, great achievements have been made on medical patches to evolve them into a multifunctional medical device for diverse health-care purposes, thus attracting extensive attention and research interest. Here, we provide up-to-date research concerning emerging functional biomaterials as medical patches. An overview of the various approaches to construct patches with micro- and nanoarchitecture is presented and summarized. We then focus on the applications, especially the biomedical applications, of the medical patches, including wound healing, drug delivery, and real-time health monitoring. The challenges and prospects for the future development of the medical patches are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Cheng Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Carnes ME, Pins GD. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment. J Biomed Mater Res B Appl Biomater 2020; 108:2308-2319. [PMID: 31967415 PMCID: PMC7255526 DOI: 10.1002/jbm.b.34566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
To regenerate functional muscle tissue, engineered scaffolds should impart topographical features to induce myoblast alignment by a phenomenon known as contact guidance. Myoblast alignment is an essential step towards myotube formation, which is guided in vivo by extracellular matrix structure and micron-scale grooves between adjacent muscle fibers. Fibrin microthread scaffolds mimic the morphological architecture of native muscle tissue and have demonstrated promise as an implantable scaffold for treating skeletal muscle injuries. While these scaffolds promote modest myoblast alignment, it is not sufficient to generate highly functional muscle tissue. The goal of this study is to develop and characterize a new method of etching the surface of fibrin microthreads to incorporate aligned, sub-micron grooves that promote myoblast alignment. To generate these topographic features, we placed fibrin microthreads into 2-(N-morpholino)ethane-sulfonic acid (MES) acidic buffer and evaluated the effect of buffer pH on the generation of these features. Surface characterization with atomic force microscopy and scanning electron microscopy indicated the generation of aligned, sub-micron sized grooves on microthreads in MES buffer with pH 5.0. Microthreads etched with surface features had tensile mechanical properties comparable to controls, indicating that the surface treatment does not inhibit scaffold bulk properties. Our data demonstrate that etching threads in MES buffer with pH 5.0 enhanced alignment and filamentous actin stress fiber organization of myoblasts on the surface of scaffolds. The ability to tune topographic features on the surfaces of scaffolds independent of mechanical properties provides a valuable tool for designing microthread-based scaffolds to enhance regeneration of functional muscle tissue.
Collapse
Affiliation(s)
- Meagan E Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - George D Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
9
|
Carnes ME, Gonyea CR, Mooney RG, Njihia JW, Coburn JM, Pins GD. Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds. Tissue Eng Part C Methods 2020; 26:317-331. [PMID: 32364015 PMCID: PMC7310227 DOI: 10.1089/ten.tec.2020.0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
Horseradish peroxidase (HRP) has been investigated as a catalyst to crosslink tissue-engineered hydrogels because of its mild reaction conditions and ability to modulate the mechanical properties of the matrix. Here, we report the results of the first study investigating the use of HRP to crosslink fibrin scaffolds. We examined the effect of varying HRP and hydrogen peroxide (H2O2) incorporation strategies on the resulting crosslink density and structural properties of fibrin in a microthread scaffold format. Primary (1°) and secondary (2°) scaffold modification techniques were evaluated to crosslink fibrin microthread scaffolds. A primary scaffold modification technique was defined as incorporating crosslinking agents into the microthread precursor solutions during extrusion. A secondary scaffold modification technique was defined as incubating the microthreads in a postprocessing crosslinker bath. Fibrin microthreads were enzymatically crosslinked through primary, secondary, or a combination of both approaches. All fibrin microthread scaffolds crosslinked with HRP and H2O2 via primary and/or secondary methods exhibited an increase in dityrosine crosslink density compared with uncrosslinked control microthreads, demonstrated by scaffold fluorescence. Fourier transform infrared spectroscopy indicated the formation of isodityrosine bonds in 1° HRP crosslinked microthreads. Characterization of tensile mechanical properties revealed that all HRP crosslinked microthreads were significantly stronger than control microthreads. Primary (1°) HRP crosslinked microthreads also demonstrated significantly slower degradation than control microthreads, suggesting that incorporating HRP and H2O2 during extrusion yields scaffolds with increased resistance to proteolytic degradation. Finally, cells seeded on HRP crosslinked microthreads retained a high degree of viability, demonstrating that HRP crosslinking yields biocompatible scaffolds that are suitable for tissue engineering. The goal of this work was to facilitate the logical design of enzymatically crosslinked fibrin microthreads with tunable structural properties, enabling their application for engineered tissue constructs with varied mechanical and structural properties.
Collapse
Affiliation(s)
- Meagan E. Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Cailin R. Gonyea
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Rebecca G. Mooney
- Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Jane W. Njihia
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
10
|
Kaur A, Midha S, Giri S, Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int 2019; 2019:1286054. [PMID: 31354835 PMCID: PMC6636521 DOI: 10.1155/2019/1286054] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Skin tissue engineering has attained several clinical milestones making remarkable progress over the past decades. Skin is inhabited by a plethora of cells spatiotemporally arranged in a 3-dimensional (3D) matrix, creating a complex microenvironment of cell-matrix interactions. This complexity makes it difficult to mimic the native skin structure using conventional tissue engineering approaches. With the advent of newer fabrication strategies, the field is evolving rapidly. However, there is still a long way before an artificial skin substitute can fully mimic the functions and anatomical hierarchy of native human skin. The current focus of skin tissue engineers is primarily to develop a 3D construct that maintains the functionality of cultured cells in a guided manner over a period of time. While several natural and synthetic biopolymers have been translated, only partial clinical success is attained so far. Key challenges include the hierarchical complexity of skin anatomy; compositional mismatch in terms of material properties (stiffness, roughness, wettability) and degradation rate; biological complications like varied cell numbers, cell types, matrix gradients in each layer, varied immune responses, and varied methods of fabrication. In addition, with newer biomaterials being adopted for fabricating patient-specific skin substitutes, issues related to escalating processing costs, scalability, and stability of the constructs under in vivo conditions have raised some concerns. This review provides an overview of the field of skin regenerative medicine, existing clinical therapies, and limitations of the current techniques. We have further elaborated on the upcoming tissue engineering strategies that may serve as promising alternatives for generating functional skin substitutes, the pros and cons associated with each technique, and scope of their translational potential in the treatment of chronic skin ailments.
Collapse
Affiliation(s)
- Amtoj Kaur
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Swati Midha
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Von den Hoff JW, Carvajal Monroy PL, Ongkosuwito EM, van Kuppevelt TH, Daamen WF. Muscle fibrosis in the soft palate: Delivery of cells, growth factors and anti-fibrotics. Adv Drug Deliv Rev 2019; 146:60-76. [PMID: 30107211 DOI: 10.1016/j.addr.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries.
Collapse
Affiliation(s)
- Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Paola L Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, P.O. Box 2060, 3000CB Rotterdam, The Netherlands.
| | - Edwin M Ongkosuwito
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater 2017; 4:325-334. [PMID: 29026647 PMCID: PMC5633688 DOI: 10.1093/rb/rbx025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023] Open
Abstract
Treatment of acute and chronic wounds is one of the primary challenges faced by doctors. Bioderived materials have significant potential clinical value in tissue injury treatment and defect reconstruction. Various strategies, including drug loading, addition of metallic element(s), cross-linking and combining two or more distinct types of materials with complementary features, have been used to synthesize more suitable materials for wound healing. In this review, we describe the recent developments made in the processing of bioderived materials employed for cutaneous wound healing, including newly developed materials such as keratin and soy protein. The focus was on the key properties of the bioderived materials that have shown great promise in improving wound healing, restoration and reconstruction. With their good biocompatibility, nontoxic catabolites, microinflammation characteristics, as well as their ability to induce tissue regeneration and reparation, the bioderived materials have great potential for skin tissue repair.
Collapse
Affiliation(s)
- Lin-Cui Da
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
13
|
Grasman JM, Page RL, Pins GD. * Design of an In Vitro Model of Cell Recruitment for Skeletal Muscle Regeneration Using Hepatocyte Growth Factor-Loaded Fibrin Microthreads. Tissue Eng Part A 2017; 23:773-783. [PMID: 28351217 DOI: 10.1089/ten.tea.2016.0440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large skeletal muscle defects that result in volumetric muscle loss (VML) result in the destruction of the basal lamina, which removes key signaling molecules such as hepatocyte growth factor (HGF) from the wound site, eliminating the endogenous capacity of these injuries to regenerate. We recently showed that HGF-loaded fibrin microthreads increased the force production in muscle tissues after 60 days in a mouse VML model. In this study, we created an in vitro, three-dimensional (3D) microscale outgrowth assay system designed to mimic cell recruitment in vivo, and investigated the effect of HGF-loaded, cross-linked fibrin microthreads on myoblast recruitment to predict the results observed in vivo. This outgrowth assay discretely separated the cellular and molecular functions (migration, proliferation, and chemotaxis) that direct outgrowth from the wound margin, creating a powerful platform to model cell recruitment in axially aligned tissues, such as skeletal muscle. The degree of cross-linking was controlled by pH and microthreads cross-linked using physiologically neutral pH (EDCn) facilitated the release of active HGF; increasing the two-dimensional migration and 3D outgrowth of myoblasts twofold. While HGF adsorbed to uncross-linked microthreads, it did not enhance myoblast migration, possibly due to the low concentrations that were adsorbed. Regardless of the amount of HGF adsorbed on the microthreads, myoblast proliferation increased significantly on stiffer, cross-linked microthreads. Together, the results of these studies show that HGF loaded onto EDCn microthreads supported enhanced myoblast migration and recruitment and suggest that our novel outgrowth assay system is a robust in vitro screening tool that predicts the performance of fibrin microthreads in vivo.
Collapse
Affiliation(s)
- Jonathan M Grasman
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts.,2 Bioengineering Institute, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Raymond L Page
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts.,2 Bioengineering Institute, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - George D Pins
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts.,2 Bioengineering Institute, Worcester Polytechnic Institute , Worcester, Massachusetts
| |
Collapse
|
14
|
Chrobak MO, Hansen KJ, Gershlak JR, Vratsanos M, Kanellias M, Gaudette GR, Pins GD. Design of a Fibrin Microthread-Based Composite Layer for Use in a Cardiac Patch. ACS Biomater Sci Eng 2017; 3:1394-1403. [DOI: 10.1021/acsbiomaterials.6b00547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Megan O. Chrobak
- Department
of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Katrina J. Hansen
- Department
of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Joshua R. Gershlak
- Department
of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Maria Vratsanos
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marianne Kanellias
- Department
of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Glenn R. Gaudette
- Department
of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - George D. Pins
- Department
of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| |
Collapse
|
15
|
Grasman JM, O’Brien MP, Ackerman K, Gagnon KA, Wong GM, Pins GD. The Effect of Sterilization Methods on the Structural and Chemical Properties of Fibrin Microthread Scaffolds. Macromol Biosci 2016; 16:836-46. [PMID: 26847494 PMCID: PMC4902748 DOI: 10.1002/mabi.201500410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/02/2016] [Indexed: 01/13/2023]
Abstract
A challenge for the design of scaffolds in tissue engineering is to determine a terminal sterilization method that will retain the structural and biochemical properties of the materials. Since commonly used heat and ionizing energy-based sterilization methods have been shown to alter the material properties of protein-based scaffolds, the effects of ethanol and ethylene oxide (EtO) sterilization on the cellular compatibility and the structural, chemical, and mechanical properties of uncrosslinked, UV crosslinked, or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) crosslinked fibrin microthreads in neutral (EDCn) or acidic (EDCa) buffers are evaluated. EtO sterilization significantly reduces the tensile strength of uncrosslinked microthreads. Surface chemistry analyses show that EtO sterilization induces alkylation of EDCa microthreads leading to a significant reduction in myoblast attachment. The material properties of EDCn microthreads do not appear to be affected by the sterilization method. These results significantly enhance the understanding of how sterilization or crosslinking techniques affect the material properties of protein scaffolds.
Collapse
Affiliation(s)
- Jonathan M. Grasman
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA. Bioengineering Institute, Worcester Polytechnic Institute, Worcester, MA, 01609, USA. Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Megan P. O’Brien
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Kevin Ackerman
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Keith A. Gagnon
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA. Boston University School of Medicine, Boston, MA, 02119, USA. Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Gregory M. Wong
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA. Department of Geosciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA. Bioengineering Institute, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| |
Collapse
|
16
|
O'Brien MP, Carnes ME, Page RL, Gaudette GR, Pins GD. Designing Biopolymer Microthreads for Tissue Engineering and Regenerative Medicine. CURRENT STEM CELL REPORTS 2016; 2:147-157. [PMID: 27642550 DOI: 10.1007/s40778-016-0041-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Native tissue structures possess elaborate extracellular matrix (ECM) architectures that inspire the design of fibrous structures in the field of regenerative medicine. We review the literature with respect to the successes and failures, as well as the future promise of biopolymer microthreads as scaffolds to promote endogenous and exogenous tissue regeneration. Biomimetic microthread tissue constructs have been proposed for the functional regeneration of tendon, ligament, skeletal muscle, and ventricular myocardial tissues. To date, biopolymer microthreads have demonstrated promising results as materials to recapitulate the hierarchical structure of simple and complex tissues and well as biochemical signaling cues to direct cell-mediated tissue regeneration. Biopolymer microthreads have also demonstrated exciting potential as a platform technology for the targeted delivery of stem cells and therapeutic molecules. Future studies will focus on the design of microthread-based tissue analogs that strategically integrate growth factors and progenitor cells to temporally direct cell-mediated processes that promote enhanced functional tissue regeneration.
Collapse
Affiliation(s)
- Megan P O'Brien
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609
| | - Meagan E Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609
| | - Raymond L Page
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609
| | - Glenn R Gaudette
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609
| | - George D Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609
| |
Collapse
|
17
|
Rapid release of growth factors regenerates force output in volumetric muscle loss injuries. Biomaterials 2015; 72:49-60. [PMID: 26344363 DOI: 10.1016/j.biomaterials.2015.08.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 11/21/2022]
Abstract
A significant challenge in the design and development of biomaterial scaffolds is to incorporate mechanical and biochemical cues to direct organized tissue growth. In this study, we investigated the effect of hepatocyte growth factor (HGF) loaded, crosslinked fibrin (EDCn-HGF) microthread scaffolds on skeletal muscle regeneration in a mouse model of volumetric muscle loss (VML). The rapid, sustained release of HGF significantly enhanced the force production of muscle tissue 60 days after injury, recovering more than 200% of the force output relative to measurements recorded immediately after injury. HGF delivery increased the number of differentiating myoblasts 14 days after injury, and supported an enhanced angiogenic response. The architectural morphology of microthread scaffolds supported the ingrowth of nascent myofibers into the wound site, in contrast to fibrin gel implants which did not support functional regeneration. Together, these data suggest that EDCn-HGF microthreads recapitulate several of the regenerative cues lost in VML injuries, promote remodeling of functional muscle tissue, and enhance the functional regeneration of skeletal muscle. Further, by strategically incorporating specific biochemical factors and precisely tuning the structural and mechanical properties of fibrin microthreads, we have developed a powerful platform technology that may enhance regeneration in other axially aligned tissues.
Collapse
|
18
|
Siddiqui N, Pramanik K. Development of fibrin conjugated chitosan/nano β-TCP composite scaffolds with improved cell supportive property for bone tissue regeneration. J Appl Polym Sci 2014. [DOI: 10.1002/app.41534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela India 769008
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela India 769008
| |
Collapse
|
19
|
Grasman JM, Pumphrey LM, Dunphy M, Perez-Rogers J, Pins GD. Static axial stretching enhances the mechanical properties and cellular responses of fibrin microthreads. Acta Biomater 2014; 10:4367-76. [PMID: 24954911 DOI: 10.1016/j.actbio.2014.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/01/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Fibrin microthreads are a platform technology that can be used for a variety of applications, and therefore the mechanical requirements of these microthreads differ for each tissue or device application. To develop biopolymer microthreads with tunable mechanical properties, we analyzed fibrin microthread processing conditions to strengthen the scaffold materials without the use of exogenous crosslinking agents. Fibrin microthreads were extruded, dried, rehydrated and static axially stretched 0-200% of their original lengths; then the mechanical and structural properties of the microthreads were assessed. Stretching significantly increased the tensile strength of microthreads 3-fold, yielding scaffolds with tensile strengths and stiffnesses that equaled or exceeded values reported previously for carbodiimide crosslinked threads without affecting intrinsic material properties such as strain hardening or Poisson's ratio. Interestingly, these stretching conditions did not affect the rate of proteolytic degradation of the threads. The swelling ratios of stretched microthreads decreased, and scanning electron micrographs showed increases in grooved topography with increased stretch, suggesting that stretching may increase the fibrillar alignment of fibrin fibrils. The average cell alignment with respect to the longitudinal axis of the microthreads increased 2-fold with increased stretch, further supporting the hypothesis that stretching microthreads increases the alignment of fibrin fibrils on the surfaces of the scaffolds. Together, these data suggest that stretching fibrin microthreads generates stronger materials without affecting their proteolytic stability, making stretched microthreads ideal for implantable scaffolds that require short degradation times and large initial loading properties. Further modifications to stretched microthreads, such as carbodiimide crosslinking, could generate microthreads to direct cell orientation and align tissue deposition, with additional resistance to degradation for use as a long-term scaffold for tissue regeneration.
Collapse
|
20
|
Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol 2014; 32:74-81. [PMID: 24405851 DOI: 10.1016/j.tibtech.2013.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/13/2023]
Abstract
Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small-molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small-molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past 4 years in the area of small bioactive molecules for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| | - Tao Jiang
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Keith A Gagnon
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Clarke Nelson
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
21
|
Lai JY. Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydr Polym 2014; 101:203-12. [DOI: 10.1016/j.carbpol.2013.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
|