1
|
Dehban A, Kargari A, Ashtiani FZ. Fabrication and Characterization of PPSU/ PES Blend Nanofiltration Membrane via VIPS‐ NIPS Method for Effective Dye Rejection. POLYM ADVAN TECHNOL 2025; 36. [DOI: 10.1002/pat.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 01/05/2025]
Abstract
ABSTRACTIndustrial effluents, including dyes, pose a threat to the environment and human health, as they are resistant to reacting with oxygen; therefore, they are rarely biodegradable. Among the various processes, nanofiltration is an attractive process for separating dyes from water due to its economic efficiency. This work represents the fabrication of poly (phenyl sulfone) (PPSU)/poly (ether sulfone) (PES) blend nanofiltration membranes through vapor‐induced phase separation (VIPS) followed by immersion precipitation. The influence of polymer blend, exposure time, and coagulation bath composition on membrane characteristics and performance was studied. Results illustrate that an increment in exposure time caused a thinner top layer and changed the cross‐section morphology from finger‐like to sponge‐like. At PPSU:PES = 50:50 blend ratio, the pore radius significantly got larger than the neat polymers' fabricated membranes. The addition of N‐methyl‐2‐pyrrolidone (NMP) in the coagulation bath causes the formation of smaller finger‐like voids at the top layers and a sponge‐like structure in the sub‐layers of membranes. The optimal conditions for the nanofiltration membrane were determined at 28 s VIPS time, an equal ratio of polymers, and pure water as the coagulation bath. Under these conditions, the distilled water permeability and Rose Bengal rejection were determined as 63.6 L/m2 h and 77.11%, respectively.
Collapse
Affiliation(s)
- Amin Dehban
- Membrane Processes Research Laboratory (MPRL), Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ali Kargari
- Membrane Processes Research Laboratory (MPRL), Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Farzin Zokaee Ashtiani
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
2
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Prasher P, Sharma M, Agarwal V, Singh SK, Gupta G, Dureja H, Dua K. Cationic cycloamylose based nucleic acid nanocarriers. Chem Biol Interact 2024; 395:111000. [PMID: 38614318 DOI: 10.1016/j.cbi.2024.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
4
|
Zhang J, Gao M, Gao Z, Hou Y, Liang J, Lu J, Gao S, Li B, Gao Y, Chen J. Chondroitin sulfate modified calcium phosphate nanoparticles for efficient transfection via caveolin-mediated endocytosis. Int J Biol Macromol 2023; 253:127046. [PMID: 37742889 DOI: 10.1016/j.ijbiomac.2023.127046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Efficient transfection remains a challenge for gene delivery in both cell biological scientific research and gene therapeutic fields. Existing transfection strategies rarely pay attention to altering the endocytosis pathway of nanocarriers for transfection efficiency improvement. In this work, we innovatively postulated that calcium phosphate nanoparticles coated with glycosaminoglycan could be internalized by cells mainly through caveolin-mediated endocytosis pathway allowing genes to bypass lysosome route, and hence enhance the transfection efficiency. To achieve this, we developed calcium phosphate nanoparticles (CP-ALN-CS) coated with chondroitin sulfate (CS) and alendronate (ALN) in a modular manner. The CP-ALN-CS had a hydrodynamic size of 131.0 ± 8.7 nm and exhibited favorable dispersity, stability, and resistance to nuclease degradation. Unlike conventional calcium phosphate and PEI-based transfection, CP-ALN-CS exhibited efficient cellular uptake with co-localization in Golgi apparatus and endoplasmic reticulum. Through bypassing the lysosome involved cellular uptake route, CP-ALN-CS can effectively protect genes from degradation and relieve cytotoxicity. After loading plasmid DNA, CP-ALN-CS showed extraordinary transfection efficiency in HEK 293T cells, outperforming the PEI which is considered as the gold standard. The current work provides a novel and facile approach to improve gene transfection efficiency and is valuable for the design of next-generation in vitro transfection reagents.
Collapse
Affiliation(s)
- Jiarong Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhuoya Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yingchao Hou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinjin Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuai Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Boqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yufeng Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Kang J, Yue H, Li X, He C, Li Q, Cheng L, Zhang J, Liu Y, Wang S, Guo Q. Structural, rheological and functional properties of ultrasonic treated xanthan gums. Int J Biol Macromol 2023; 246:125650. [PMID: 37399868 DOI: 10.1016/j.ijbiomac.2023.125650] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Xanthan gum can improve the freeze-thaw stability of frozen foods. However, the high viscosity and long hydration time of xanthan gum limits its application. In this study, ultrasound was employed to reduce the viscosity of xanthan gum, and the effect of ultrasound on its physicochemical, structural, and rheological properties was investigated using High-performance size-exclusion chromatography (HPSEC), ion chromatograph, methylation analysis, 1H NMR, rheometer, etc.. The application of ultrasonic-treated xanthan gum was evaluated in frozen dough bread. Results showed that the molecular weight of xanthan gum was reduced significantly by ultrasonication (from 3.0 × 107 Da to 1.4 × 106 Da), and the monosaccharide compositions and linkage patterns of sugar residues were altered. Results revealed that ultrasonication treatment mainly broke the molecular backbone at a lower intensity, then mainly broke the side chains with increasing intensity, which significantly reduced the apparent viscosity and viscoelastic properties of xanthan gum. The results of specific volume and hardness showed that the bread containing low molecular weight xanthan gum was of better quality. Overall, this work offers a theoretical foundation for broadening the application of xanthan gum and improving its performance in frozen dough.
Collapse
Affiliation(s)
- Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongxia Yue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinxue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao He
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qin Li
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, 4 Meicheng Road, Huai'an 223003, China
| | - Liting Cheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Qiu L, Wang J, Conceição M, Liu S, Yang M, Chen W, Long M, Cheng X, Wood MJA, Chen J. Tumor-targeted glycogen nanoparticles loaded with hemin and glucose oxidase to promote tumor synergistic therapy. Int J Biol Macromol 2023; 239:124363. [PMID: 37031790 DOI: 10.1016/j.ijbiomac.2023.124363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Strategies which are used to address the low levels of intracellular hydrogen peroxide and the development of biocompatible catalysts still need to be fulfilled in tumor chemodynamic therapy. Therefore, a novel tumor-targeted glycogen-based nanoparticle system (GN/He/GOx/HA) was developed to co-deliver hemin (He) and GOx, which can self-supply glucose formed upon degradation of glycogen by α-glycosidase in the lysosome environment, in order to achieve synergistic antitumor therapy. Hyaluronic acid (HA) was selected as the outer shell to protect the activity of GOx, and to increase the uptake by tumor cells via CD44 receptor-mediated endocytosis. GN/He/GOx/HA NPs had a good stability in the blood circulation, but fast release of the therapeutic cargos upon intracellular uptake. Hemin had a cascade catalytic reaction with GOx. Furthermore, GN/He/GOx/HA NPs had the strongest cytotoxicity in Hela cells in a glucose concentration dependent manner. The NPs could efficiently produce reactive oxygen species in tumor cells, resulting in a decrease in the mitochondrial membrane potential and apoptosis of tumor cells. The in vivo results showed that the drug-loaded nanoparticles had good safety, biocompatibility, and efficacious antitumor effect. Therefore, the glycogen-based nanoparticle delivery system provides potential application for self-enhancing CDT, which can be used for effective antitumor therapy.
Collapse
Affiliation(s)
- Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Junze Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Shenhuan Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Miaomiao Long
- Institute of Chemical Industry of Forest Products CAF, Nanjing 210042, China; Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi 214028, Jiangsu, China
| | - Xian Cheng
- Institute of Chemical Industry of Forest Products CAF, Nanjing 210042, China.
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
8
|
Park J, Kim S, Kim TI. Polyethylenimine-Conjugated Hydroxyethyl Cellulose for Doxorubicin/Bcl-2 siRNA Co-Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15020708. [PMID: 36840030 PMCID: PMC9965717 DOI: 10.3390/pharmaceutics15020708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hydroxyethyl cellulose (HEC), widely known for its biocompatibility and water solubility, is a polysaccharide with potential for pharmaceutical applications. Here, we synthesized polyethylenimine2k (PEI2k)-conjugated hydroxyethyl cellulose (HECP2k) for doxorubicin/Bcl-2 siRNA co-delivery systems. HECP2ks were synthesized by reductive amination of PEI2k with periodate-oxidized HEC. The synthesis of the polymers was characterized using 1H NMR, 13C NMR, primary amine quantification, FT-IR, and GPC. Via agarose gel electrophoresis and Zeta-sizer measurement, it was found that HECP2ks condensed pDNA to positively charged and nano-sized complexes (100-300 nm, ~30 mV). The cytotoxicity of HECP2ks was low and HECP2k 10X exhibited higher transfection efficiency than PEI25k even in serum condition, showing its high serum stability from ethylene oxide side chains. Flow cytometry analysis and confocal laser microscopy observation verified the superior cellular uptake and efficient endosome escape of HECP2k 10X. HECP2k 10X also could load Dox and Bcl-2 siRNA, forming nano-particles (HECP2k 10X@Dox/siRNA). By median effect analysis and annexin V staining analysis, it was found that HECP2k 10X@Dox/siRNA complexes could cause synergistically enhanced anti-cancer effects to cancer cells via induction of apoptosis. Consequently, it was concluded that HECP2k possesses great potential as a promising Dox/Bcl-2 siRNA co-delivery carrier.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seoyoung Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-il Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Li X, An S, Wang C, Jiang Q, Gao D, Wang L. Protein-polysaccharides based nanoparticles for loading with Malus baccata polyphenols and their digestibility in vitro. Int J Biol Macromol 2023; 228:783-793. [PMID: 36581037 DOI: 10.1016/j.ijbiomac.2022.12.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The poor solubility, instability and low absorption rate obstruct the bioavailability of polyphenols isolated from Malus baccata (MBP) during gastrointestinal digestion. In order to solve the limitable problems, the food-grade nanoparticles were fabricated by mucin (MC) and Hohenbuehelia serotina polysaccharides (HSP) for delivery of MBP (MBP-NPs). The physicochemical properties and morphology of MBP-NPs prepared by different condition were respectively characterized. During gastrointestinal digestion in vitro, the release characteristic and variation in phenolic composition of MBP-NPs were evaluated. The results showed that MBP-NPs formed by hydrogen bonding and hydrophobic interaction possessed the regularly spherical shapes and smooth surfaces and semi-crystalline properties. Moreover, MBP-NPs presented the excellent physicochemical stability. During simulated gastrointestinal digestion in vitro, MBP-NPs exhibited the sustained release characteristics of phenolic compounds, which were confirmed by SDS-PAGE measurement. Compared with that of unencapsulated MBP, the significant variation was occurred in the phenolic composition of MBP-NPs, indicating that MBP-NPs could prevent the degradation and transformation of phenolic compounds. This study provides a novel strategy to improve the bioavailability of polyphenols.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Cheng Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qianyu Jiang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Dawei Gao
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
10
|
Extraction, Structural Characterization, Biological Functions, and Application of Rice Bran Polysaccharides: A Review. Foods 2023; 12:foods12030639. [PMID: 36766168 PMCID: PMC9914776 DOI: 10.3390/foods12030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Rice bran is a "treasure house of natural nutrition". Even so, utilization of rice bran is often ignored, and this has resulted in the wastage of nutrients. Polysaccharides are one of the active substances in rice bran that have gained widespread attention for their antioxidant, antitumor, immune-enhancing, antibacterial, and hypoglycemic properties. This review summarizes the extraction methods, structural characterization, bioactivity, and application of rice bran polysaccharides that have been developed and studied in recent years, laying a foundation for its development into foods and medicines. In addition, we also discuss the prospects for future research on rice bran polysaccharides.
Collapse
|
11
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
12
|
Sarma A. Biological importance and pharmaceutical significance of keratin: A review. Int J Biol Macromol 2022; 219:395-413. [DOI: 10.1016/j.ijbiomac.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
|
13
|
Soltani Dehnavi S, Eivazi Zadeh Z, Harvey AR, Voelcker NH, Parish CL, Williams RJ, Elnathan R, Nisbet DR. Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108757. [PMID: 35396884 DOI: 10.1002/adma.202108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The incorporation of nanotechnology in regenerative medicine is at the nexus of fundamental innovations and early-stage breakthroughs, enabling exciting biomedical advances. One of the most exciting recent developments is the use of nanoscale constructs to influence the fate of cells, which are the basic building blocks of healthy function. Appropriate cell types can be effectively manipulated by direct cell reprogramming; a robust technique to manipulate cellular function and fate, underpinning burgeoning advances in drug delivery systems, regenerative medicine, and disease remodeling. Individual transcription factors, or combinations thereof, can be introduced into cells using both viral and nonviral delivery systems. Existing approaches have inherent limitations. Viral-based tools include issues of viral integration into the genome of the cells, the propensity for uncontrollable silencing, reduced copy potential and cell specificity, and neutralization via the immune response. Current nonviral cell reprogramming tools generally suffer from inferior expression efficiency. Nanomaterials are increasingly being explored to address these challenges and improve the efficacy of both viral and nonviral delivery because of their unique properties such as small size and high surface area. This review presents the state-of-the-art research in cell reprogramming, focused on recent breakthroughs in the deployment of nanomaterials as cell reprogramming delivery tools.
Collapse
Affiliation(s)
- Shiva Soltani Dehnavi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- ANU College of Engineering & Computer Science, Canberra, ACT, 2601, Australia
| | - Zahra Eivazi Zadeh
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413, Iran
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Richard J Williams
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - David R Nisbet
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
14
|
Zoledronic acid-loaded cationic methylcellulose polyplex nanoparticles for enhanced gene delivery efficiency and breast cancer cell killing effect. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021; 10:cells10113097. [PMID: 34831320 PMCID: PMC8619171 DOI: 10.3390/cells10113097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRs) are emerging as attractive therapeutic targets because of their small size, specific targetability, and critical role in disease pathogenesis. However, <20 miR targeting molecules have entered clinical trials, and none progressed to phase III. The difficulties in miR target identification, the moderate efficacy of miR inhibitors, cell type-specific delivery, and adverse outcomes have impeded the development of miR therapeutics. These hurdles are rooted in the functional complexity of miR's role in disease and sequence complementarity-dependent/-independent effects in nontarget tissues. The advances in understanding miR's role in disease, the development of efficient miR inhibitors, and innovative delivery approaches have helped resolve some of these hurdles. In this review, we provide a multidisciplinary viewpoint on the challenges and opportunities in the development of miR therapeutics.
Collapse
|
16
|
miRNA Delivery by Nanosystems: State of the Art and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13111901. [PMID: 34834316 PMCID: PMC8619868 DOI: 10.3390/pharmaceutics13111901] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are short (~21-23 nucleotides), non-coding endogenous RNA molecules that modulate gene expression at the post-transcriptional level via the endogenous RNA interference machinery of the cell. They have emerged as potential biopharmaceuticals candidates for the treatment of various diseases, including cancer, cardiovascular and metabolic diseases. However, in order to advance miRNAs therapeutics into clinical settings, their delivery remains a major challenge. Different types of vectors have been investigated to allow the delivery of miRNA in the diseased tissue. In particular, non-viral delivery systems have shown important advantages such as versatility, low cost, easy fabrication and low immunogenicity. Here, we present a general overview of the main types of non-viral vectors developed for miRNA delivery, with their advantages, limitations and future perspectives.
Collapse
|
17
|
Zeng Q, Qian Y, Huang Y, Ding F, Qi X, Shen J. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact Mater 2021; 6:2647-2657. [PMID: 33665497 PMCID: PMC7890098 DOI: 10.1016/j.bioactmat.2021.01.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
Most commonly used wound dressings have severe problems, such as an inability to adapt to wound shape or a lack of antibacterial capacity, affecting their ability to meet the requirements of clinical applications. Here, a nanocomposite hydrogel (XKP) is developed by introducing polydopamine nanoparticles (PDA NPs) into a food gum matrix (XK, consisting of xanthan gum and konjac glucomannan, both FDA-approved food thickening agents) for skin wound healing. In this system, the embedded PDA NPs not only interact with the food gum matrix to form a hydrogel with excellent mechanical strength, but also act as photothermal transduction agents to convert near-infrared laser radiation to heat, thereby triggering bacterial death. Moreover, the XKP hydrogel has high elasticity and tunable water content, enabling it to adapt to the shape of the wound and insulate it, providing a moist environment suitable for healing. In-vivo skin wound healing results clearly demonstrate that XKP can significantly accelerate the healing of wounds by reducing the inflammatory response and promoting vascular reconstruction. In summary, this strategy provides a simple and practical method to overcome the drawbacks of traditional wound dressings, and provides further options when choosing suitable wound healing materials for clinical applications.
Collapse
Affiliation(s)
- Qiankun Zeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yuna Qian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yijing Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
18
|
Gondim DR, Cecilia JA, Rodrigues TNB, Vilarrasa-García E, Rodríguez-Castellón E, Azevedo DCS, Silva IJ. Protein Adsorption onto Modified Porous Silica by Single and Binary Human Serum Protein Solutions. Int J Mol Sci 2021; 22:9164. [PMID: 34502072 PMCID: PMC8430731 DOI: 10.3390/ijms22179164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N2 adsorption/desorption isotherms at -196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420-337 m2 g-1 and an average pore diameter with a maximum between 20-25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin-HSA and immunoglobulin G-IgG). Generally, the incorporation of small proportions was favorable for proteins adsorption. The adsorption data revealed that the maximum adsorption capacity was reached close to the pI. The batch purification experiments in binary human serum solutions showed that Si sample has considerable adsorption for IgG while HSA adsorption is relatively low, so it is possible its separation.
Collapse
Affiliation(s)
- Diego R. Gondim
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Juan A. Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Malaga, Spain;
| | - Thaina N. B. Rodrigues
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Enrique Vilarrasa-García
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Malaga, Spain;
| | - Diana C. S. Azevedo
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Ivanildo J. Silva
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| |
Collapse
|
19
|
Naskar A, Lee S, Ko D, Kim S, Kim KS. Bovine Serum Albumin-Immobilized Black Phosphorus-Based γ-Fe 2O 3 Nanocomposites: A Promising Biocompatible Nanoplatform. Biomedicines 2021; 9:858. [PMID: 34440062 PMCID: PMC8389694 DOI: 10.3390/biomedicines9080858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
The interactions between proteins and nanoparticles need to be fully characterized as the immobilization of proteins onto various nanoplatforms in the physiological system often results in the change of surface of the protein molecules to avoid any detrimental issues related to their biomedical applications. Hence, in this article, the successful low-temperature synthesis of a BP-based γ-Fe2O3 (IB) nanocomposite and its interactive behavior with bovine serum albumin (BSA)-a molecule with chemical similarity and high sequence identity to human serum albumin-are described. To confirm the formation of γ-Fe2O3 and the IB nanocomposite, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy analyses of the materials were performed. Additionally, the physical interaction between BSA and the IB nanocomposite was confirmed via UV-Vis and photoluminescence spectral analyses. Finally, the biocompatibility of the BSA-immobilized IB nanocomposite was verified using an in vitro cytotoxicity assay with HCT-15 colon cancer cells. Our findings demonstrate that this newly developed nanocomposite has potential utility as a biocompatible nanoplatform for various biomedical applications.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (S.L.)
| | - Sohee Lee
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (S.L.)
| | - Dongjoon Ko
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (A.N.); (S.L.)
| |
Collapse
|
20
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
21
|
|
22
|
Efficient and Low Cytotoxicity Gene Carriers Based on Amine-Functionalized Polyvinylpyrrolidone. Polymers (Basel) 2020; 12:polym12112724. [PMID: 33212976 PMCID: PMC7698542 DOI: 10.3390/polym12112724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Non-viral vectors are a safety tool for gene therapy to deliver therapeutic genes. Among the different non-viral vectors, polyvinylpyrrolidone (PVP), a well-known hydrosoluble, neutral, and non-toxic polymer, satisfies the requirements and becomes a suitable candidate for gene delivery. In this study, we describe the preparation of polyvinylpyrrolidones decorated with pyrrolidine, piperidine, and piperazine groups, and evaluate them in vitro as non-viral gene carriers. The properties of these new systems are compared with those of hyperbranched polyethyleneimine (PEI) used as a positive control. Their ability to complex DNA at different N/P molar ratios, from 1:1 up to 10:1, was studied through agarose gel electrophoresis and dynamic light scattering. The resulting complexes (polyplexes) were characterized and evaluated in vitro with murine fibroblast (Swiss 3T3) as non-viral gene carriers, using luciferase as the reporter gene and a calcein cytocompatibility assay. All the copolymers condensed DNA to a particle average size between 100–400 nm when used at N/P ratios of 4:1 or higher. The copolymers with piperidine groups showed higher transfection efficiency than the pyrrolidine and piperazine modified copolymers, and even higher than the positive control of PEI at N/P ratios of 4:1 or higher. All the synthesized polyplexes from an aminated PVP displayed a general tendency of high cytocompatibility (75–95%) in comparison with the positive control PEI (55%).
Collapse
|
23
|
Fischer D, Dusek N, Hotzel K, Heinze T. The Role of Formamidine Groups in Dextran Based Nonviral Vectors for Gene Delivery on Their Physicochemical and Biological Characteristics. Macromol Biosci 2020; 21:e2000220. [PMID: 33025658 DOI: 10.1002/mabi.202000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Indexed: 01/04/2023]
Abstract
Dextran-formamidine esters (dextran-N-[(dimethylamino)methylene]-β-alanine ester) with different degrees of substitution (0.45-0.92) are synthesized in an one-pot reaction. Dextran (Mw 60 000 g mol-1 ) is allowed to react with unprotected beta-alanine and iminium chloride and investigated regarding the potential as gene delivery system for the transfer of plasmid DNA. With degrees of substitution ≥ 0.63 improved DNA binding with formation of enzymatically stable complexes of about 130-160 nm with negative surface charges are obtained. These physicochemical characteristics correlated with increasing transfection rates in CHO-K1 cells determined by a luciferase reporter gene assay in dependency of the number of formamidine residues, N/P ratios and amount of DNA. The role of the number of formamidine groups is also highlighted by in vitro cyto- and hemotoxicity tests under the chosen conditions. These results indicate that dextran-formamidine esters are a very promising material for the safe and efficient gene delivery.
Collapse
Affiliation(s)
- Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
| | - Niels Dusek
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743, Jena, Germany
| | - Konrad Hotzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Center of Excellence for Polysaccharide Research, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
24
|
Cyclopropenium Nanoparticles and Gene Transfection in Cells. Pharmaceutics 2020; 12:pharmaceutics12080768. [PMID: 32823739 PMCID: PMC7465078 DOI: 10.3390/pharmaceutics12080768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/04/2022] Open
Abstract
Non-viral vectors for the transfection of genetic material are at the frontier of medical science. In this article, we introduce for the first time, cyclopropenium-containing nanoparticles as a cationic carrier for gene transfection, as an alternative to the common quaternary ammonium transfection agents. Cyclopropenium-based cationic nanoparticles were prepared by crosslinking poly(ethylene imine) (PEI) with tetrachlorocyclopropene. These nanoparticles were electrostatically complexed with plasmid DNA into nanoparticles (~50 nm). Their cellular uptake into F929 mouse fibroblast cells, and their eventual expression in vitro have been described. Transfection is enhanced relative to PEI with minimal toxicity. These cyclopropenium nanoparticles possess efficient gene transfection capabilities with minimal cytotoxicity, which makes them novel and promising candidates for gene therapy.
Collapse
|
25
|
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS NANO 2020; 14:1296-1318. [PMID: 32011856 PMCID: PMC10067273 DOI: 10.1021/acsnano.9b04837] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell reprogramming is a revolutionized biotechnology that offers a powerful tool to engineer cell fate and function for regenerative medicine, disease modeling, drug discovery, and beyond. Leveraging advances in biomaterials and micro/nanotechnologies can enhance the reprogramming performance in vitro and in vivo through the development of delivery strategies and the control of biophysical and biochemical cues. In this review, we present an overview of the state-of-the-art technologies for cell reprogramming and highlight the recent breakthroughs in engineering biomaterials with micro/nanotechnologies to improve reprogramming efficiency and quality. Finally, we discuss future directions and challenges for reprogramming technologies and clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yuan-Yu Hsueh
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Division of Plastic Surgery, Department of Surgery, College of Medicine , National Cheng Kung University Hospital , Tainan 70456 , Taiwan
| | - Jennifer Soto
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wujin Sun
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Jinqiang Wang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Zhen Gu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Jonsson Comprehensive Cancer Center , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| |
Collapse
|
27
|
Nallamolu S, Jayanti VR, Chitneni M, Khoon LY, Kesharwani P. Self-micro Emulsifying Drug Delivery System “SMEDDS” for Efficient Oral Delivery of Andrographolide. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210303109666190723145209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective:
Andrographolide has potent anticancer and antimicrobial activity; however, its
clinical application has been limited due to its poor water solubility as well as lack of appropriate formulation.
The objective of this investigation was to formulate Self–Micro Emulsifying Drug Delivery
System (SMEDDS) of andrographolide and explore its oral drug delivery aptitudes.
Methods:
Andrographolide SMEDDS was optimized by ternary phase approach and studied for various
in vitro characteristics: Particle size, electron microscopy, polydispersity index, surface charge, dilution
effect, pH stability, freeze-thaw effect, dissolution profile and stability studies. Further, antimicrobial
and cytotoxic performance of andrographolide SMEDDS were evaluated in MCF–7 breast cancer cell
lines and methicillin-resistant microorganisms, respectively.
Results:
An optimized SMEDDS formulation of andrographolide was successfully prepared and evaluated
for its drug delivery potential. The solubility of andrographolide in the developed SMEDDS formulation
was increased significantly, and the drug loading was enough for making this drug clinically
applicable. The andrographolide SMEDDS formulation competitively inhibited the growth of microorganisms
and showed enhanced anti–microbial activity against MRSA microorganisms.
Conclusion:
The SMEDDS strategy represents one of the best approaches to deliver andrographolide
via oral route, while resolving its solubility limitations.
Collapse
Affiliation(s)
- Sivaram Nallamolu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Vijaya R. Jayanti
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530003, AP, India
| | - Mallikarjun Chitneni
- Jurox Private Limited. 85 Gardiner St, Rutherford New South Wales 2320, Australia
| | - Liew Y. Khoon
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| |
Collapse
|
28
|
Li J, Long Y, Yang F, Wang X. Degradable Piezoelectric Biomaterials for Wearable and Implantable Bioelectronics. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100806. [PMID: 32313430 PMCID: PMC7170261 DOI: 10.1016/j.cossms.2020.100806] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Current bioelectronics are facing a paradigm shift from old-fashioned unrecyclable materials to green and degradable functional materials with desired biocompatibility. As an essential electromechanical coupling component in many bioelectronics, new piezoelectric materials are being developed with biodegradability, as well as desired mechanical and electromechanical properties for the next generation implantable and wearable bioelectronics. In this review, we provide an overview of the major advancements in biodegradable piezoelectric materials. Different natural (such as peptide, amino acids, proteins, cellulose, chitin, silk, collagen, and M13 phage) and synthetic piezoelectric materials (such as polylactic acid) are discussed to reveal the underlying electromechanical coupling mechanism at the molecular level, together with typical approaches to the alignment of orientation and polarization to boost their electromechanical performance. Meanwhile, in vivo and in vitro degradation manners of those piezoelectric materials are summarized and compared. Representative developments of typical electronic prototypes leveraging these materials are also discussed. At last, challenges toward practical applications are pointed out together with potential research opportunities that might be critical in this new materials research area.
Collapse
Affiliation(s)
- Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
29
|
Liu L, Ni D, Yan Y, Wu S, Chen X, Guan J, Xiong X, Liu G. Development of a novel DNA delivery system based on rice bran polysaccharide-Fe(III) complexes. Int J Biol Macromol 2020; 142:600-608. [DOI: 10.1016/j.ijbiomac.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022]
|
30
|
TAT-functionalized PEI-grafting rice bran polysaccharides for safe and efficient gene delivery. Int J Biol Macromol 2019; 146:1076-1086. [PMID: 31726176 DOI: 10.1016/j.ijbiomac.2019.09.234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 01/17/2023]
Abstract
Polysaccharides are considered to be promising candidates for non-viral gene delivery because of their molecular diversity, which can be modified to fine-tune their physicochemical properties. In this work, transcriptional activator protein (TAT) functionalized PEI grafted polysaccharide polymer (PRBP) was prepared by using rice bran polysaccharide as the starting material, and characterized by various methods. The potential of TAT functionalized PRBP (PRBP-TAT) as gene vector was studied in vitro, including DNA loading capacity, DNA protection ability and biocompatibility. The cell uptake and transfection efficiency of the PRBP-TAT/pDNA polyplexes were studied. The results showed that PRBP-TAT could completely condense DNA at N/P 2. The PRBP-TAT/pDNA polyplexes could protect DNA from degrading by DNase and were efficiently internalized by cells. Biocompatibility result showed that PRBP-TAT had no significant cytotoxicity and effect on cell proliferation. At low N/P ratios of 1-3.5, PRBP-TAT showed higher transfection efficiency than PEI30k and PEI30k-grafted rice bran polysaccharide. PRBP-TAT and PEI showed the highest transfection efficiency of 42.8% and 28.1% when pDNA is 2 µg and N/P ratio is 1.5, respectively, while PRBP showed the highest transfection efficiency of 37.3% at N/P 2.5. These results indicate that PTA is a promising candidate vector for safe and efficient gene delivery.
Collapse
|
31
|
Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11100547. [PMID: 31652539 PMCID: PMC6835428 DOI: 10.3390/pharmaceutics11100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.
Collapse
|
32
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
33
|
Safe and efficient gene delivery based on rice bran polysaccharide. Int J Biol Macromol 2019; 137:1041-1049. [PMID: 31295485 DOI: 10.1016/j.ijbiomac.2019.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
|
34
|
Wu S, Yan Y, Ni D, Pan X, Chen X, Guan J, Xiong X, Liu L. Development of a safe and efficient gene delivery system based on a biodegradable tannic acid backbone. Colloids Surf B Biointerfaces 2019; 183:110408. [PMID: 31382051 DOI: 10.1016/j.colsurfb.2019.110408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 11/27/2022]
Abstract
Finding a safe and efficient gene delivery vector is a major international challenge facing the development of gene therapy. Tannic acid (TA) is a natural cross-linker owing to its hydroxyl and carboxyl groups that can interact with biopolymers for different biomaterial design. In this work, three polyethyleneimine-modified TA polymers were prepared, and the polymers were characterized by FTIR, UV-vis, elemental analysis and 1H NMR. The potential of PTAs as gene vector was studied in vitro, including DNA loading capacity, DNA protection ability and biocompatibility. In addition, the particle size, zeta potential, DNA encapsulation efficiency, cell uptake and transfection efficiency of the PTA-pDNA polyplexes were also studied. The results showed that PTA2k and PTA30k could completely condense DNA at N/P of 2, and PTA600 could only completely condense DNA at N/P of 50. The PTA/pDNA polyplexes could protect DNA from degrading by DNA enzymes and could be efficiently uptaked by cells. Biocompatibility assay showed that PTA had no significant cytotoxicity and effect on cell proliferation compared to PEI. At low N/P ratios of 1-4, PTA showed higher transfection efficiency than PEI, and the transfection efficiency increased with the increase of PEI molecular weight in PTA. At N/P of 3, PTA30k showed the highest transfection efficiency of 23.8%, while PEI30k showed only 6.7%. These results indicate that PTA is a promising candidate vector for safe and efficient gene delivery.
Collapse
Affiliation(s)
- Shuheng Wu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yujian Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dani Ni
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xianhu Pan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jintao Guan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuemin Xiong
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
35
|
Hosseinkhani H, Domb AJ. Biodegradable polymers in gene‐silencing technology. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4713] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Abraham J. Domb
- School of Pharmacy‐Faculty of Medicine, Institute of Drug Research, The Center for Nanoscience and Nanotechnology and Alex Grass Center for drug Design and SynthesisThe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
36
|
Serrano-Sevilla I, Artiga Á, Mitchell SG, De Matteis L, de la Fuente JM. Natural Polysaccharides for siRNA Delivery: Nanocarriers Based on Chitosan, Hyaluronic Acid, and Their Derivatives. Molecules 2019; 24:E2570. [PMID: 31311176 PMCID: PMC6680562 DOI: 10.3390/molecules24142570] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results.
Collapse
Affiliation(s)
- Inés Serrano-Sevilla
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Artiga
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Scott G Mitchell
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura De Matteis
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain.
| | - Jesús M de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Steinman NY, Starr RL, Brucks SD, Belay C, Meir R, Golenser J, Campos LM, Domb AJ. Cyclopropenium-Based Biodegradable Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Rachel L. Starr
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Spencer D. Brucks
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Rinat Meir
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Luis M. Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | |
Collapse
|
38
|
Vargas-Osorio Z, Da Silva-Candal A, Piñeiro Y, Iglesias-Rey R, Sobrino T, Campos F, Castillo J, Rivas J. Multifunctional Superparamagnetic Stiff Nanoreservoirs for Blood Brain Barrier Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E449. [PMID: 30884908 PMCID: PMC6474103 DOI: 10.3390/nano9030449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 02/08/2023]
Abstract
Neurological diseases (Alzheimer's disease, Parkinson's disease, and stroke) are becoming a major concern for health systems in developed countries due to the increment of ageing in the population, and many resources are devoted to the development of new therapies and contrast agents for selective imaging. However, the strong isolation of the brain by the brain blood barrier (BBB) prevents not only the crossing of pathogens, but also a large set of beneficial drugs. Therefore, an alternative strategy is arising based on the anchoring to vascular endothelial cells of nanoplatforms working as delivery reservoirs. In this work, novel injectable mesoporous nanorods, wrapped by a fluorescent magnetic nanoparticles envelope, are proposed as biocompatible reservoirs with an extremely high loading capacity, surface versatility, and optimal morphology for enhanced grafting to vessels during their diffusive flow. Wet chemistry techniques allow for the development of mesoporous silica nanostructures with tailored properties, such as a fluorescent response suitable for optical studies, superparamagnetic behavior for magnetic resonance imaging MRI contrast, and large range ordered porosity for controlled delivery. In this work, fluorescent magnetic mesoporous nanorods were physicochemical characterized and tested in preliminary biological in vitro and in vivo experiments, showing a transversal relaxivitiy of 324.68 mM-1 s-1, intense fluorescence, large specific surface area (300 m² g-1), and biocompatibility for endothelial cells' uptake up to 100 µg (in a 80% confluent 1.9 cm² culture well), with no liver and kidney disability. These magnetic fluorescent nanostructures allow for multimodal MRI/optical imaging, the allocation of therapeutic moieties, and targeting of tissues with specific damage.
Collapse
Affiliation(s)
- Zulema Vargas-Osorio
- NANOMAG Laboratory, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Andrés Da Silva-Candal
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Yolanda Piñeiro
- NANOMAG Laboratory, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Tomas Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - José Rivas
- NANOMAG Laboratory, Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Loka RS, Sletten ET, Barash U, Vlodavsky I, Nguyen HM. Specific Inhibition of Heparanase by a Glycopolymer with Well-Defined Sulfation Pattern Prevents Breast Cancer Metastasis in Mice. ACS APPLIED MATERIALS & INTERFACES 2019; 11:244-254. [PMID: 30543095 PMCID: PMC6512314 DOI: 10.1021/acsami.8b17625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Heparanase, the heparan sulfate polysaccharide degrading endoglycosidase enzyme, has been correlated with tumor angiogenesis and metastasis and therefore has become a potential target for anticancer drug development. In this systematic study, the sulfation pattern of the pendant disaccharide moiety on synthetic glycopolymers was synthetically manipulated to achieve optimal heparanase inhibition. Upon evaluation, a glycopolymer with 12 repeating units was determined to be the most potent inhibitor of heparanase (IC50 = 0.10 ± 0.36 nM). This glycopolymer was further examined for cross-bioactivity using a solution-based competitive biolayer interferometry assay with other HS-binding proteins (growth factors, P-selectin, and platelet factor 4), which are responsible for mediating angiogenic activity, cell metastasis, and antibody-induced thrombocytopenia. The synthetic glycopolymer has low affinity for these HS-binding proteins in comparison to natural heparin. In addition, the glycopolymer possessed no proliferative properties toward human umbilical endothelial cells (HUVECs) and a potent antimetastatic effect against 4T1 mammary carcinoma cells. Thus, our study not only establishes a specific inhibitor of heparanase with high affinity but also illustrates the high effectiveness of this multivalent heparanase inhibitor in inhibiting experimental metastasis in vivo.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Eric T Sletten
- Department of Chemistry , University of Iowa , Iowa City, Iowa 52242 , United States
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine , Technion-Israel Institute of Technology , Haifa , Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine , Technion-Israel Institute of Technology , Haifa , Israel
| | - Hien M Nguyen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
40
|
Hu Y, Wang H, Song H, Young M, Fan Y, Xu FJ, Qu X, Lei X, Liu Y, Cheng G. Peptide-grafted dextran vectors for efficient and high-loading gene delivery. Biomater Sci 2019; 7:1543-1553. [DOI: 10.1039/c8bm01341a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among various polymeric gene delivery systems, peptide-based vectors demonstrate great potential owing to their unique structure and properties, including flexibility; however, there is insufficient molecular understanding of the role and properties of amino acids as building blocks in gene delivery.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huifeng Wang
- Department of Chemical Engineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Haiqing Song
- Department of Chemical Engineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Megan Young
- Department of Chemical Engineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Yaqian Fan
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xinjian Qu
- Department of Chemical Engineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Xia Lei
- Department of Chemical and Biomolecular Engineering
- University of Akron
- Akron
- USA
| | - Ying Liu
- Department of Chemical Engineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Gang Cheng
- Department of Chemical Engineering
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
41
|
Mizuno Y, Furuya H. Volume shrinkage of polypeptide hybrid xerogels induced by a helix-sense inversion. Polym J 2018. [DOI: 10.1038/s41428-018-0127-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Abedini F, Ebrahimi M, Roozbehani AH, Domb AJ, Hosseinkhani H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4375] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fatemeh Abedini
- Agricultural Research, Education, and Extension Organization; Razi Vaccine and Serum Research Institute; Hesarak Karaj Alborz Iran
| | - Mohammad Ebrahimi
- Agricultural Research, Education, and Extension Organization; Razi Vaccine and Serum Research Institute; Hesarak Karaj Alborz Iran
| | | | - Abraham J. Domb
- School of Pharmacy-Faculty of Medicine, Institute of Drug Research, The Center for Nanoscience and Nanotechnology and Alex Grass Center for drug Design and Synthesis, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| | | |
Collapse
|
43
|
Abstract
Immune-mediated diseases are emerging as a major healthcare concern in the present era. TNF-α, a proinflammatory cytokine, plays a major role in the manifestation of these diseases by mediating different pathways and inducing the expression of other cytokines. In last decades, monoclonal antibodies and extracellular portion of human TNF-α receptors are explored in this area; however, the risk of immunological response and undesired effects urge a need to develop more effective therapies to control TNF-α levels. siRNA therapeutic strategies are emerging for the treatment of myriad of diseases, but the delivery challenges associated with siRNA require the development of suitable delivery vectors. For delivery of TNF-α siRNA, both viral and nonviral vectors are explored. This review attempts to describe different delivery approaches for TNF-α siRNA with special focus on nonviral delivery vectors.
Collapse
|
44
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
45
|
Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Anal Chim Acta 2018; 1002:70-81. [DOI: 10.1016/j.aca.2017.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
|
46
|
Kodama Y, Nishigaki W, Nakamura T, Fumoto S, Nishida K, Kurosaki T, Nakagawa H, Kitahara T, Muro T, Sasaki H. Splenic Delivery System of pDNA through Complexes Electrostatically Constructed with Protamine and Chondroitin Sulfate. Biol Pharm Bull 2018; 41:342-349. [DOI: 10.1248/bpb.b17-00667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | - Waka Nishigaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | | | - Shintaro Fumoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Koyo Nishida
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | | | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | | | - Takahiro Muro
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
| |
Collapse
|
47
|
Liu JY, Li Y, Hu Y, Cheng G, Ye E, Shen C, Xu FJ. Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:160-168. [PMID: 29208274 DOI: 10.1016/j.msec.2017.10.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
Effective hemostatic materials are very important for treating trauma cases. Natural polysaccharides have been particularly appealing in the development of new hemostatic materials due to their unique functions in human bodies. In this work, different polysaccharide-based hemostatic porous sponges (SHDP or SHDQ) of cross-linked hyaluronic acid (HA)/cationized dextran were readily prepared by the self-foaming process of HA and poly((2-dimethyl amino)-ethyl methacrylate)-grafted dextran (Dex-PDM) or partially-quaternized Dex-PDM in the presence of sodium trimetaphosphate crosslinkers. SHDP and SHDQ sponges were investigated in terms of liquid-absorption ability, hemolysis, whole-blood clotting and hemostatic activity in hemorrhaging-liver models. Compared with HA/Dex-PDM sponges (HDP) without chemical cross-linking, SHDP and SHDQ sponges displayed higher porosity (>70.0% vs. 48.9%) and swelling ratios (>1000% vs. 520%). Meanwhile, hemolysis assay revealed the good blood compatibility of SHDP and SHDQ with low hemolysis ratio (below 0.5%). Furthermore, in vitro and in vivo hemostatic assay showed that SHDQ possessed better hemostatic properties than SHDP, owing to the higher cationic charges of partially-quaternized Dex-QPDM than Dex-PDM. The present study demonstrated that the self-foaming process of HA/Dex-PDM under a 'green' condition is an effective means to produce new hemostatic materials.
Collapse
Affiliation(s)
- Jia-Ying Liu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; Department of Burn & Plastic Surgery, The First Affiliated Hospital of General Hospital of PLA, Beijing 100048, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Chuanan Shen
- Department of Burn & Plastic Surgery, The First Affiliated Hospital of General Hospital of PLA, Beijing 100048, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
48
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
49
|
Huang X, Li X, Chen L, Li L. Spermine modified starch-based carrier for gene delivery: Structure-transfection activity relationships. Carbohydr Polym 2017; 173:690-700. [DOI: 10.1016/j.carbpol.2017.05.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
|
50
|
Przybylski C, Benito JM, Bonnet V, Mellet CO, García Fernández JM. Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry. Anal Chim Acta 2016; 948:62-72. [PMID: 27871611 DOI: 10.1016/j.aca.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/02/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
Polycationic carbohydrates represent an attractive class of biomolecules for several applications and particularly as non viral gene delivery vectors. In this case, the establishment of structure-biological activity relationship requires sensitive and accurate characterization tools to both control and achieve fine structural deciphering. Electrospray-tandem mass spectrometry (ESI-MS/MS) appears as a suitable approach to address these questions. In the study herein, we have investigated the usefulness of electron transfer dissociation (ETD) to get structural data about five polycationic carbohydrates demonstrated as promising gene delivery agents. A particular attention was paid to determine the influence of charge states as well as both fluoranthene reaction time and supplementary activation (SA) on production of charge reduced species, fragmentation yield, varying from 2 to 62%, as well as to obtain the most higher both diversity and intensity of fragments, according to charge states and targeted compounds. ETD fragmentation appeared to be mainly directed toward pending group rather than carbohydrate cyclic scaffold leading to a partial sequencing for building blocks when amino groups are close to carbohydrate core, but allowing to complete structural deciphering of some of them, such as those including dithioureidocysteaminyl group which was not possible with CID only. Such findings clearly highlight the potential to help the rational choice of the suitable analytical conditions, according to the nature of the gene delivery molecules exhibiting polycationic features. Moreover, our ETD-MS/MS approach open the way to a fine sequencing/identification of grafted groups carried on various sets of oligo-/polysaccharides in various fields such as glycobiology or nanomaterials, even with unknown or questionable extraction, synthesis or modification steps.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d'Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, Bâtiment Maupertuis, Bld F. Mitterrand, F-91025 Evry, France.
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - Véronique Bonnet
- Université de Picardie Jules Verne, Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS UMR 7378, 80039 Amiens, France
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| |
Collapse
|