1
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
2
|
Qu S, Tang Y, Ning Z, Zhou Y, Wu H. Desired properties of polymeric hydrogel vitreous substitute. Biomed Pharmacother 2024; 172:116154. [PMID: 38306844 DOI: 10.1016/j.biopha.2024.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Vitreous replacement is a commonly employed method for treating a range of ocular diseases, including posterior vitreous detachment, complex retinal detachment, diabetic retinopathy, macular hole, and ocular trauma. Various clinical substitutes for vitreous include air, expandable gas, silicone oil, heavy silicone oil, and balanced salt solution. However, these substitutes have drawbacks such as short retention time, cytotoxicity, high intraocular pressure, and the formation of cataracts, rendering them unsuitable for long-term treatment. Polymeric hydrogels possess the potential to serve as ideal vitreous substitutes due to their structure-mimicking to natural vitreous and adjustable mechanical properties. Replacement with hydrogels as the tamponade can help maintain the shape of the eyeball, apply pressure to the detached retina, and ensure the metabolic transport of substances without impairing vision. This literature review examines the required properties of artificial vitreous, including the optical properties, rheological properties, expansive force action, and physiological and biochemical functions of chemically and physically crosslinked hydrogels. The strategies for enhancing the biocompatibility and injectability of hydrogels are also summarized and discussed. From a clinical ophthalmology perspective, this paper presents the latest developments in vitreous replacement, providing clinicians with a comprehensive understanding of hydrogel clinical applications, which offers guidance for future design directions and methodologies for hydrogel development.
Collapse
Affiliation(s)
- Sheng Qu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yi Tang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zichao Ning
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yanjie Zhou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
3
|
Choi G, An SH, Choi JW, Rho MS, Park WC, Jeong WJ, Cha HJ. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function. Biomaterials 2024; 305:122459. [PMID: 38199216 DOI: 10.1016/j.biomaterials.2023.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Retinal detachment and other vision-threatening disorders often necessitate vitreous body removal and tamponade injection for retina stabilization. Current clinical tamponades such as silicone oil and expansile gases have drawbacks, including patient discomfort and the need for secondary surgery. We introduce a transparent alginate-phenylboronic acid/polyvinyl alcohol composite hydrogel (TALPPH) as a novel vitreous substitute with tamponading capabilities. In vitro physicochemical, rheological, and optical characterization of in situ self-healable TALPPH was performed, and long-term biocompatibility was assessed in a rabbit model of vitrectomy retinal detachment. In vivo evaluations confirmed TALPPH's ability to inhibit retinal detachment recurrence and preserve rabbit vision without adverse effects. TALPPH's close resemblance to the natural vitreous body suggests potential as a vitreous tamponade substitute for future ophthalmological applications.
Collapse
Affiliation(s)
- Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seoung Hyun An
- Department of Ophthalmology, Dong-A University Hospital, Busan 49315, Republic of Korea
| | - Jae-Won Choi
- Department of Ophthalmology, Sungmo Eye Hospital, Busan 48064, Republic of Korea
| | - Mee Sook Rho
- Department of Pathology, Dong-A University Hospital, Busan 49315, Republic of Korea
| | - Woo Chan Park
- Department of Ophthalmology, Dong-A University Hospital, Busan 49315, Republic of Korea
| | - Woo Jin Jeong
- Department of Ophthalmology, Dong-A University Hospital, Busan 49315, Republic of Korea.
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
4
|
Wang X, Luan F, Yue H, Song C, Wang S, Feng J, Zhang X, Yang W, Li Y, Wei W, Tao Y. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev 2023; 200:115006. [PMID: 37451500 DOI: 10.1016/j.addr.2023.115006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Owing to the variety and complexity of ocular diseases and the natural ocular barriers, drug therapy for ocular diseases has significant limitations, such as poor drug targeting to the site of the disease, poor drug penetration, and short drug retention time in the vitreous body. With the development of biotechnology, biomedical materials have reached the "smart" stage. To date, despite their inability to overcome all the aforementioned drawbacks, a variety of smart materials have been widely tested to treat various ocular diseases. This review analyses the most recent developments in multiple smart materials (inorganic particles, polymeric particles, lipid-based particles, hydrogels, and devices) to treat common ocular diseases and discusses the future directions and perspectives regarding clinical translation issues. This review can help researchers rationally design more smart materials for specific ocular applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxin Li
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
5
|
Yadav I, Purohit SD, Singh H, Das NS, Ghosh C, Roy P, Mishra NC. Meropenem loaded 4-arm-polyethylene-succinimidyl-carboxymethyl ester and hyaluronic acid based bacterial resistant hydrogel. Int J Biol Macromol 2023; 235:123842. [PMID: 36854369 DOI: 10.1016/j.ijbiomac.2023.123842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
Developing an ideal vitreous substitute/implant is a current challenge. Moreover, implants (e.g., heart valves and vitreous substitutes), are associated with a high risk of bacterial infection when it comes in contact with cells at implant site. Due to infection, many implants fail, and the patient requires immediate surgery and suffers from post-operative problems. To overcome these problems in vitreous implants, we developed a bacterial resistant vitreous implant, where meropenem (Mer), an antibiotic, has been incorporated in a hydrogel prepared by crosslinking HA (deacetylated sodium hyaluronate) with 4-arm-polyethylene-succinimidyl-carboxymethyl-ester (PESCE). The HA-PESCE hydrogel may serve as a suitable artificial vitreous substitute (AVS). The pre-gel solutions of HA-PESCE without drug and with the drug are injectable through a 22 G needle, and the gel formation occurred in approx. 3 min: it indicates its suitability for in-situ gelation through vitrectomy surgery. The HA-PESCE hydrogel depicted desired biocompatibility, transparency (>90 %), water content (96 %) and sufficient viscoelasticity (G' >100 Pa) calculated after 1 month in-vitro, which are suitable for vitreous substitute. The HA-Mer-PESCE hydrogel showed improved biocompatibility, suitable transparency (>90 %), high water content (96 %), and suitable viscoelasticity (G' >100 Pa) calculated after 1 month in-vitro, which are suitable for vitreous substitute. Further, hydrogel strongly inhibits the growth of bacteria E.coli and S.aureus. The drug loaded hydrogel showed sustained in-vitro drug release by the Fickian diffusion-mediated process (by Korsmeyer-Peppas and Peppas Sahlin model). Thus, the developed hydrogel may be used as a potential bacterial resistant AVS.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladri Singha Das
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Chandrachur Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
6
|
Naik K, Du Toit LC, Ally N, Choonara YE. Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes. Pharmaceutics 2023; 15:566. [PMID: 36839888 PMCID: PMC9961338 DOI: 10.3390/pharmaceutics15020566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The vitreous humour is a gel-like structure that composes the majority of each eye. It functions to provide passage of light, be a viscoelastic dampener, and hold the retina in place. Vitreous liquefaction causes retinal detachment and retinal tears requiring pars plana vitrectomy for vitreous substitution. An ideal vitreous substitute should display similar mechanical, chemical, and rheological properties to the natural vitreous. Currently used vitreous substitutes such as silicone oil, perfluorocarbon liquids, and gases cannot be used long-term due to adverse effects such as poor retention time, cytotoxicity, and cataract formation. Long-term, experimental vitreous substitutes composed of natural, modified and synthetic polymers are currently being studied. This review discusses current long- and short-term vitreous substitutes and the disadvantages of these that have highlighted the need for an ideal vitreous substitute. The review subsequently focuses specifically on currently used polysaccharide- and synthetic polymer-based vitreous substitutes, which may be modified or functionalised, or employed as the derivative, and discusses experimental vitreous substitutes in these classes. The advantages and challenges associated with the use of polymeric substitutes are discussed. Innovative approaches to vitreous substitution, namely a novel foldable capsular vitreous body, are presented, as well as future perspectives related to the advancement of this field.
Collapse
Affiliation(s)
- Kruti Naik
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
7
|
Mondal P, Chakraborty I, Chatterjee K. Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. CHEM REC 2022; 22:e202200155. [PMID: 35997710 DOI: 10.1002/tcr.202200155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/30/2022] [Indexed: 11/09/2022]
Abstract
Injectable bioadhesives offer several advantages over conventional staples and sutures in surgery to seal and close incisions or wounds. Despite the growing research in recent years few injectable bioadhesives are available for clinical use. This review summarizes the key chemical features that enable the development and improvements in the use of polymeric injectable hydrogels as bioadhesives or sealants, their design requirements, the gelation mechanism, synthesis routes, and the role of adhesion mechanisms and strategies in different biomedical applications. It is envisaged that developing a deep understanding of the underlying materials chemistry principles will enable researchers to effectively translate bioadhesive technologies into clinically-relevant products.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
8
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
9
|
Abstract
Ophthalmology is the branch of medicine that deals with diseases of the eye, the organ responsible for vision, and its attachments. Biomaterials can be made with different types of materials and can replace or improve a function or an organ, specifically the eye in the case of ophthalmic biomaterials. Biomaterials are substances that interact with biological systems for a medical purpose, either as a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic agent, and have continued to improve over the years, leading to the creation of new biomaterials. With the arrival of new generations, biomaterials have succeeded in reducing complications and toxicity and improving biocompatibilities associated with older generations. With the aging population, eye problems are becoming more prevalent, and biomaterials have helped in recent years to improve or restore vision, improving the quality of life of many patients. This review focuses on the most clinically used ophthalmic biomaterials, including contact lenses, intraocular lenses, artificial tears, inlays and vitreous replacements. Tissue engineering is presented as a new tool that is able to be treat several ophthalmologic disorders.
Collapse
|
10
|
Ow V, Loh XJ. Recent developments of temperature‐responsive polymers for ophthalmic applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
11
|
Ran R, Shi W, Gao Y, Wang T, Ren X, Chen Y, Wu X, Cao J, Zhang M. Super-fast in situ formation of hydrogels based on multi-arm functional polyethylene glycols as endotamponade substitutes. J Mater Chem B 2021; 9:9162-9173. [PMID: 34697622 DOI: 10.1039/d1tb01825f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polymer-based hydrogels used in the vitreous cavity could lead to an unsatisfactory gel-forming state, uncontrollable swelling, and potential cytotoxicity. Their application can significantly impair the filling effect and cause severe side effects in the surrounding tissues. To address the concerns, a poly(ethylene glycol)-engineered hydrogel capable of fast in situ gel formation (less than 1 min), with an ultralow swelling ratio and no cytotoxicity in the rabbits' eyes, was constructed as a vitreous substitute. The multi-arm polyethylene glycols (PEGs) modified with functional groups (thiol and maleimide) possess high reaction efficiency in the vitreous cavity and present excellent biomimetic characteristics of the natural vitreous humor in vitro. After injection with a double syringe via a 25-gauge needle in the eyes of rabbits for 6 months, the hydrogel functioned as an artificial vitreous body that could highly promote retinal detachment repair, with excellent biocompatibility and high transparency, and without bio-degradation or ocular complications. Collectively, the fast in situ forming hydrogel could achieve quick and good filling in the vitreous cavity without cytotoxicity, which makes it a promising long-term endotamponade substitute.
Collapse
Affiliation(s)
- Ruijin Ran
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China. .,Minda Hospital of Hubei Minzu University, Enshi 445000, China
| | - Wenqiang Shi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yunxia Gao
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Ting Wang
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Yi Chen
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Xue Wu
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| |
Collapse
|
12
|
Yadav I, Purohit SD, Singh H, Das N, Roy P, Mishra NC. A highly transparent tri-polymer complex in situhydrogel of HA, collagen and four-arm-PEG as potential vitreous substitute. Biomed Mater 2021; 16. [PMID: 34525462 DOI: 10.1088/1748-605x/ac2714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022]
Abstract
There is a requirement of removal and replacement of vitreous for various ophthalmic diseases, e.g. retinopathy and retinal detachment. Clinical tamponades, e.g. silicone oil and fluorinated gases are used but limited due to their toxicity and some complications. A lot of polymer-based materials have been tested and proposed as vitreous substitute, but till date, there is no ideal vitreous substitute available. Thus, it requires to develop an improved vitreous substitute which will be highly suitable for vitreous replacement. We have developed tri-polymer complexin situhydrogels by crosslinking among hyaluronic acid (HA), collagen (Coll) and four-arm-polyethylene glycol (PEG). All the developed hydrogels are biocompatible with NIH 3T3 mouse fibroblast cells, having pH in the range 7-7.44 and refractive index in the range 1.333-1.345. The developed hydrogels are highly transparent, showing transmittance >97%. FTIR study shows that the hydrogel was crosslinked by amide bond formation between HA and PEG, and between Coll and PEG. The rheological study shows that all the developed hydrogels exhibit viscoelastic behavior and all the hydrogels have storage modulus values (>100 pa) which is greater than loss modulus values-indicating sufficient elasticity for vitreous application. The elastic nature of the hydrogel increases with the increase in PEG concentration. The gel is formed in between 2 and 3 min-indicating its applicationin situ. The viscosity of the developed hydrogels shows shear thinning behavior. The pre-gel solution of the hydrogel is injectable through a 22 G needle-indicating its applicationin situthrough vitrectomy surgery. All the hydrogels are hydrophilic and have water content of 96% approximately. Thus, the results show the positive properties for its application as a potential vitreous substitute.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladrisingha Das
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
13
|
He B, Yang J, Liu Y, Xie X, Hao H, Xing X, Liu W. An in situ-forming polyzwitterion hydrogel: Towards vitreous substitute application. Bioact Mater 2021; 6:3085-3096. [PMID: 33778190 PMCID: PMC7960944 DOI: 10.1016/j.bioactmat.2021.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Development of a biostable and biosafe vitreous substitute is highly desirable, but remains a grand challenge. Herein, we propose a novel strategy for constructing a readily administered vitreous substitute based on a thiol-acrylate clickable polyzwitterion macromonomer. A biocompatible multivinyl polycarboxybetaine (PCB-OAA) macromonomer is designed and synthesized, and mixed with dithiothreitol (DTT) via a Michael addition reaction to form a hydrogel in vitreous cavity. This resultant PCB-OAA hydrogel exhibits controllable gelation time, super anti-fouling ability against proteins and cells, excellent biocompatibility, and approximate key parameters to human vitreous body including equilibrium water content, density, optical properties, modulus. Remarkably, outperforming clinically used silicone oil in biocompatibility, this rapidly formed hydrogel in the vitreous cavity of rabbit eyes remains stable in vitreous cavity, showing an appealing ability to prevent significantly inflammatory response, fibrosis and complications such as raised intraocular pressure (IOP), and cataract formation. This zwitterionic polymer hydrogel holds great potential as a vitreous substitute.
Collapse
Affiliation(s)
- Binbin He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xianhua Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Huijie Hao
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaoli Xing
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
14
|
Wang T, Ran R, Ma Y, Zhang M. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions. Biomed Mater 2021; 16. [PMID: 34038870 DOI: 10.1088/1748-605x/ac058e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
Vitreoretinal surgery is an essential approach to treat proliferative diabetic vitreopathy, retinal detachment, retinal tear, ocular trauma, and macular holes. The removal of the natural vitreous and the replacement with substitutes are critical steps for retina reattachment. Vitreous substitutes including silicone oil (SiO), air, sulfur hexafluoride (SF6), and perfluoropropane (C3F8), have been widely applied in clinical practice. However, these substitutes are reported to cause complications such as emulsification, high intraocular pressure, and lens opacification. Polymeric hydrogels are a kind of material with favorable physical, mechanical properties, and adaptable biocompatibility, thus being highly expected to be ideal vitreous substitutes. Despite years of research, very few polymeric hydrogels can be applied practically in the vitreous cavity. In this review, we focus on the development of polymeric natural-based hydrogels and synthetic hydrogels. Particularly, we pay attention to recent advances in the novel stimuli-response and self-assembly supramolecular hydrogels. Characterized by easy injectability and long residence time, this kind of hydrogel becomes the potentially promising candidates for ideal vitreous substitutes. Finally, we evaluate the current challenges and provide the future directions of vitreous substitutes.
Collapse
Affiliation(s)
- Ting Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ruijin Ran
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Minda Hospital of Hubei Minzu University, Enshi, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
15
|
Mondelo-García C, Bandín-Vilar E, García-Quintanilla L, Castro-Balado A, Del Amo EM, Gil-Martínez M, Blanco-Teijeiro MJ, González-Barcia M, Zarra-Ferro I, Fernández-Ferreiro A, Otero-Espinar FJ. Current Situation and Challenges in Vitreous Substitutes. Macromol Biosci 2021; 21:e2100066. [PMID: 33987966 DOI: 10.1002/mabi.202100066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Vitreo-retinal disorders constitute a significant portion of treatable ocular diseases. These pathologies often require vitreo-retinal surgery and, as a consequence, the use of vitreous substitutes. Nowadays, the vitreous substitutes that are used in clinical practice are mainly divided into gases (air, SF6 , C2 F6 , C3 F8 ) and liquids (perfluorocarbon liquids, silicone oils, and heavy silicone oils). There are specific advantages and drawbacks to each of these, which determine their clinical indications. However, developing the ideal biomaterial for vitreous substitution continues to be one of the most important challenges in ophthalmology, and a multidisciplinary approach is required. In this sense, recent research has focused on the development of biocompatible, biodegradable, and injectable hydrogels (natural, synthetic, and smart), which also act as medium and long-term internal tamponade agents. This comprehensive review aims to cover the main characteristics and indications for use of the extensive range of vitreous substitutes that are currently used in clinical practice, before going on to describe the hydrogels that have been developed recently and which have emerged as promising biomaterials for vitreous substitution.
Collapse
Affiliation(s)
- Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Enrique Bandín-Vilar
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Laura García-Quintanilla
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Eva M Del Amo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - María Gil-Martínez
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain
| | - María José Blanco-Teijeiro
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| |
Collapse
|
16
|
Chen J, Sun J, Yu H, Huang P, Zhong Y. Evaluation of the Effectiveness of a Chronic Ocular Hypertension Mouse Model Induced by Intracameral Injection of Cross-Linking Hydrogel. Front Med (Lausanne) 2021; 8:643402. [PMID: 33829024 PMCID: PMC8019751 DOI: 10.3389/fmed.2021.643402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Glaucoma is an irreversible and blinding neurodegenerative disease that is characterized by progressive loss of retinal ganglion cells. The current animal models of glaucoma fail to provide a chronic elevated intraocular pressure and cannot maintain the optical media clarity for a long time, which brings some difficulties to the study of glaucoma. Here, we developed a new chronic ocular hypertension model of mice induced by cross-linking hydrogel intracameral injection. Methods: C57BL/6J mice aged 6–8 weeks were randomly divided into the control group and the operation group. The mice of the operation group were injected with cross-linking hydrogel to induce ocular hypertension. Intraocular pressure was measured preoperatively, 3 days after surgery, and weekly until the end of the study. Flash visual evoked potential (F-VEP) was used to observe optic nerve function at different times (preoperatively and 2, 4, and 6 weeks) after chronic ocular hypertension (COH). Retinal TNF-α, IL-1β, and IL-17A protein expression were measured by western blotting in the control group and in mice at 2, 4, and 6 weeks after COH. Microglial cell activation was evaluated by immunofluorescence staining and western blotting. Apoptosis and loss of retinal ganglion cells after 2, 4, and 6 weeks of intracameral injection of cross-linking hydrogel were observed by the TUNEL assay and Brn3a protein labeling. The loss of optic nerve axons in COH mice was evaluated by neurofilament heavy polypeptide protein labeling. Results: Intracameral injection of the cross-linking hydrogel induces increased intraocular pressure (IOP) to a mean value of 19.3 ± 4.1 mmHg, which was sustained for at least 8 weeks. A significant difference in IOP was noted between COH mice and sham-operation mice (p < 0.0001). The success rate was 75%. The average amplitude of F-VEP in mice with COH was reduced (p = 0.0149, 0.0012, and 0.0009 at 2, 4, and 6 weeks after COH vs. the control group, respectively), and the average latent period in mice with COH was longer (p = 0.0290, <0.0001, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively) compared with that in the control group. TNF-α, IL-1β, IL-17A, Iba-1, and CD68 protein expression increased in COH mice. During the processing of COH, the number of microglial cells increased along with cellular morphological changes of rounder bodies and thicker processes compared with the control group. Apoptosis of retinal ganglion cells (RGCs) was clearly observed in mice at 2, 4, and 6 weeks after COH (p = 0.0061, 0.0012, <0.0001, and 0.0371 at 2, 4, and 6 weeks after COH vs. the control group, respectively). The RGC density decreased significantly in the COH mice compared with the control group (p = 0.0042, 0.0036, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively). There was a significant loss of optic nerve axons in mice after intracameral injection of cross-linking hydrogel (p = 0.0095, 0.0002, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively). Conclusions: A single intracameral injection of cross-linking hydrogel can effectively induce chronic ocular hypertension in mice, which causes progressive loss of retinal ganglion cells, increased expression levels of inflammatory cytokines and microglial cell activation, and deterioration of optic nerve function.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Chegini SP, Varshosaz J, Sadeghi HM, Dehghani A, Minaiyan M. Shear sensitive injectable hydrogels of cross-linked tragacanthic acid for ocular drug delivery: Rheological and biological evaluation. Int J Biol Macromol 2020; 165:2789-2804. [PMID: 33736282 DOI: 10.1016/j.ijbiomac.2020.10.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Drug delivery to posterior segment of eye has always been challenging. The aim of the present study was to provide a novel injectable, shear sensitive hydrogel based on tragacanthic acid (TA) with three kinds of acetate salts as cross-linker. Rheological properties by strain and shear stress sweep measurements and also dynamic rheological experiments including frequency and time sweep measurements were studied. Biological studies comprising, cell culture, Draize test on rabbit eyes and histopathological tests were done. The results showed the optimized hydrogel was biocompatible, injectable and owning acceptable firmness in rest state after injection. Healing time of the hydrogel was 46 s and was shear-sensitive. It showed no cytotoxicity on HUVEC cells. No allergic reaction was seen in Draize test and histological examination showed integrity of the retinal layers with no evidence of pathological changes, such as deformations, degeneration, or inflammation. TA hydrogel is promising in ocular drug delivery.
Collapse
Affiliation(s)
- Sana Pirmardvand Chegini
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems, Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems, Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamid Mirmohammad Sadeghi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Alireza Dehghani
- School of Medicine, Isfahan Eye Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohsen Minaiyan
- Department of Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Yadav I, Purohit SD, Singh H, Bhushan S, Yadav MK, Velpandian T, Chawla R, Hazra S, Mishra NC. Vitreous substitutes: An overview of the properties, importance, and development. J Biomed Mater Res B Appl Biomater 2020; 109:1156-1176. [PMID: 33319466 DOI: 10.1002/jbm.b.34778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 11/28/2020] [Indexed: 11/12/2022]
Abstract
Vitreous or vitreous humor is a complex transparent gel that fills the space between the lens and retina of an eye and acts as a transparent medium that allows light to pass through it to reach the photoreceptor layer (retina) of the eye. The vitreous humor is removed in ocular surgery (vitrectomy) for pathologies like retinal detachment, macular hole, diabetes-related vitreous hemorrhage detachment, and ocular trauma. Since the vitreous is not actively regenerated or replenished, there is a need for a vitreous substitute to fill the vitreous cavity to provide a temporary or permanent tamponade to the retina following some vitreoretinal surgeries. An ideal vitreous substitute could probably be left inside the eye forever. The vitreous humor is transparent, biocompatible, viscoelastic and highly hydrophilic; polymeric hydrogels with these properties can be a potential candidate to be used as vitreous substitutes. To meet the tremendous demand for the vitreous substitute, many scientists all over the world have developed various kinds of vitreous substitutes or tamponade agent. Vitreous substitutes, whatsoever developed till date, are associated with several advantages and disadvantages, and there is no ideal vitreous substitute available till date. This review highlights the polymer-based vitreous substitutes developed so far, along with their advantages and limitations. The gas-based and oil-based substitutes have also been discussed but very briefly.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sakchi Bhushan
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Manoj Kumar Yadav
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, India
| | - Thirumurthy Velpandian
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Chawla
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
19
|
Polymeric hydrogels as a vitreous replacement strategy in the eye. Biomaterials 2020; 268:120547. [PMID: 33307366 DOI: 10.1016/j.biomaterials.2020.120547] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Vitreous endo-tamponades are commonly used in the treatment of retinal detachments and tears. They function by providing a tamponading force to support the retina after retina surgery. Current clinical vitreous endo-tamponades include expansile gases (such as sulfur hexafluoride (SF6) and perfluoropropane (C3F8)) and also sislicone oil (SiO). They are effective in promoting recovery but are disadvantaged by their lower refractive indices and lower densities as compared to the native vitreous, resulting in immediate blurred vision after surgery and necessitating patients to assume prolonged face-down positioning respectively. While the gas implants diffuse out over time, the SiO implants are non-biodegradable and require surgical removal. Therefore, there is much demand to develop an ideal vitreous endo-tamponade that can combine therapeutic effectiveness with patient comfort. Polymeric hydrogels have since attracted much attention due to their favourable properties such as high water content, high clarity, suitable refractive indices, suitable density, tuneable rheological properties, injectability, and biocompatibility. Many design strategies have been employed to design polymeric hydrogel-based vitreous endo-tamponades and they can be classified into four main strategies. This review seeks to analyse these various strategies and evaluate their effectiveness and also propose the key criteria to design successful polymeric hydrogel vitreous endo-tamponades.
Collapse
|
20
|
Tram NK, Maxwell CJ, Swindle-Reilly KE. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport. Curr Eye Res 2020; 46:429-444. [PMID: 33040616 DOI: 10.1080/02713683.2020.1826977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research on the vitreous humor and development of hydrogel vitreous substitutes have gained a rapid increase in interest within the past two decades. However, the properties of the vitreous humor and vitreous substitutes have yet to be consolidated. In this paper, the mechanical properties of the vitreous humor and hydrogel vitreous substitutes were systematically reviewed. The number of publications on the vitreous humor and vitreous substitutes over the years, as well as their respective testing conditions and testing techniques were analyzed. The mechanical properties of the human vitreous were found to be most similar to the vitreous of pigs and rabbits. The storage and loss moduli of the hydrogel vitreous substitutes developed were found to be orders of magnitude higher in comparison to the native human vitreous. However, the reported modulus for human vitreous, which was most commonly tested in vitro, has been hypothesized to be different in vivo. Future studies should focus on testing the mechanical properties of the vitreous in situ or in vivo. In addition to its mechanical properties, the vitreous humor has other biotransport mechanisms and biochemical functions that establish a redox balance and maintain an oxygen gradient inside the vitreous chamber to protect intraocular tissues from oxidative damage. Biomimetic hydrogel vitreous substitutes have the potential to provide ophthalmologists with additional avenues for treating and controlling vitreoretinal diseases while preventing complications after vitrectomy. Due to the proximity and interconnectedness of the vitreous humor to other ocular tissues, particularly the lens and the retina, more interest has been placed on understanding the properties of the vitreous humor in recent years. A better understanding of the properties of the vitreous humor will aid in improving the design of biomimetic vitreous substitutes and enhancing intravitreal biotransport.
Collapse
Affiliation(s)
- Nguyen K Tram
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Courtney J Maxwell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology & Visual Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Tram NK, McLean RM, Swindle-Reilly KE. Glutathione Improves the Antioxidant Activity of Vitamin C in Human Lens and Retinal Epithelial Cells: Implications for Vitreous Substitutes. Curr Eye Res 2020; 46:470-481. [PMID: 32838548 DOI: 10.1080/02713683.2020.1809002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Tissues in the eye are particularly susceptible to oxidative damage due to light exposure. While vitamin C (ascorbic acid) has been noted as a vital antioxidant in the vitreous humor, its physiological concentration (1-2 mM) has been shown to be toxic to retinal and lens epithelial cells in in vitro cell culture. We have explored adding vitamin C to hydrogel vitreous substitutes as a potential therapeutic to prevent oxidative damage to intraocular tissues after vitrectomy. However, vitamin C degrades rapidly even when loaded at high concentrations, limiting its long-term effectiveness. Glutathione, another antioxidant found abundantly in the lens at concentrations of 2-10 mM, was proposed to be used in conjunction with vitamin C. METHODS Cell viability and reactive oxygen species activity of human retinal and lens epithelial cells treated with various combinations of vitamin C, glutathione, hydrogen peroxide, and a hydrogel vitreous substitute were determined using CellTiter-Glo luminescent cell viability assay and dichlorofluorescein assay, respectively. The vitamin C remaining in hydrogel vitreous substitute or glutathione-vitamin C solutions was determined using a microplate reader at 265 nm wavelength, compared against standard solutions with known concentrations. RESULTS Glutathione protected the lens and retinal cells from the negative effect of vitamin C on cell viability and prolonged the antioxidant effect of vitamin C in vitro. While the detected reading of pure vitamin C solution decreased rapidly from 100% to 10% by 3 days, glutathione provided a significant extension to vitamin C stability, with 70% remaining after 14 days when the glutathione was used at physiological concentrations found in the lens (2-10 mM). CONCLUSIONS These results indicate glutathione might be an effective addition to vitamin C in intraocular implants, including potential vitreous substitutes, and warrants additional studies on the effectiveness of the vitamin C - glutathione combination in preventing oxidative stress post-vitrectomy.
Collapse
Affiliation(s)
- Nguyen K Tram
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rayna M McLean
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Ophthalmology & Visual Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Laradji A, Shui YB, Karakocak BB, Evans L, Hamilton P, Ravi N. Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1337. [PMID: 32183465 PMCID: PMC7143394 DOI: 10.3390/ma13061337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 11/16/2022]
Abstract
In many vitreal diseases, the surgeon removes the natural vitreous and replaces it with silicone oils, gases, or balanced salt solutions to fill the eyeball and hold the retina in position. However, these materials are often associated with complications and have properties that differ from natural vitreous. Herein, we report an extension of our previous work on the synthesis of a biomimetic hydrogel that is composed of thiolated gellan as an analogue of type II collagen and poly(methacrylamide-co-methacrylate-co-bis(methacryloyl)cystamine), a polyelectrolyte, as an analogue of hyaluronic acid. This thermosensitive hydrogel can be injected into the eye as a viscous solution at 45 °C. It then forms a physical gel in situ when it reaches body temperature, and later forms disulfide covalent crosslinks. In this article, we evaluated two different formulations of the biomimetic hydrogels for their physical, mechanical, and optical properties, and we determined their biocompatibility with several cell lines. Finally, we report on the progress of the four-month preclinical evaluation of our bio-inspired vitreous substitute in comparison to silicone oil or a balanced salt solution. We assessed the eyes with a slit-lamp examination, intraocular pressure measurements, electroretinography, and optical coherence tomography. Preliminary results are very encouraging for the continuing evaluation of our bio-inspired hydrogel in clinical trials.
Collapse
Affiliation(s)
- Amine Laradji
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
| | - Bedia Begum Karakocak
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Lynn Evans
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
| | - Paul Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Xue K, Liu Z, Jiang L, Kai D, Li Z, Su X, Loh XJ. A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomater Sci 2020; 8:926-936. [DOI: 10.1039/c9bm01603a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transparency is an important criterion for the application of biomaterials to the eye and essential for use as a vitreous substitute.
Collapse
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Zengping Liu
- Department of Ophthalmology
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore
- Singapore
| | - Lu Jiang
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Xinyi Su
- Department of Ophthalmology
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| |
Collapse
|
24
|
Tram NK, Jiang P, Torres‐Flores TC, Jacobs KM, Chandler HL, Swindle‐Reilly KE. A Hydrogel Vitreous Substitute that Releases Antioxidant. Macromol Biosci 2019; 20:e1900305. [DOI: 10.1002/mabi.201900305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Nguyen K. Tram
- Department of Biomedical Engineering The Ohio State University 1080 Carmack Rd. Columbus OH 43210 USA
| | - Pengfei Jiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University 151 W. Woodruff Avenue Columbus OH 43210 USA
| | - Tiara C. Torres‐Flores
- Department of Biomedical Engineering The Ohio State University 1080 Carmack Rd. Columbus OH 43210 USA
| | - Kane M. Jacobs
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University 151 W. Woodruff Avenue Columbus OH 43210 USA
| | - Heather L. Chandler
- College of Optometry The Ohio State University 338 West 10th Avenue Columbus OH 43210 USA
| | - Katelyn E. Swindle‐Reilly
- Department of Biomedical Engineering The Ohio State University 1080 Carmack Rd. Columbus OH 43210 USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University 151 W. Woodruff Avenue Columbus OH 43210 USA
- Department of Ophthalmology and Visual Science The Ohio State University 915 Olentangy River Road, Suite 5000 Columbus OH 43212 USA
| |
Collapse
|
25
|
Wang K, Han Z. Injectable hydrogels for ophthalmic applications. J Control Release 2017; 268:212-224. [PMID: 29061512 PMCID: PMC5722685 DOI: 10.1016/j.jconrel.2017.10.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022]
Abstract
The demand for effective eye therapies is driving the development of injectable hydrogels as new medical devices for controlled delivery and filling purposes. This article introduces the properties of injectable hydrogels and summarizes their versatile application in the treatment of ophthalmic diseases, including age-related macular degeneration, cataracts, diabetic retinopathy, glaucoma, and intraocular cancers. A number of injectable hydrogels are approved by FDA as surgery sealants, tissue adhesives, and are now being investigated as a vitreous humor substitute. Research on hydrogels for drug, factor, nanoparticle, and stem cell delivery is still under pre-clinical investigation or in clinical trials. Although substantial progress has been achieved using injectable hydrogels, some challenging issues must still be overcome before they can be effectively used in medical practice.
Collapse
Affiliation(s)
- Kai Wang
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for Nano Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Morandim-Giannetti ADA, Rubio SR, Nogueira RF, Ortega FDS, Magalhães Junior O, Schor P, Bersanetti PA. Characterization of PVA/glutaraldehyde hydrogels obtained using Central Composite Rotatable Design (CCRD). J Biomed Mater Res B Appl Biomater 2017; 106:1558-1566. [DOI: 10.1002/jbm.b.33958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Samantha Regina Rubio
- Departamento de Engenharia Química; Centro Universitário FEI; São Bernardo do Campo Brazil
| | - Regina Freitas Nogueira
- Departamento de Oftalmologia e Ciências Visuais; Escola Paulista de Medicina, Universidade Federal de São Paulo; São Paulo Brazil
| | | | - Octaviano Magalhães Junior
- Departamento de Oftalmologia e Ciências Visuais; Escola Paulista de Medicina, Universidade Federal de São Paulo; São Paulo Brazil
| | - Paulo Schor
- Departamento de Oftalmologia e Ciências Visuais; Escola Paulista de Medicina, Universidade Federal de São Paulo; São Paulo Brazil
| | | |
Collapse
|
27
|
|
28
|
Huang S, Huang P, Liu X, Lin Z, Wang J, Xu S, Guo L, Leung CKS, Zhong Y. Relevant variations and neuroprotecive effect of hydrogen sulfide in a rat glaucoma model. Neuroscience 2016; 341:27-41. [PMID: 27890826 DOI: 10.1016/j.neuroscience.2016.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Glaucoma is an irreversible and blinding neurodegenerative disease of the eye, and is characterized by progressive loss of retinal ganglion cells (RGCs). Since endogenous hydrogen sulfide (H2S) was reported to be involved in neurodegeneration in the central nervous system, the authors aimed to develop a chronic ocular hypertension (COH) rat model simulating glaucoma and therein test the H2S level together with the retinal protein expressions of related synthases, and further investigated the effect of exogenous H2S supplement on RGC survival. COH rat model was induced by cross-linking hydrogel injection into anterior chamber, and the performance of the model was assessed by intraocular pressure (IOP) measurement, RGC counting and retinal morphological analysis. Endogenous H2S level was detected along with the retinal protein expressions of H2S-related synthases cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in the COH rats. Retinal H2S level and RGC survival were evaluated again after NaHS (a H2S donor) treatment in the COH rats. The results showed that the COH model succeeded in simulating glaucoma features, and retinal H2S level decreased significantly when the retinal protein expressions of CBS, CSE and 3-MST were downregulated generally in the COH rats. Furthermore, the decrease of retinal H2S level and loss of RGCs were both improved by NaHS treatment in experimental glaucoma, without obvious variation of IOP. Our study revealed that the intracameral injection of cross-linking hydrogel worked efficiently in modeling glaucoma, and H2S had protective effect on RGCs and might be involved in the pathological mechanism of glaucomatous neuropathy.
Collapse
Affiliation(s)
- Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China
| | - Zhongjing Lin
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China
| | - Shuo Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China.
| | | | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025 Shanghai, China.
| |
Collapse
|
29
|
Mariacher S, Szurman P. [Artificial vitreous body: Strategies for vitreous body substitutes]. Ophthalmologe 2016; 112:572-9. [PMID: 26077344 DOI: 10.1007/s00347-015-0057-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although numerous advances have been made in technology and techniques of pars plana vitrectomy and tamponades, there are still unsolved issues, such as proliferative vitreoretinopathy (PVR), multiple retinal breaks and persistent hypotonia. All available internal tamponades (e.g, gases, oils and fluorocarbons) are hydrophobic, so they approximate the neurosensory retina to the retinal pigment epithelium due to buoyant force and surface tension. Even though these tamponade materials exhibit various beneficial attributes in the clinical application, the hydrophobic nature has clear disadvantages and compartmentalization and significant incidence of PVR development still occur. RESULTS AND CONCLUSION An ideal vitreous body substitute should mimic the native human vitreous body, in both form and function. Vitreous body substitutes, such as hydrogels fulfill the biophysical needs in a similar manner to the natural vitreous body by providing an internal tamponade effect through swelling pressure and viscosity. New approaches range from cross-linked semisynthetic to synthetic polymers. These hydrogels have a good biocompatibility, optical clarity, a refractive index and rheological properties that are similar to the natural human vitreous body and are able to act as anti-adhesive and anti-migrative agents and can therefore reduce PVR. Furthermore, hydrogels could also serve as controlled-release drug-delivery systems for anti-proliferative, neuroprotective or nutritive drugs.
Collapse
Affiliation(s)
- S Mariacher
- Knappschafts-Augenklinik Sulzbach, Knappschaftsklinikum Saar, Sulzbach/Saar, Deutschland,
| | | |
Collapse
|
30
|
Santhanam S, Liang J, Struckhoff J, Hamilton PD, Ravi N. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes. Acta Biomater 2016; 43:327-337. [PMID: 27481290 PMCID: PMC5787031 DOI: 10.1016/j.actbio.2016.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/11/2016] [Accepted: 07/29/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED The vitreous humor of the eye is a biological hydrogel principally composed of collagen fibers interspersed with hyaluronic acid. Certain pathological conditions necessitate its removal and replacement. Current substitutes, like silicone oils and perfluorocarbons, are not biomimetic and have known complications. In this study, we have developed an in situ forming two-component biomimetic hydrogel with tunable mechanical and osmotic properties. The components are gellan, an analogue of collagen, and poly(methacrylamide-co-methacrylate), an analogue of hyaluronic acid; both endowed with thiol side groups. We used response surface methodology to consider seventeen possible hydrogels to determine how each component affects the optical, mechanical, sol-gel transition temperature and swelling properties. The optical and physical properties of the hydrogels were similar to vitreous. The shear storage moduli ranged from 3 to 358Pa at 1Hz and sol-gel transition temperatures from 35.5 to 43°C. The hydrogel had the ability to remain swollen without degradation for four weeks in vitro. Three hydrogels were tested for biocompatibility on primary porcine retinal pigment epithelial cells, human retinal pigment epithelial cells, and fibroblast (3T3/NIH) cells, by electric cell-substrate impedance sensing system. The two-component hydrogels allowed for the tuning and optimizing of mechanical, swelling, and transition temperature to obtain three biocompatible hydrogels with properties similar to the vitreous. Future studies include testing of the optimized hydrogels in animal models for use as a long-term substitute, whose preliminary results are mentioned. STATEMENT OF SIGNIFICANCE Although hydrogels are researched as long-term vitreous substitute, none have advanced sufficiently to reach clinical application. Our work focuses on the development of a novel two component in situ forming hydrogel that bio-mimic the natural vitreous. Our thiol-containing copolymers can be injected as an aqueous solution into the vitreous cavity wherein, at physiological temperature, the rigid component will instantaneously form a physical gel imbedding the random coil copolymer. Upon subsequent oxidation, the two components will form disulfide cross-links and a stable reversible hydrogel capable of providing osmotic pressure to reattach the retina. It may be left in the eye permanently or easily removed by injection of a simple reducing agent to cleave the disulfide bonds, rather than surgery. This contribution is significant because it is expected to provide patients with a much better quality of life by improving surgical outcomes, creating much less post-operative burden, and reducing the need for secondary surgeries.
Collapse
Affiliation(s)
- Sruthi Santhanam
- Energy, Environmental and Chemical Engineering, Washington University in St Louis, MO, USA
| | - Jue Liang
- Department of Ophthalmology and Visual Science, Washington University School of Medicine, MO, USA
| | - Jessica Struckhoff
- Department of Ophthalmology and Visual Science, Washington University School of Medicine, MO, USA; Department of Veterans Affairs, St Louis Medical Center, St Louis, MO, USA
| | - Paul D Hamilton
- Department of Ophthalmology and Visual Science, Washington University School of Medicine, MO, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Science, Washington University School of Medicine, MO, USA; Energy, Environmental and Chemical Engineering, Washington University in St Louis, MO, USA; Department of Veterans Affairs, St Louis Medical Center, St Louis, MO, USA.
| |
Collapse
|
31
|
Abstract
Albumin hydrogels crosslinked by disulfide bonds between the protein's own thiol groups.
Collapse
Affiliation(s)
- Yuling Sun
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yanbin Huang
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
32
|
Wei W, Zhu D, Wang Z, Ni D, Yue H, Wang S, Tao Y, Ma G. Positively charged armed nanoparticles demonstrate their precise delivery performance for effective treatment of chorioretinal diseases. J Mater Chem B 2016; 4:2548-2552. [PMID: 32263277 DOI: 10.1039/c5tb02568k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Positively charged armed nanoparticles can accumulate in the ocular fundus by utilizing the natural intraocular electrical field, and further penetrate into the fundus sub-layers by optimizing their charge density.
Collapse
Affiliation(s)
- Wei Wei
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Dan Zhu
- The Affiliated Hospital of Inner Mongolia Medical University
- Hohhot
- P. R. China
| | - Zhenhua Wang
- The Affiliated Hospital of Inner Mongolia Medical University
- Hohhot
- P. R. China
| | - Dezhi Ni
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Hua Yue
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Shuang Wang
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Yong Tao
- Department of Ophthalmology
- People's Hospital
- Peking University
- Beijing
- P. R. China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
33
|
Ravichandran R, Islam MM, Alarcon EI, Samanta A, Wang S, Lundström P, Hilborn J, Griffith M, Phopase J. Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. J Mater Chem B 2016; 4:318-326. [DOI: 10.1039/c5tb02035b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulating the hydrogel properties from injectable to implantable scaffolds using the bio-orthogonal thiol-Michael addition click reaction.
Collapse
Affiliation(s)
- R. Ravichandran
- Integrative Regenerative Medicine Centre (IGEN) and Division of Molecular Physics
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - M. M. Islam
- Integrative Regenerative Medicine Centre (IGEN) and Swedish Medical Nanoscience Center
- Department of Neurosciences
- Karolinska Institutet
- Stockholm
- Sweden
| | - E. I. Alarcon
- Division of Cardiac Surgery Research
- University of Ottawa Heart Institute
- Ottawa
- Canada
- Department of Biochemistry
| | - A. Samanta
- Integrative Regenerative Medicine Centre and Department of Clinical and Experimental Medicine (IKE)
- Linköping University
- Linköping
- Sweden
| | - S. Wang
- Polymer Chemistry Division
- Department of Chemistry
- Ångstrom Laboratory
- Uppsala University
- 75121 Uppsala
| | - P. Lundström
- Division of Chemistry
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - J. Hilborn
- Polymer Chemistry Division
- Department of Chemistry
- Ångstrom Laboratory
- Uppsala University
- 75121 Uppsala
| | - M. Griffith
- Integrative Regenerative Medicine Centre and Department of Clinical and Experimental Medicine (IKE)
- Linköping University
- Linköping
- Sweden
| | - J. Phopase
- Integrative Regenerative Medicine Centre (IGEN) and Division of Molecular Physics
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| |
Collapse
|
34
|
Hydrogels in ophthalmic applications. Eur J Pharm Biopharm 2015; 95:227-38. [DOI: 10.1016/j.ejpb.2015.05.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/05/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022]
|
35
|
Morandim-Giannetti ADA, Silva RC, Magalhães O, Schor P, Bersanetti PA. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute. J Biomed Mater Res B Appl Biomater 2015. [DOI: 10.1002/jbm.b.33473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Rosianne Cristina Silva
- Departamento de Engenharia Química; Centro Universitário da FEI, São Bernardo do Campo; São Paulo Brazil
| | - Octaviano Magalhães
- Departamento de Oftalmologia e Ciências Visuais; Escola Paulista de Medicina, Universidade Federal de São Paulo, UNIFESP; São Paulo Brazil
| | - Paulo Schor
- Departamento de Oftalmologia e Ciências Visuais; Escola Paulista de Medicina, Universidade Federal de São Paulo, UNIFESP; São Paulo Brazil
| | - Patrícia Alessandra Bersanetti
- Departamento de Oftalmologia e Ciências Visuais; Escola Paulista de Medicina, Universidade Federal de São Paulo, UNIFESP; São Paulo Brazil
- Departamento de Informática em Saúde; Escola Paulista de Medicina, Universidade Federal de São Paulo, UNIFESP; São Paulo Brazil
| |
Collapse
|
36
|
Gao QY, Fu Y, Hui YN. Vitreous substitutes: challenges and directions. Int J Ophthalmol 2015; 8:437-40. [PMID: 26085987 DOI: 10.3980/j.issn.2222-3959.2015.03.01] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/10/2014] [Indexed: 01/07/2023] Open
Abstract
The natural vitreous body has a fine structure and complex functions. The imitation of the natural vitreous body by vitreous substitutes is a challenging work for both researchers and ophthalmologists. Gases, silicone oil, heavy silicone oil and hydrogels, particularly the former two vitreous substitutes are clinically widely used with certain complications. Those, however, are not real artificial vitreous due to lack of structure and function like the natural vitreous body. This article reviews the situations, challenges, and future directions in the development of vitreous substitutes, particularly the experimental and clinical use of a new artificial foldable capsular vitreous body.
Collapse
Affiliation(s)
- Qian-Ying Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yue Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yan-Nian Hui
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
37
|
Liang Z, Gao T, Xu J, Li Z, Liu X, Liu F. Mechanical properties and network structure of hydrophobic association hydrogels prepared from octylphenol polyoxyethylene(7) acrylate and sodium dodecyl sulfate. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5122-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Chang J, Tao Y, Wang B, Guo BH, Xu H, Jiang YR, Huang Y. An in situ-forming zwitterionic hydrogel as vitreous substitute. J Mater Chem B 2015; 3:1097-1105. [DOI: 10.1039/c4tb01775g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in situ-forming zwitterionic gel as vitreous substitute.
Collapse
Affiliation(s)
- Jing Chang
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yong Tao
- Department of Ophthalmology
- People's Hospital
- Peking University
- Key Laboratory of Vision Loss and Restoration
- Ministry of Education
| | - Bin Wang
- Department of Ophthalmology
- People's Hospital
- Peking University
- Key Laboratory of Vision Loss and Restoration
- Ministry of Education
| | - Bao-hua Guo
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Hong Xu
- College of Food Science and Light Industry
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yan-rong Jiang
- Department of Ophthalmology
- People's Hospital
- Peking University
- Key Laboratory of Vision Loss and Restoration
- Ministry of Education
| | - Yanbin Huang
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
39
|
A method to accelerate the gelation of disulfide-crosslinked hydrogels. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-015-1567-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Chang J, Tao Y, Wang B, Yang X, Xu H, Jiang YR, Guo BH, Huang Y. Evaluation of a redox-initiated in situ hydrogel as vitreous substitute. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Amirian J, Linh NTB, Min YK, Lee BT. The effect of BMP-2 and VEGF loading of gelatin-pectin-BCP scaffolds to enhance osteoblast proliferation. J Appl Polym Sci 2014. [DOI: 10.1002/app.41241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jhaleh Amirian
- Department of Regenerative Medicine; College of Medicine, Soonchunhyang University 366-1, Ssangyong-Dong; Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| | - Nguyen Thuy Ba Linh
- Department of Regenerative Medicine; College of Medicine, Soonchunhyang University 366-1, Ssangyong-Dong; Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
- Department of Regenerative Medicine; Institute of Tissue Regeneration, Soonchunhyang University 366-1, Ssangyong-Dong; Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| | - Young Ki Min
- Department of Physiology; College of Medicine, Soonchunhyang University 366-1, Ssangyong-dong; Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine; College of Medicine, Soonchunhyang University 366-1, Ssangyong-Dong; Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
- Department of Regenerative Medicine; Institute of Tissue Regeneration, Soonchunhyang University 366-1, Ssangyong-Dong; Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| |
Collapse
|
42
|
Yashima S, Takase N, Kurokawa T, Gong JP. Friction of hydrogels with controlled surface roughness on solid flat substrates. SOFT MATTER 2014; 10:3192-3199. [PMID: 24718724 DOI: 10.1039/c3sm52883a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study investigated the effect of hydrogel surface roughness on its sliding friction against a solid substrate having modestly adhesive interaction with hydrogels under small normal pressure in water. The friction test was performed between bulk polyacrylamide hydrogels of varied surface roughness and a smooth glass substrate by using a strain-controlled rheometer with parallel-plates geometry. At small pressure (normal strain 1.4-3.6%), the flat surface gel showed a poor reproducibility in friction. In contrast, the gels with a surface roughness of 1-10 μm order showed well reproducible friction behaviors and their frictional stress was larger than that of the flat surface hydrogel. Furthermore, the flat gel showed an elasto-hydrodynamic transition while the rough gels showed a monotonous decrease of friction with velocity. The difference between the flat surface and the rough surface diminished with the increase of the normal pressure. These phenomena are associated with the different contact behaviors of these soft hydrogels in liquid, as revealed by the observation of the interface using a confocal laser microscope.
Collapse
Affiliation(s)
- Shintaro Yashima
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
43
|
Donati S, Caprani SM, Airaghi G, Vinciguerra R, Bartalena L, Testa F, Mariotti C, Porta G, Simonelli F, Azzolini C. Vitreous substitutes: the present and the future. BIOMED RESEARCH INTERNATIONAL 2014; 2014:351804. [PMID: 24877085 PMCID: PMC4024399 DOI: 10.1155/2014/351804] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
Vitreoretinal surgery has advanced in numerous directions during recent years. The removal of the vitreous body is one of the main characteristics of this surgical procedure. Several molecules have been tested in the past to fill the vitreous cavity and to mimic its functions. We here review the currently available vitreous substitutes, focusing on their molecular properties and functions, together with their adverse effects. Afterwards we describe the characteristics of the ideal vitreous substitute. The challenges facing every ophthalmology researcher are to reach a long-term intraocular permanence of vitreous substitute with total inertness of the molecule injected and the control of inflammatory reactions. We report new polymers with gelification characteristics and smart hydrogels representing the future of vitreoretinal surgery. Finally, we describe the current studies on vitreous regeneration and cell cultures to create new intraocular gels with optimal biocompatibility and rheological properties.
Collapse
Affiliation(s)
- Simone Donati
- Department of Surgical and Morphological Sciences, Section of Ophthalmology, School of Medicine, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Simona Maria Caprani
- Department of Surgical and Morphological Sciences, Section of Ophthalmology, School of Medicine, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Giulia Airaghi
- Department of Surgical and Morphological Sciences, Section of Ophthalmology, School of Medicine, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Riccardo Vinciguerra
- Department of Surgical and Morphological Sciences, Section of Ophthalmology, School of Medicine, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Luigi Bartalena
- Endocrine Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, 80121 Naples, Italy
| | - Cesare Mariotti
- Department of Ophthalmology, Polytechnic University of Ancona, 60121 Ancona, Italy
| | - Giovanni Porta
- Genetic Laboratory, Department of Surgical and Morphological Sciences, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, 80121 Naples, Italy
| | - Claudio Azzolini
- Department of Surgical and Morphological Sciences, Section of Ophthalmology, School of Medicine, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy
| |
Collapse
|
44
|
Patenaude M, Smeets NMB, Hoare T. Designing Injectable, Covalently Cross-Linked Hydrogels for Biomedical Applications. Macromol Rapid Commun 2014; 35:598-617. [PMID: 24477984 DOI: 10.1002/marc.201300818] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/11/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Mathew Patenaude
- Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| | - Niels M. B. Smeets
- Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| | - Todd Hoare
- Associate Professor, Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| |
Collapse
|
45
|
Loch C, Bogdahn M, Stein S, Nagel S, Guthoff R, Weitschies W, Seidlitz A. Simulation of drug distribution in the vitreous body after local drug application into intact vitreous body and in progress of posterior vitreous detachment. J Pharm Sci 2013; 103:517-26. [PMID: 24311438 DOI: 10.1002/jps.23808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/17/2013] [Accepted: 11/18/2013] [Indexed: 01/17/2023]
Abstract
Intravitreal injections and drug-loaded implants are current approaches to treat diseases of the posterior eye. To investigate the release of active agents and their distribution in the vitreous body, a new test system was developed that enables a realistic simulation of eye motions. It is called the eye movement system (EyeMoS). In combination with a previously developed model containing a polyacrylamide gel as a substitute for the vitreous body, this new system enables the characterization of the influence of eye motions on drug distribution within the vitreous body. In the presented work, the distribution of fluorescence-tagged model drugs of different molecular weight within the simulated vitreous was examined under movement with the EyeMoS and without movement. By replacing a part of the gel in the simulated vitreous body with buffer, the influence of the progress of posterior vitreous detachment (PVD) on the distribution of these model substances was also studied. The results indicate that convective forces may be of predominate influence on initial drug distribution. The impact of these forces on drug transport increases with simulated progression of PVD. Using the EyeMoS, the investigation of release and distribution from intravitreal drug delivery systems becomes feasible under biorelevant conditions.
Collapse
Affiliation(s)
- Christian Loch
- Institute of Pharmacy, Center of Drug Absorption and Transport, EMA University of Greifswald, Greifswald, 17487, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Young JL, Tuler J, Braden R, Schüp-Magoffin P, Schaefer J, Kretchmer K, Christman KL, Engler AJ. In vivo response to dynamic hyaluronic acid hydrogels. Acta Biomater 2013; 9:7151-7. [PMID: 23523533 DOI: 10.1016/j.actbio.2013.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/19/2013] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
Abstract
Tissue-specific elasticity arises in part from developmental changes in extracellular matrix over time, e.g. ~10-fold myocardial stiffening in the chicken embryo. When this time-dependent stiffening has been mimicked in vitro with thiolated hyaluronic acid (HA-SH) hydrogels, improved cardiomyocyte maturation has been observed. However, host interactions, matrix polymerization, and the stiffening kinetics remain uncertain in vivo, and each plays a critical role in therapeutic applications using HA-SH. Hematological and histological analysis of subcutaneously injected HA-SH hydrogels showed minimal systemic immune response and host cell infiltration. Most importantly, subcutaneously injected HA-SH hydrogels exhibited time-dependent porosity and stiffness changes at a rate similar to hydrogels polymerized in vitro. When injected intramyocardially host cells begin to actively degrade HA-SH hydrogels within 1week post-injection, continuing this process while producing matrix to nearly replace the hydrogel within 1month post-injection. While non-thiolated HA did not degrade after injection into the myocardium, it also did not elicit an immune response, unlike HA-SH, where visible granulomas and macrophage infiltration were present 1month post-injection, likely due to reactive thiol groups. Altogether these data suggest that the HA-SH hydrogel responds appropriately in a less vascularized niche and stiffens as had been demonstrated in vitro, but in more vascularized tissues, in vivo applicability appears limited.
Collapse
Affiliation(s)
- Jennifer L Young
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|