1
|
Grote M, Gorb SN, Büscher TH. The effect of age on the attachment ability of stick insects (Phasmatodea). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:867-883. [PMID: 39076693 PMCID: PMC11285055 DOI: 10.3762/bjnano.15.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Many insect species have found their way into ageing research as small and easy-to-keep model organisms. A major sign of ageing is the loss of locomotory functions due to neuronal disorders or tissue wear. Soft and pliable attachment pads on the tarsi of insects adapt to the substrate texture to maximize their real contact area and, thereby, generate attachment during locomotion. In the majority of stick insects, adhesive microstructures covering those pads support attachment. Stick insects do not molt again after reaching the imaginal stage; hence, the cuticle of their pads is subject to continuous ageing. This study aims to quantify how attachment ability changes with age in the stick insect Sungaya aeta Hennemann, 2023 and elucidate the age effects on the material and microstructure of the attachment apparatus. Attachment performance (adhesion and friction forces) on substrates with different roughnesses was compared between two different age groups, and the change of attachment performance was monitored extending over a larger time frame. Ageing effects on the morphology of the attachment pads and the autofluorescence of the cuticle were documented using light, scanning electron, and confocal laser scanning microscopy. The results show that both adhesion and friction forces decline with age. Deflation of the pads, scarring of the cuticle, and alteration of the autofluorescence, likely indicating stiffening of the cuticle, were observed to accumulate over time. This would reduce the attachment ability of the insect, as pads lose their pliant properties and cannot properly maintain sufficient contact area with the substrate.
Collapse
Affiliation(s)
- Marie Grote
- Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Thies H Büscher
- Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
2
|
Salerno G, Rebora M, Piersanti S, Gorb E, Gorb S. Parasitoid attachment ability and the host surface wettability. ZOOLOGY 2024; 165:126181. [PMID: 38833995 DOI: 10.1016/j.zool.2024.126181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Climbing animals such as geckos and arthropods developed astonishing adhesive mechanisms which are fundamental for their survival and represent valuable models for biomimetic purposes. A firm adhesion to the host surface, in order to successfully lay eggs is necessary for the reproduction of most parasitoid insects. In the present study, we performed a comparative investigation on the attachment ability of four parasitoid species (the egg parasitoid Anastatus bifasciatus (Eupelmidae), the aphid parasitoid Aphidius ervi (Braconidae), the fly pupal ectoparasitoid Muscidifurax raptorellus (Pteromalidae) and the pupal parasitoid of Drosophila Trichopria drosophilae (Diapriidae)) with hosts characterized by a surface having different wettability properties. The friction force measurements were performed on smooth artificial (glass) surfaces showing different contact angles of water. We found that attachment systems of parasitoid insects are tuned to match the wettability of the host surface. Sexual dimorphism in the attachment ability of some tested species has been also observed. The obtained results are probably related to different microstructure and chemical composition of the host surfaces and to different chemical composition of the parasitoid adhesive fluid. The data here presented can be interpreted as an adaptation, especially in the female, to the physicochemical properties of the host surface and contribute to shed light on the coevolutionary processes of parasitoid insects and their hosts.
Collapse
Affiliation(s)
- Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, Perugia 06121, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, Perugia 06121, Italy
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, Kiel 24098, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, Kiel 24098, Germany
| |
Collapse
|
3
|
Matsumura Y, Gorb EV, Gorb SN. The tight attachment achieved by the male discoidal setae is possibly a counter-adaptation to the grease layer on female integument surfaces in green dock beetles. J R Soc Interface 2023; 20:20230324. [PMID: 37582406 PMCID: PMC10427193 DOI: 10.1098/rsif.2023.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Green dock beetles Gastrophysa viridula exhibit sexual dimorphism in tarsal attachment setae: females have only pointed, lanceolate and spatula-like setae, while males additionally possess discoidal ones. The sexual dimorphism is probably attributed to the necessity of male discoidal setae to adhere to the smooth back of the female during copulation. We aimed to understand its possible mechanism of attachment with G. viridula. Pull-off forces of both females and males were measured on (i) alive females, (ii) dead and dried females, and (iii) resin replicas of fresh females. The attachment ability tended to increase on dead and replicated female surfaces in both sexes, which indicates that the epicuticular grease layer on the integument of alive intact beetles decreases the attachment. This tendency was prominent in females. The present study clearly showed that in G. viridula discoidal setae enable the males to adhere stronger to female surfaces. The divergent performance found between the sexes differing in their setal composition is probably caused by the stiffness difference between the setae types and by the specific shape of the setal tips. A peculiar reproductive biology in G. viridula is probably attributed to this remarkable divergence of labour in their attachment pads between the sexes.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
- Department of Systematic Entomology, Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan
| | - Elena V. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
4
|
Büscher TH, Bank S, Cumming RT, Gorb SN, Bradler S. Leaves that walk and eggs that stick: comparative functional morphology and evolution of the adhesive system of leaf insect eggs (Phasmatodea: Phylliidae). BMC Ecol Evol 2023; 23:17. [PMID: 37161371 PMCID: PMC10170840 DOI: 10.1186/s12862-023-02119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
Phylliidae are herbivorous insects exhibiting impressive cryptic masquerade and are colloquially called "walking leaves". They imitate angiosperm leaves and their eggs often resemble plant seeds structurally and in some cases functionally. Despite overall morphological similarity of adult Phylliidae, their eggs reveal a significant diversity in overall shape and exochorionic surface features. Previous studies have shown that the eggs of most Phylliidae possess a specialised attachment mechanism with hierarchical exochorionic fan-like structures (pinnae), which are mantled by a film of an adhesive secretion (glue). The folded pinnae and glue respond to water contact, with the fibrous pinnae expanding and the glue being capable of reversible liquefaction. In general, the eggs of phylliids appear to exhibit varying structures that were suggested to represent specific adaptations to the different environments the eggs are deposited in. Here, we investigated the diversity of phylliid eggs and the functional morphology of their exochorionic structure. Based on the examination of all phylliid taxa for which the eggs are known, we were able to characterise eleven different morphological types. We explored the adhesiveness of these different egg morphotypes and experimentally compared the attachment performance on a broad range of substrates with different surface roughness, surface chemistry and tested whether the adhesion is replicable after detachment in multiple cycles. Furthermore, we used molecular phylogenetic methods to reconstruct the evolutionary history of different egg types and their adhesive systems within this lineage, based on 53 phylliid taxa. Our results suggest that the egg morphology is congruent with the phylogenetic relationships within Phylliidae. The morphological differences are likely caused by adaptations to the specific environmental requirements for the particular clades, as the egg morphology has an influence on the performance regarding the surface roughness. Furthermore, we show that different pinnae and the adhesive glue evolved convergently in different species. While the evolution of the Phylliidae in general appears to be non-adaptive judging on the strong similarity of the adults and nymphs of most species, the eggs represent a stage with complex and rather diverse functional adaptations including mechanisms for both fixation and dispersal of the eggs.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany.
| | - Sarah Bank
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Royce T Cumming
- Montreal Insectarium, Montréal, QC, Canada
- Richard Gilder Graduate School, American Museum of Natural History, New York, USA
- City University of New York, New York, USA
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Sven Bradler
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Gorb EV, Gorb SN. Petals Reduce Attachment of Insect Pollinators: A Case Study of the Plant Dahlia pinnata and the Fly Eristalis tenax. INSECTS 2023; 14:285. [PMID: 36975970 PMCID: PMC10054881 DOI: 10.3390/insects14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
In order to understand whether the petal surface in "cafeteria"-type flowers, which offer their nectar and pollen to insect pollinators in an open way, is adapted to a stronger attachment of insect pollinators, we selected the plant Dahlia pinnata and the hovering fly Eristalis tenax, both being generalist species according to their pollinator's spectrum and diet, respectively. We combined cryo scanning electron microscopy examination of leaves, petals, and flower stems with force measurements of fly attachment to surfaces of these plant organs. Our results clearly distinguished two groups among tested surfaces: (1) the smooth leaf and reference smooth glass ensured a rather high attachment force of the fly; (2) the flower stem and petal significantly reduced it. The attachment force reduction on flower stems and petals is caused by different structural effects. In the first case, it is a combination of ridged topography and three-dimensional wax projections, whereas the papillate petal surface is supplemented by cuticular folds. In our opinion, these "cafeteria"-type flowers have the petals, where the colour intensity is enhanced due to papillate epidermal cells covered by cuticular folds at the micro- and nanoscale, and exactly these latter structures mainly contribute to adhesion reduction in generalist insect pollinators.
Collapse
|
6
|
Saitta V, Rebora M, Piersanti S, Gorb E, Gorb S, Salerno G. Effect of Leaf Trichomes in Different Species of Cucurbitaceae on Attachment Ability of the Melon Ladybird Beetle Chnootriba elaterii. INSECTS 2022; 13:1123. [PMID: 36555032 PMCID: PMC9787368 DOI: 10.3390/insects13121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This study investigates the attachment ability of the oligophagous melon ladybird beetle Chnootriba elaterii to leaves of several Cucurbitaceae species. Using cryo-SEM, we described adult and larva tarsal attachment devices and leaf surface structures (glandular and non-glandular trichomes) in Citrullus lanatus, Cucumis melo, Cucumis sativus, Cucurbita moschata, Cucurbita pepo, Ecballium elaterium, Lagenaria siceraria and Luffa aegyptiaca. Using traction force experiments and centrifugal force tests, we measured the friction force exerted by females and larvae on plant leaves. We observed that Cucurbitaceae glandular trichomes do not affect insect attachment ability at both developmental stages, suggesting some adaptation of C. elaterii to its host plants, while non-glandular trichomes, when they are dense, short and flexible, heavily reduce the attachment ability of both insect stages. When trichomes are dense but stiff, only the larval force is reduced, probably because the larva has a single claw, in contrast to the adult having paired bifid dentate claws. The data on the mechanical interaction of C. elaterii at different developmental stages with different Cucurbitaceae species, combined with data on the chemical cues involved in the host plant selection, can help to unravel the complex factors driving the coevolution between an oligophagous insect and its host plant species.
Collapse
Affiliation(s)
- Valerio Saitta
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
7
|
Shan G, Zhu M, Zhang D, Shi T, Song J, Li QX, Hua R. Effects of plant morphology, vitamin C, and other co-present pesticides on the deposition, dissipation, and metabolism of chlorothalonil in pakchoi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84762-84772. [PMID: 35789467 DOI: 10.1007/s11356-022-21405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Pesticide residues have been a focus of attention of food safety. Different varietal pakchoi plants grown in open fields were studied to understand effects of morphology, leaf wax content, and vitamin C on the deposition, dissipation, and metabolism of chlorothalonil. The loose pakchoi plants and flat leaves were conducive to pesticide deposition, but not plants with erect leaves. Chlorothalonil on nine varieties of pakchoi dissipated in the first-order kinetic with T1/2 s of 1.4 ~ 2.0 days. Vitamin C in pakchoi could promote the dissipation of chlorothalonil. Carbendazim could significantly promote the dissipation of chlorothalonil on pakchoi. Interestingly, four metabolites of chlorothalonil were identified in the pakchoi and the metabolic pathway was predicted by DFT calculations. The risk assessment showed that pakchoi were safe for consumption after 10 days of application of the recommended dose. This work provides important information for the understanding of deposition, dissipation, and metabolism of chlorothalonil in pakchoi.
Collapse
Affiliation(s)
- Guolei Shan
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Meiqing Zhu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dong Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Jialong Song
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
8
|
Cobos AJ, Higham TE. Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko ( Gekko gecko). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1292-1302. [PMID: 36447563 PMCID: PMC9663969 DOI: 10.3762/bjnano.13.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Many geckos have the remarkable ability to reversibly adhere to surfaces using a hierarchical system that includes both internal and external elements. The vast majority of studies have examined the performance of the adhesive system using adults and engineered materials and substrates (e.g., acrylic glass). Almost nothing is known about how the system changes with body size, nor how these changes would influence the ability to adhere to surfaces in nature. Using Tokay geckos (Gekko gecko), we examined the post-hatching scaling of morphology and frictional adhesive performance in animals ranging from 5 to 125 grams in body mass. We quantified setal density, setal length, and toepad area using SEM. This was then used to estimate the theoretical maximum adhesive force. We tested performance with 14 live geckos on eight surfaces ranging from extremely smooth (acrylic glass) to relatively rough (100-grit sandpaper). Surfaces were attached to a force transducer, and multiple trials were conducted for each individual. We found that setal length scaled with negatively allometry, but toepad area scaled with isometry. Setal density remained constant across the wide range in body size. The relationship between body mass and adhesive performance was generally similar across all surfaces, but rough surfaces had much lower values than smooth surfaces. The safety factor went down with body mass and with surface roughness, suggesting that smaller animals may be more likely to occupy rough substrates in their natural habitat.
Collapse
Affiliation(s)
- Anthony J Cobos
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Bergmann JB, Moatsou D, Steiner U, Wilts BD. Bio-inspired materials to control and minimise insect attachment. BIOINSPIRATION & BIOMIMETICS 2022; 17:051001. [PMID: 36099911 DOI: 10.1088/1748-3190/ac91b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Surapaneni VA, Aust T, Speck T, Thielen M. Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1326-1338. [PMID: 34934607 PMCID: PMC8649201 DOI: 10.3762/bjnano.12.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The plant cuticle is a multifunctional barrier that separates the organs of the plant from the surrounding environment. Cuticular ridges are microscale wrinkle-like cuticular protrusions that occur on many flower and leaf surfaces. These microscopic ridges can help against pest insects by reducing the frictional forces experienced when they walk on the leaves and might also provide mechanical stability to the growing plant organs. Here, we have studied the development of cuticular ridges on adaxial leaf surfaces of the tropical Araceae Schismatoglottis calyptrata. We used polymer replicas of adaxial leaf surfaces at various ontogenetic stages to study the morphological changes occurring on the leaf surfaces. We characterized the replica surfaces by using confocal laser scanning microscopy and commercial surface analysis software. The development of cuticular ridges is polar and the ridge progression occurs basipetally with a specific inclination to the midrib on Schismatoglottis calyptrata leaves. Using Colorado potato beetles as model species, we performed traction experiments on freshly unrolled and adult leaves and found low walking frictional forces of insects on both of these surfaces. The changes in the micro- and macroscale morphology of the leaves should improve our understanding of the way that plants defend themselves against insect herbivores.
Collapse
Affiliation(s)
- Venkata A Surapaneni
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Tobias Aust
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS@ FIT- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Marc Thielen
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Gorb EV, Gorb SN. Combined Effect of Different Flower Stem Features on the Visiting Frequency of the Generalist Ant Lasius niger: An Experimental Study. INSECTS 2021; 12:insects12111026. [PMID: 34821826 PMCID: PMC8623630 DOI: 10.3390/insects12111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Flowering plants usually attract insect pollinators by offering them nectar, pollen or other energetically valuable sources. To deter ants, which are unreliable pollinators and can act as nectar thieves, plants have developed different systems either inside the flowers or associated with the stems. The latter one, called greasy pole syndrome, is based on the combined effect of several stem features hampering the access of ants to the apically located flowers. In this study, we examined the effects of different flower stem features in the round-leaved Alexanders Smyrnium rotundifolium on the visiting frequency of the generalist ant species, the black garden ant Lasius niger. We conducted the experiments with ants running on dry wooden sticks mimicking four different types of stems. To attract ants, we placed a sweet sugar syrup droplet on a stick tip. Ants visited different types of stem-mimicking sticks with significantly different frequencies. The highest number of insects were registered on untreated stick samples, whereas the lowest visiting frequency was observed on sticks bearing cuff-like structures (serving as macroscopic physical barriers) covered with a nano/microparticle film, which caused the slipperiness of the surface. Thus, by combining macroscopic obstacles and slippery surfaces, plants can protect their flowers from undesirable crawling visitors such as ants. Abstract In order to understand the effects of the morphology and surface texture of flower stems in Smyrnium rotundifolium on the visiting frequency of generalist ants, we conducted experiments with Lasius niger ants running on dry wooden sticks mimicking different types of stems: (1) intact (grooved) sticks; (2) sticks painted with slaked (hydrated) lime (calcium carbonate coverage) imitating plant epicuticular wax coverage; (3) intact sticks with smooth polyester plate-shaped cuffs imitating upper leaves; and (4) intact sticks bearing cuffs painted with slaked lime. Ants were attracted by the sweet sugar syrup droplets placed on a stick tip, and the number of ants visiting the drops was counted. Our data showed significant differences in the visiting frequencies between the different types of stem-mimicking samples. The number of recorded ants progressively decreased in the following order of samples: intact sticks—painted sticks—sticks with intact cuffs—sticks with painted cuffs. These results clearly demonstrated that micro/nanoscopic surface coverages and macroscopic physical barriers, especially if combined, have a negative impact on the attractiveness of stems to ants. This study provides further evidence for the hypothesis that having a diversity of plant stems in the field, generalist ants prefer substrates where their locomotion is less hindered by obstacles and/or surface slipperiness.
Collapse
|
12
|
Wahyuni DSC, Choi YH, Leiss KA, Klinkhamer PGL. Morphological and Chemical Factors Related to Western Flower Thrips Resistance in the Ornamental Gladiolus. PLANTS (BASEL, SWITZERLAND) 2021; 10:1384. [PMID: 34371587 PMCID: PMC8309351 DOI: 10.3390/plants10071384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.
Collapse
Affiliation(s)
- Dinar S. C. Wahyuni
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
- Pharmacy Department, Faculty Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kirsten A. Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Postbus 20, 2665ZG Bleiswijk, The Netherlands;
| | - Peter G. L. Klinkhamer
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
| |
Collapse
|
13
|
Knapp A, Nebel LJ, Nitschke M, Sander O, Fery A. Controlling line defects in wrinkling: a pathway towards hierarchical wrinkling structures. SOFT MATTER 2021; 17:5384-5392. [PMID: 33969367 DOI: 10.1039/d0sm02231d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate a novel approach for controlling the line defect formation in microscopic wrinkling structures by patterned plasma treatment of elastomeric surfaces. Wrinkles were formed on polydimethylsiloxane (PDMS) surfaces exposed to low-pressure plasma under uniaxial stretching and subsequent relaxation. The wrinkling wavelength λ can be regulated via the treatment time and choice of plasma process gases (H2, N2). Sequential masking allows for changing these parameters on micron-scale dimensions. Thus, abrupt changes of the wrinkling wavelength become feasible and result in line defects located at the boundary zone between areas of different wavelengths. Wavelengths, morphology, and mechanical properties of the respective areas are investigated by Atomic Force Microscopy and agree quantitatively with predictions of analytical models for wrinkle formation. Notably, the approach allows for the first time the realization of a dramatic wavelength change up to a factor of 7 to control the location of the branching zone. This allows structures with a fixed but also with a strictly alternating branching behavior. The morphology inside the branching zone is compared with finite element methods and shows semi-quantitative agreement. Thus our finding opens new perspectives for "programming" hierarchical wrinkling patterns with potential applications in optics, tribology, and biomimetic structuring of surfaces.
Collapse
Affiliation(s)
- André Knapp
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Lisa Julia Nebel
- Institute for Numerical Mathematics, Technical University Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany.
| | - Mirko Nitschke
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Oliver Sander
- Institute for Numerical Mathematics, Technical University Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany.
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany. and Chair for Physical Chemistry of Polymeric Materials, Technical University Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| |
Collapse
|
14
|
Shima D, Gan JH, Umezu S, Sato H. Smooth and slipless walking mechanism inspired by the open-close cycle of a beetle claw. BIOINSPIRATION & BIOMIMETICS 2020; 16:016011. [PMID: 33263306 DOI: 10.1088/1748-3190/abb0ca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the function of the beetle's claw for its smooth and slipless walking and designed an artificial claw open-close cycle mechanism to mimic the beetle's walking. First, the effects of claw opening and closing on beetles' ability to attach to surfaces were examined. A beetle does not have an attachment pad, and only its claws work to grip the ground; its claw opens and closes and attaches with two sharp hooks. With their claws, beetles can smoothly walk, neither slipping on nor having their claws stuck in the surface. How do they perform smooth walking with sharp claws? In this study, we observed that beetles close their claws when they raise and swung their legs forward, while they open their claws when they lowered their legs to the ground. We then conducted non-destructive tests: their claws were forced open or closed. There was a significant difference in the trajectories of forced-closed claws compared to intact claws and forced-open claws. When their claws were forced-closed, this caused slippage in walking. On the other hand, when a claw was forced-open and its rotation was also inhibited, the claw stuck heavily in the surface, and the beetle could not walk. Based on these findings, we designed an artificial claw to open and close in the same cyclic manner as in the case of natural beetles. The performance of the artificial claw was consistent with the conclusions drawn from natural beetles: the locomotive robot with the artificial claw smoothly moved without slippage. Through these observations, non-destructive tests and performance of the bio-inspired artificial claws, this study confirmed the function of the open-close cycle of beetle claws and demonstrated and successfully adopted it for a locomotive robot.
Collapse
Affiliation(s)
- Daiki Shima
- School of Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Jia Hui Gan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Shinjiro Umezu
- School of Department of Modern Mechanical Engineering, Waseda University, Japan
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
15
|
Surapaneni VA, Bold G, Speck T, Thielen M. Spatio-temporal development of cuticular ridges on leaf surfaces of Hevea brasiliensis alters insect attachment. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201319. [PMID: 33391807 PMCID: PMC7735362 DOI: 10.1098/rsos.201319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Cuticular ridges on plant surfaces can control insect adhesion and wetting behaviour and might also offer stability to underlying cells during growth. The growth of the plant cuticle and its underlying cells possibly results in changes in the morphology of cuticular ridges and may also affect their function. We present spatial and temporal patterns in cuticular ridge development on the leaf surfaces of the model plant, Hevea brasiliensis. We have identified, by confocal laser scanning microscopy of polymer leaf replicas, an acropetally directed progression of ridges during the ontogeny of Hevea brasiliensis leaf surfaces. The use of Colorado potato beetles (Leptinotarsa decemlineata) as a model insect species has shown that the changing dimensions of cuticular ridges on plant leaves during ontogeny have a significant impact on insect traction forces and act as an effective indirect defence mechanism. The traction forces of walking insects are significantly lower on mature leaf surfaces compared with young leaf surfaces. The measured walking traction forces exhibit a strong negative correlation with the dimensions of the cuticular ridges.
Collapse
Affiliation(s)
- Venkata A. Surapaneni
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Georg Bold
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS@ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Marc Thielen
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF, Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Adhesion Performance in the Eggs of the Philippine Leaf Insect Phyllium Philippinicum (Phasmatodea: Phylliidae). INSECTS 2020; 11:insects11070400. [PMID: 32605269 PMCID: PMC7412187 DOI: 10.3390/insects11070400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022]
Abstract
Leaf insects (Phasmatodea: Phylliidae) exhibit perfect crypsis imitating leaves. Although the special appearance of the eggs of the species Phyllium philippinicum, which imitate plant seeds, has received attention in different taxonomic studies, the attachment capability of the eggs remains rather anecdotical. We herein elucidate the specialized attachment mechanism of the eggs of this species and provide the first experimental approach to systematically characterize the functional properties of their adhesion by using different microscopy techniques and attachment force measurements on substrates with differing degrees of roughness and surface chemistry, as well as repetitive attachment/detachment cycles while under the influence of water contact. We found that a combination of folded exochorionic structures (pinnae) and a film of adhesive secretion contribute to attachment, which both respond to water. Adhesion is initiated by the glue, which becomes fluid through hydration, enabling adaption to the surface profile. Hierarchically structured pinnae support the spreading of the glue and reinforcement of the film. This combination aids the egg’s surface in adapting to the surface roughness, yet the attachment strength is additionally influenced by the egg’s surface chemistry, favoring hydrophilic substrates. Repetitive detachment and water-mediated adhesion can optimize the location of the egg to ensure suitable environmental conditions for embryonic development. Furthermore, this repeatable and water-controlled adhesion mechanism can stimulate further research for biomimeticists, ecologists and conservationalists.
Collapse
|
17
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Nonlinear variation in clinging performance with surface roughness in geckos. Ecol Evol 2020; 10:2597-2607. [PMID: 32185005 PMCID: PMC7069281 DOI: 10.1002/ece3.6090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Understanding the challenges faced by organisms moving within their environment is essential to comprehending the evolution of locomotor morphology and habitat use. Geckos have developed adhesive toe pads that enable exploitation of a wide range of microhabitats. These toe pads, and their adhesive mechanisms, have typically been studied using a range of artificial substrates, usually significantly smoother than those available in nature. Although these studies have been fundamental in understanding the mechanisms of attachment in geckos, it is unclear whether gecko attachment simply gradually declines with increased roughness as some researchers have suggested, or whether the interaction between the gekkotan adhesive system and surface roughness produces nonlinear relationships. To understand ecological challenges faced in their natural habitats, it is essential to use test surfaces that are more like surfaces used by geckos in nature. We tested gecko shear force (i.e., frictional force) generation as a measure of clinging performance on three artificial substrates. We selected substrates that exhibit microtopographies with peak-to-valley heights similar to those of substrates used in nature, to investigate performance on a range of smooth surfaces (glass), and fine-grained (fine sandpaper) to rough (coarse sandpaper). We found that shear force did not decline monotonically with roughness, but varied nonlinearly among substrates. Clinging performance was greater on glass and coarse sandpaper than on fine sandpaper, and clinging performance was not significantly different between glass and coarse sandpaper. Our results demonstrate that performance on different substrates varies, probably depending on the underlying mechanisms of the adhesive apparatus in geckos.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Eric Nordberg
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Jendrian Riedel
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| | - Lin Schwarzkopf
- College of Science and EngineeringJames Cook UniversityTownsvilleQLDAustralia
| |
Collapse
|
18
|
Gorb EV, Gorb SN. Attachment ability of females and males of the ladybird beetle Cryptolaemus montrouzieri to different artificial surfaces. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104011. [PMID: 31904387 DOI: 10.1016/j.jinsphys.2019.104011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
To test the effects of surface chemistry and surface roughness on the attachment ability of female and male Cryptolaemus montrouzieri beetles that are equipped with hairy adhesive pads, traction force experiments were performed on three artificial substrates: (1) hydrophobic smooth glass, (2) hydrophobic smooth epoxy resin, and (3) hydrophobic microrough epoxy resin. Also the micromorphology of the dorsal body side and adhesive pads in males and females was examined using a scanning electron microscopy. The traction force ranged from 0.13 to 3.60 mN in females and from 0.28 to 3.20 mN in males. The force values obtained on different test substrates showed highly significant differences and decreased in the following order of substrates: glass - smooth epoxy resin - microrough epoxy resin. In both females and males, the effect of surfaces was similar. The obtained results clearly showed that both surface parameters, chemistry and roughness, affected the attachment ability of beetles. Similar microstructure of adhesive pads in both sexes resulted in similar attachment performance of males and females on all test substrates.
Collapse
Affiliation(s)
- Elena V Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany.
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
19
|
Lai PH, Huang LM, Pan ZJ, Jane WN, Chung MC, Chen WH, Chen HH. PeERF1, a SHINE-Like Transcription Factor, Is Involved in Nanoridge Development on Lip Epidermis of Phalaenopsis Flowers. FRONTIERS IN PLANT SCIENCE 2020; 10:1709. [PMID: 32082333 PMCID: PMC7002429 DOI: 10.3389/fpls.2019.01709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Phalaenopsis orchids have a spectacular floral morphology with a highly evolved lip that offers a landing platform for pollinators. The typical morphological orchid lip features are essential for the special pollination mechanism of Phalaenopsis flowers. Previously, we found that in the lip, a member of the AP2/EREBP protein family was highly expressed. Here, we further confirmed its high expression and characterized its function during lip development. Phylogenetic analysis showed that AP2/EREBP belongs to the Va2 subgroup of ERF transcription factors. We named it PeERF1. We found that PeERF1 was only expressed at stage 5, as flowers opened. This coincided with both thickening of the cuticle and development of nanoridges. We performed knockdown expression of PeERF1 using CymMV-based virus-induced gene silencing in either the AP2 conserved domain, producing PeERF1_AP2-silenced plants, or the SHN specific domain, producing PeERF1_SHN-silenced plants. Using cryo-SEM, we found that the number of nanoridges was reduced only in the PeERF1_AP2-silenced group. This change was found on both the abaxial and adaxial surfaces of the central lip lobe. Expression of PeERF1 was reduced significantly in PeERF1_AP2-silenced plants. In cutin biosynthesis genes, expression of both PeCYP86A2 and PeDCR was significantly decreased in both groups. The expression of PeCYP77A4 was reduced significantly only in the PeERF1_AP2-silenced plants. Although PeGPAT expression was reduced in both silenced plants, but to a lesser degree. The expression of PeERF1 was significantly reduced in the petal-like lip of a big-lip variant. PeCYP77A4 and PeGPAT in the lip were also reduced, but PeDCR was not. Furthermore, heterologous overexpression of PeERF1 in the genus Arabidopsis produced leaves that were shiny on the adaxial surface. Taken together, our results show that in Phalaenopsis orchids PeERF1 plays an important role in formation of nanoridges during lip epidermis development.
Collapse
Affiliation(s)
- Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Li-Min Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Zhao-Jun Pan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Salerno G, Rebora M, Piersanti S, Gorb E, Gorb S. Mechanical ecology of fruit-insect interaction in the adult Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). ZOOLOGY 2020; 139:125748. [PMID: 32078916 DOI: 10.1016/j.zool.2020.125748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Fruit features represent a trade-off between dispersal and protection against frugivore insects. To prevent insect attack, plants evolved chemical and physical barriers, mainly studied in leaves, while limited knowledge is available for fruits, especially concerning mechanical barriers. We used the Mediterranean fruit fly to shed light on the mechanical ecology of insect-fruit attachment in a pest species. We tested the following hypotheses: is there any sexual dimorphism in attachment devices and attachment ability? Can the attachment ability of females of Ceratitis capitata to fruits of various host plants vary according to fruit surfaces with different morphology (smooth, hairy, waxy) or physico-chemical properties? The tarsal attachment devices were studied using Cryo-SEM and TEM. The maximum friction forces of C. capitata females on fruit surfaces of typical host plants were evaluated using a load cell force transducer. The attachment ability of both sexes on artificial surfaces was evaluated using a centrifugal force tester. Our data revealed sexual dimorphism in the size of pulvilli, which are wider in females. A higher friction force is exerted by females in comparison with males, in agreement with the need to firmly adhere to the host plant fruit during oviposition. Among the tested fruits, the stronger friction force was recorded on hairy or rough surfaces while a force reduction was recorded on waxy fruits. To unravel the mechanical ecology of insect-plant interaction between plants and species of Tephritidae can be useful to develop non-chemical methods to control these important crop pests.
Collapse
Affiliation(s)
- Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, Perugia, 06121, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121, Perugia, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121, Perugia, Italy
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| |
Collapse
|
21
|
Soffe R, Bernach M, Remus-Emsermann MNP, Nock V. Replicating Arabidopsis Model Leaf Surfaces for Phyllosphere Microbiology. Sci Rep 2019; 9:14420. [PMID: 31595008 PMCID: PMC6783459 DOI: 10.1038/s41598-019-50983-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Artificial surfaces are commonly used in place of leaves in phyllosphere microbiology to study microbial behaviour on plant leaf surfaces. These surfaces enable a reductionist approach to be undertaken, to enable individual environmental factors influencing microorganisms to be studied. Commonly used artificial surfaces include nutrient agar, isolated leaf cuticles, and reconstituted leaf waxes. Recently, replica surfaces mimicking the complex topography of leaf surfaces for phyllosphere microbiology studies are appearing in literature. Replica leaf surfaces have been produced in agar, epoxy, polystyrene, and polydimethylsiloxane (PDMS). However, none of these protocols are suitable for replicating fragile leaves such as of the model plant Arabidopsis thaliana. This is of importance, as A. thaliana is a model system for molecular plant genetics, molecular plant biology, and microbial ecology. To overcome this limitation, we introduce a versatile replication protocol for replicating fragile leaf surfaces into PDMS. Here we demonstrate the capacity of our replication process using optical microscopy, atomic force microscopy (AFM), and contact angle measurements to compare living and PDMS replica A. thaliana leaf surfaces. To highlight the use of our replica leaf surfaces for phyllosphere microbiology, we visualise bacteria on the replica leaf surfaces in comparison to living leaf surfaces.
Collapse
Affiliation(s)
- Rebecca Soffe
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Michal Bernach
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
22
|
Reinhardt K, Voigt D, Gorb SN. Evidence for a sexually selected function of the attachment system in bedbugs Cimex lectularius (Heteroptera, Cimicidae). J Exp Biol 2019; 222:jeb.206136. [PMID: 31053647 DOI: 10.1242/jeb.206136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/29/2019] [Indexed: 11/20/2022]
Abstract
Attachment to surfaces is a major aspect of an animal's interaction with the environment. Consequently, shaping of the attachment system in relation to weight load and substrate is considered to have occurred mainly by natural selection. However, sexual selection may also be important because many animals attach to their partner during mating. The two hypotheses generate opposing predictions in species where males are smaller than females. Natural selection predicts that attachment ability will scale positively with load, and hence body size, and so will be larger in females than males. Sexual selection predicts attachment forces in males will be larger than those in females, despite the males' smaller size because males benefit from uninterrupted copulation by stronger attachment to the female. We tested these predictions in the common bedbug Cimex lectularius, a species in which both sexes, as well as nymphs, regularly carry large loads: blood meals of up to 3 times their body weight. By measuring attachment forces to smooth surfaces and analysing in situ fixed copulating pairs and the morphology of attachment devices, we show that: (i) males generate twice the attachment force of females, despite weighing 15% less; (ii) males adhere to females during copulation using hairy tibial adhesive pads; (iii) there are more setae, and more setae per unit area, in the pads of males than in those of females but there is no difference in the shape of the tarsal setae; and (iv) there is an absence of hairy tibial attachment pads and a low attachment force in nymphs. These results are consistent with a sexually selected function of attachment in bedbugs. Controlling sperm transfer and mate guarding by attaching to females during copulation may also shape the evolution of male attachment structures in other species. More generally, we hypothesise the existence of an arms race in terms of male attachment structures and female counterparts to impede attachment, which may result in a similar evolutionary diversification to male genitalia.
Collapse
Affiliation(s)
- Klaus Reinhardt
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany .,Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Dagmar Voigt
- Institute for Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
23
|
Naylor ER, Higham TE. Attachment Beyond the Adhesive System: The Contribution of Claws to Gecko Clinging and Locomotion. Integr Comp Biol 2019; 59:168-181. [DOI: 10.1093/icb/icz027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Attachment is imperative for many biological functions, such as holding position and climbing, but can be challenged by natural conditions. Adhesive toe pads and claws have evolved in multiple terrestrial lineages as important dynamic attachment mechanisms, and some clades (e.g., geckos) exhibit both features. The functional relationship of these features that comprise a complex attachment system is not well-understood, particularly within lizards (i.e., if pads and claws are redundant or multifunctional). Geckos exhibit highly adept frictional adhesive toe pads that continue to fuel biological inquiry and inspiration. However, gecko claws (the ancestral lizard clinging condition) have received little attention in terms of their functional or evolutionary significance. We assessed claw function in Thecadactylus rapicauda using assays of clinging performance and locomotor trials on different surfaces (artificial and natural) and inclines with claws intact, then partially removed. Area root mean square height (Sq), a metric of 3D surface roughness, was later quantified for all test surfaces, including acrylic, sandpaper, and two types of leaves (smooth and hairy). Maximum clinging force significantly declined on all non-acrylic surfaces after claw removal, indicating a substantial contribution to static clinging on rough and soft surfaces. With and without claws, clinging force exhibited a negative relationship with Sq. However, claw removal had relatively little impact on locomotor function on surfaces of different roughness at low inclines (≤30°). High static and dynamic safety factor estimates support these observations and demonstrate the species’ robust frictional adhesive system. However, maximum station-holding capacity significantly declined on the rough test surface after partial claw removal, showing that geckos rely on their claws to maintain purchase on rough, steeply inclined surfaces. Our results point to a context-dependent complex attachment system within geckos, in which pads dominate on relatively smooth surfaces and claws on relatively rough surfaces, but also that these features function redundantly, possibly synergistically, on surfaces that allow attachment of both the setae and the claw (as in some insects). Our study provides important novel perspectives on gecko attachment, which we hope will spur future functional studies, new evolutionary hypotheses, and biomimetic innovation, along with collaboration and integration of perspectives across disciplines.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Higham TE, Russell AP, Niewiarowski PH, Wright A, Speck T. The Ecomechanics of Gecko Adhesion: Natural Surface Topography, Evolution, and Biomimetics. Integr Comp Biol 2019; 59:148-167. [DOI: 10.1093/icb/icz013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
The study of gecko adhesion is necessarily interdisciplinary due to the hierarchical nature of the adhesive system and the complexity of interactions between the animals and their habitats. In nature, geckos move on a wide range of surfaces including soft sand dunes, trees, and rocks, but much of the research over the past two decades has focused on their adhesive performance on artificial surfaces. Exploring the complex interactions between geckos and their natural habitats will reveal aspects of the adhesive system that can be applied to biomimetic research, such as the factors that facilitate movement on dirty and rough surfaces with varying microtopography. Additionally, contrasting suites of constraints and topographies are found on rocks and plants, likely driving differences in locomotion and morphology. Our overarching goals are to bring to light several aspects of ecology that are important for gecko–habitat interactions, and to propose a framework for how they can inspire material scientists and functional ecologists. We also present new data on surface roughness and topography of a variety of surfaces, and adhesive performance of Phelsuma geckos on surfaces of varying roughness. We address the following key questions: (1) why and how should ecology be incorporated into the study of gecko adhesion? (2) What topographical features of rocks and plants likely drive adhesive performance? (3) How can ecological studies inform material science research? Recent advances in surface replication techniques that eliminate confounding factors among surface types facilitate the ability to address some of these questions. We pinpoint gaps in our understanding and identify key initiatives that should be adopted as we move forward. Most importantly, fine details of locomotor microhabitat use of both diurnal and nocturnal geckos are needed.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92506, USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Peter H Niewiarowski
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Amber Wright
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, 79085 Freiburg, Germany
| |
Collapse
|
25
|
Kumar C, Palacios A, Surapaneni VA, Bold G, Thielen M, Licht E, Higham TE, Speck T, Le Houérou V. Replicating the complexity of natural surfaces: technique validation and applications for biomimetics, ecology and evolution. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180265. [PMID: 30967061 PMCID: PMC6335282 DOI: 10.1098/rsta.2018.0265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
The surfaces of animals, plants and abiotic structures are not only important for organismal survival, but they have also inspired countless biomimetic and industrial applications. Additionally, the surfaces of animals and plants exhibit an unprecedented level of diversity, and animals often move on the surface of plants. Replicating these surfaces offers a number of advantages, such as preserving a surface that is likely to degrade over time, controlling for non-structural aspects of surfaces, such as compliance and chemistry, and being able to produce large areas of a small surface. In this paper, we compare three replication techniques among a number of species of plants, a technical surface and a rock. We then use two model parameters (cross-covariance function ratio and relative topography difference) to develop a unique method for quantitatively evaluating the quality of the replication. Finally, we outline future directions that can employ highly accurate surface replications, including ecological and evolutionary studies, biomechanical experiments, industrial applications and improving haptic properties of bioinspired surfaces. The recent advances associated with surface replication and imaging technology have formed a foundation on which to incorporate surface information into biological sciences and to improve industrial and biomimetic applications. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.
Collapse
Affiliation(s)
- Charchit Kumar
- Institut Charles Sadron, CNRS UPR022, Université de Strasbourg, Strasbourg, France
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - Alejandro Palacios
- Institut Charles Sadron, CNRS UPR022, Université de Strasbourg, Strasbourg, France
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
| | - Venkata A. Surapaneni
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- FMF, Freiburg Materials Research Center, Freiburg, Germany
| | - Georg Bold
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - Marc Thielen
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- FMF, Freiburg Materials Research Center, Freiburg, Germany
| | - Erik Licht
- Basell Deutschland GmbH, LyondellBasell Industries, Frankfurt a.M, Germany
| | - Timothy E. Higham
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Thomas Speck
- Plant Biomechanics Group and Botanic Garden, University of Freiburg, Freiburg, Germany
- FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
- FMF, Freiburg Materials Research Center, Freiburg, Germany
| | - Vincent Le Houérou
- Institut Charles Sadron, CNRS UPR022, Université de Strasbourg, Strasbourg, France
- ICube, UMR7357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Schnee L, Sampalla B, Müller JK, Betz O. A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:47-61. [PMID: 30680278 PMCID: PMC6334798 DOI: 10.3762/bjnano.10.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Our aim was to compare friction and traction forces between two burying beetle species of the genus Nicrophorus exhibiting different attachment abilities during climbing. Specifically, the interaction of adhesive hairs and claws during attachment with respect to various surface properties was investigated by using a 2 × 3 experimental design. Traction force was measured for two different surface energies (hydrophilic vs hydrophobic) varying in roughness from smooth to micro-rough to rough. Nanotribometric tests on single legs were also performed. The external morphology of the attachment devices investigated by scanning electron microscopy suggested higher intra-specific (intersexual) than inter-specific differences. Whereas differences between the two species in traction force were high on smooth surfaces, no differences could be detected between males and females within each species. With claws intact, both species showed the highest forces on rough surfaces, although N. nepalensis with clipped claws performed best on a smooth surface. However, N. nepalensis beetles outperformed N. vespilloides, which showed no differences between smooth and rough surfaces with clipped claws. Both species demonstrated poor traction forces on micro-rough surfaces. Results concerning the impact of surface polarity were inconclusive, whereas roughness more strongly affected the attachment performance in both species. Nanotribometric analyses of the fore tarsi performed on micro-rough and rough surfaces revealed higher friction in the proximal (pull) direction compared with the distal (push) direction. In these experiments, we detected neither differences in friction performance between the two species, nor clear trends concerning the influence of surface polarity. We conclude that the investigated morphological traits are not critical for the observed interspecific difference in attachment ability on smooth surfaces. Furthermore, interspecific differences in performance are only clear on smooth surfaces and vanish on micro-rough and rough surfaces. Our results suggest that even subtle differences in the adhesion-mediating secretion in closely related species might result in qualitative performance shifts.
Collapse
Affiliation(s)
- Liesa Schnee
- Institut für Evolution und Ökologie, Evolutionsbiologie der Invertebraten, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Benjamin Sampalla
- Institut für Evolution und Ökologie, Evolutionsbiologie der Invertebraten, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Josef K Müller
- Institut für Biologie I, Evolutionsbiologie & Ökologie, Albert-Ludwigs-Universität Freiburg, Hauptstr.1, 79104 Freiburg, Germany
| | - Oliver Betz
- Institut für Evolution und Ökologie, Evolutionsbiologie der Invertebraten, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Stark AY, Yanoviak SP. Adhesion and running speed of a tropical arboreal ant ( Cephalotes atratus) on wet substrates. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181540. [PMID: 30564427 PMCID: PMC6281928 DOI: 10.1098/rsos.181540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
In the tropical forest canopy, wingless worker ants must cling to and run along diverse vegetative surfaces with little protection from sun, wind and rain. Ants rely in part on their tiny adhesive tarsal pads to maintain sufficient contact with substrates to prevent falls under these varied conditions. Here, we examined the effects of substrate wettability and surface water on the tarsal pad adhesive performance of a common tropical arboreal ant. Ant adhesion was consistently higher on an intermediately wetting substrate (static water contact angle ca 90°) when resisting both perpendicular (normal) force and parallel (shear) force. Normal adhesion was maintained on intermediately wetting and hydrophobic substrates following the addition of rain-mimicking water droplets, whereas shear adhesion declined on all substrate types tested after wetting. Ant running speed was slower on wet substrates. On wood substrates, normal and shear adhesion declined with increasing wetness from dry, to misted, to water-soaked. These differences probably contributed to lower ant running speed on wet wood. The results of this study provide the first quantitative assessment of tropical arboreal ant adhesive performance under substrate conditions that are commonly encountered in the rainforest canopy.
Collapse
Affiliation(s)
- Alyssa Y. Stark
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Stephen P. Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
28
|
Gao Y, Guo R, Fan R, Liu Z, Kong W, Zhang P, Du FP. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method. PEST MANAGEMENT SCIENCE 2018; 74:1804-1809. [PMID: 29389059 DOI: 10.1002/ps.4878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND A better understanding of leaf surface wettability is critical to improve the adhesion of liquid pesticides. Leaf surface wettability is dependent on the property of the liquid as well as the physical and chemical properties of the leaf, which vary with climate and growth stage. The aim of this study was to characterize the wettability of pear leaves from three different climatic regions at different stages after flowering. RESULTS The contact angles of different test liquids were measured on both adaxial and abaxial pear leaf surfaces and the Owens-Wendt-Rabel-Kaelble (OWRK) method was used to calculate surface free energy (SFE) and its polar and non-polar components. The results demonstrated that the SFE of both the adaxial and abaxial surface of the pear leaf, and the proportion of polar component, increased with increasing time after flowering. At early growth stages, pear leaves were highly hydrophobic, similar to a polytetrafluoroethylene surface, whereas at later growth stages, pear leaves were hydrophobic, more similar to a polymethylmethacrylate surface. Also, the SFE differed with climatic region. Factors influencing these changes are discussed. CONCLUSION Changes in contact angles and SFE correlated with the change of the leaf surface wettability. Leaves became easier to wet (higher SFE), with an overall increasing polar component to the surface, with increasing age after flowering. As expected, changes in wettability were found in pear leaves at different stages after flowering and in different regions (P < 0.05). Pear leaves from Yuanping were easier to wet than leaves from Yuci and Linyi, and adaxial surfaces were easier to wet than abaxial surfaces. These results provide beneficial information for the application of agrochemicals for improved wetting and spreading behavior. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Gao
- College of Science, China Agricultural University, Beijing, People's Republic of China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, People's Republic of China
| | - Ruifeng Guo
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, People's Republic of China
| | - Renjun Fan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, People's Republic of China
| | - Zhongfang Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, People's Republic of China
| | - Weina Kong
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, People's Republic of China
| | - Pengjiu Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, People's Republic of China
| | - Feng-Pei Du
- College of Science, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
29
|
Kumar C, Le Houérou V, Speck T, Bohn HF. Straightforward and precise approach to replicate complex hierarchical structures from plant surfaces onto soft matter polymer. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172132. [PMID: 29765666 PMCID: PMC5936931 DOI: 10.1098/rsos.172132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 05/31/2023]
Abstract
The surfaces of plant leaves are rarely smooth and often possess a species-specific micro- and/or nano-structuring. These structures usually influence the surface functionality of the leaves such as wettability, optical properties, friction and adhesion in insect-plant interactions. This work presents a simple, convenient, inexpensive and precise two-step micro-replication technique to transfer surface microstructures of plant leaves onto highly transparent soft polymer material. Leaves of three different plants with variable size (0.5-100 µm), shape and complexity (hierarchical levels) of their surface microstructures were selected as model bio-templates. A thermoset epoxy resin was used at ambient conditions to produce negative moulds directly from fresh plant leaves. An alkaline chemical treatment was established to remove the entirety of the leaf material from the cured negative epoxy mould when necessary, i.e. for highly complex hierarchical structures. Obtained moulds were filled up afterwards with low viscosity silicone elastomer (PDMS) to obtain positive surface replicas. Comparative scanning electron microscopy investigations (original plant leaves and replicated polymeric surfaces) reveal the high precision and versatility of this replication technique. This technique has promising future application for the development of bioinspired functional surfaces. Additionally, the fabricated polymer replicas provide a model to systematically investigate the structural key points of surface functionalities.
Collapse
Affiliation(s)
- Charchit Kumar
- Plant Biomechanics Group Freiburg, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Institut Charles Sadron (ICS), CNRS UPR022, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Vincent Le Houérou
- Institut Charles Sadron (ICS), CNRS UPR022, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Thomas Speck
- Plant Biomechanics Group Freiburg, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Holger F. Bohn
- Plant Biomechanics Group Freiburg, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
30
|
Higham TE, Russell AP, Niklas KJ. Leaping lizards landing on leaves: escape-induced jumps in the rainforest canopy challenge the adhesive limits of geckos. J R Soc Interface 2018; 14:rsif.2017.0156. [PMID: 28659411 DOI: 10.1098/rsif.2017.0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/02/2017] [Indexed: 11/12/2022] Open
Abstract
The remarkable adhesive capabilities of geckos have garnered attention from scientists and the public for centuries. Geckos are known to have an adhesive load-bearing capacity far in excess (by 100-fold or more) of that required to support their body mass or accommodate the loading imparted during maximal locomotor acceleration. Few studies, however, have investigated the ecological contexts in which geckos use their adhesive system and how this may influence its properties. Here we develop a modelling framework to assess whether their prodigious adhesive capacity ever comes under selective challenge. Our investigation is based upon observations of escape-induced aerial descents of canopy-dwelling arboreal geckos that are rapidly arrested by clinging to leaf surfaces in mid-fall. We integrate ecological observations, adhesive force measurements, and body size and shape measurements of museum specimens to conduct simulations. Using predicted bending mechanics of petioles and leaf midribs, we find that the drag coefficient of the gecko, the size of the gecko and the size of the leaf determine impact forces. Regardless of the landing surface, safety factors for geckos range from a maximum of just over 10 to a minimum of well under one, which would be the point at which the adhesive system fails. In contrast to previous research that intimates that gecko frictional adhesive capacity is excessive relative to body mass, we demonstrate that realistic conditions in nature may result in frictional capacity being pushed to its limit. The rapid arrest of the lizard from its falling velocity likely results in the maximal loading to which the adhesive system is exposed during normal activities. We suggest that such activities might be primary determinants in driving their high frictional adhesive capacity.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Attachment ability of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:601-611. [DOI: 10.1007/s00359-017-1177-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 11/25/2022]
|
32
|
Zhang C, Zhao X, Lei J, Ma Y, Du F. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces. SOFT MATTER 2017; 13:503-513. [PMID: 27934995 DOI: 10.1039/c6sm02387h] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this research the wetting behavior of agro-surfactant solutions (Triton X-100, SDS, DTAB) on wheat leaf surfaces have been investigated based on the surface free energy, surface tension, and the contact angle. The results show that the contact angle of those surfactant solutions keeps constant with low adsorption at interfaces below 1 × 10-5 mol L-1. With the increase in concentration, the contact angles of Triton X-100 decrease sharply because the adsorption of molecules at solid-liquid interfaces (ΓSL') is several times greater than that at liquid-air interfaces (ΓLV). With regards to SDS and DTAB, the contact angle also decreases but is even larger than 90° above the CMC, while the ratio of ΓSL' to ΓLV is about 1.20, demonstrating that the Gibbs surface excess is related to the structure of surfactant molecules. Obviously, besides the properties of wheat leaf surfaces and surfactant solutions, the wetting behavior mainly depends on their noncovalent interactions. Among these, the hydrophobic interaction is the main force promoting molecules to adsorb on the surface, with the assistance of the Lifshitz-van der Waals interactions and the electrostatic interactions. According to the mechanism of their wetting behavior on plant surfaces, the recipe of pesticide formulation can be adjusted with better wettability to reduce its loss, consequently improving pesticide utilization and decreasing environmental contamination.
Collapse
Affiliation(s)
- Chenhui Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Xin Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Jinmei Lei
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Yue Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
33
|
Crawford N, Endlein T, Pham JT, Riehle M, Barnes WJP. When the going gets rough - studying the effect of surface roughness on the adhesive abilities of tree frogs. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:2116-2131. [PMID: 28144558 PMCID: PMC5238669 DOI: 10.3762/bjnano.7.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/30/2016] [Indexed: 05/05/2023]
Abstract
Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal scales. It was shown that frogs can stick 2-3 times better on small scale roughnesses (3-6 µm asperities), producing higher adhesive and frictional forces, but relatively poorly on the larger scale roughnesses tested (58.5-562.5 µm asperities). Our experiments suggested that, on such surfaces, the pads secrete insufficient fluid to fill the space under the pad, leaving air pockets that would significantly reduce the Laplace pressure component of capillarity. Therefore, we measured how well the adhesive toe pad would conform to spherical asperities of known sizes using interference reflection microscopy. Based on experiments where the conformation of the pad to individual asperities was examined microscopically, our calculations indicate that the pad epithelium has a low elastic modulus, making it highly deformable.
Collapse
Affiliation(s)
- Niall Crawford
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Thomas Endlein
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | | | - Mathis Riehle
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - W Jon P Barnes
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
34
|
England MW, Sato T, Yagihashi M, Hozumi A, Gorb SN, Gorb EV. Surface roughness rather than surface chemistry essentially affects insect adhesion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1471-1479. [PMID: 27826522 PMCID: PMC5082711 DOI: 10.3762/bjnano.7.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/20/2016] [Indexed: 05/24/2023]
Abstract
The attachment ability of ladybird beetles Coccinella septempunctata was systematically investigated on eight types of surface, each with different chemical and topographical properties. The results of traction force tests clearly demonstrated that chemical surface properties, such as static/dynamic de-wettability of water and oil caused by specific chemical compositions, had no significant effect on the attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles.
Collapse
Affiliation(s)
- Matt W England
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Makoto Yagihashi
- Nagoya Municipal Industrial Research Institute, 4-41, Rokuban, Atsuta, Nagoya 456-0058, Japan
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Stanislav N Gorb
- Zoological Institute: Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 9, D - 24118 Kiel, Germany
| | - Elena V Gorb
- Zoological Institute: Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 9, D - 24118 Kiel, Germany
| |
Collapse
|
35
|
Damle VG, Linder R, Sun X, Kemme N, Majure LC, Rykaczewski K. Why is it difficult to wash aphids off from superhydrophobic kale? BIOINSPIRATION & BIOMIMETICS 2016; 11:054001. [PMID: 27694711 DOI: 10.1088/1748-3190/11/5/054001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many varieties of the cabbage family have leaves covered with superhydrophobic epicuticular wax, which provides them with self-cleaning characteristics. Since the wax also lowers insect adhesion, rinsing of the leaves with water should be an effective way of removing the insects. Conversely, we report that superhydrophobicity of tuscan kale increases resistance of aphids to hydrodynamic removal. The exterior surface of the insects is also superhydrophobic and acts as an extension of the leaf's surface. As a result even at moderate impact velocities impinging water drops cannot penetrate under the pests. Consequently, liquid impact aids the insect's adhesion by increasing the normal compressive forces they experience. We show that on a hydrophilic arugula leaf this mechanism is absent, and aphids can be easily washed off with water, as it is able to penetrate underneath them. As for removal of aphids from Tuscan kale, we show that lower surface tension liquids, such as oils and soapy water are more effective, because they are able to wet both the plant and insect surfaces. We also show that aerodynamic removal of aphids consisting of simply exposing the invaded leaf to an air flow is most effective.
Collapse
Affiliation(s)
- Viraj G Damle
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | |
Collapse
|
36
|
Heepe L, Wolff JO, Gorb SN. Influence of ambient humidity on the attachment ability of ladybird beetles ( Coccinella septempunctata). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1322-1329. [PMID: 27826506 PMCID: PMC5082439 DOI: 10.3762/bjnano.7.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/09/2016] [Indexed: 05/29/2023]
Abstract
Many insects possess adhesive foot pads, which enable them to scale smooth vertical surfaces. The function of these organs may be highly affected by environmental conditions. Ladybird beetles (Coccinellidae) possess dense tarsal soles of tenent setae, supplemented with an adhesive fluid. We studied the attachment ability of the seven-spotted ladybird beetle (Coccinella septempunctata) at different humidities by horizontal traction experiments. We found that both low (15%) and high (99%) relative humidities lead to a decrease of attachment ability. The significantly highest attachment forces were revealed at 60% humidity. This relationship was found both in female and male beetles, despite of a deviating structure of adhesive setae and a significant difference in forces between sexes. These findings demonstrate that not only dry adhesive setae are affected by ambient humidity, but also setae that stick due to the capillarity of an oily secretion.
Collapse
Affiliation(s)
- Lars Heepe
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
- Mads Clausen Institute, University of Southern Denmark, NanoSYD Alsion 2, 6400 Sønderborg, Denmark
| | - Jonas O Wolff
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| |
Collapse
|
37
|
Labonte D, Federle W. Scaling and biomechanics of surface attachment in climbing animals. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140027. [PMID: 25533088 PMCID: PMC4275900 DOI: 10.1098/rstb.2014.0027] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Attachment devices are essential adaptations for climbing animals and valuable models for synthetic adhesives. A major unresolved question for both natural and bioinspired attachment systems is how attachment performance depends on size. Here, we discuss how contact geometry and mode of detachment influence the scaling of attachment forces for claws and adhesive pads, and how allometric data on biological systems can yield insights into their mechanism of attachment. Larger animals are expected to attach less well to surfaces, due to their smaller surface-to-volume ratio, and because it becomes increasingly difficult to distribute load uniformly across large contact areas. In order to compensate for this decrease of weight-specific adhesion, large animals could evolve overproportionally large pads, or adaptations that increase attachment efficiency (adhesion or friction per unit contact area). Available data suggest that attachment pad area scales close to isometry within clades, but pad efficiency in some animals increases with size so that attachment performance is approximately size-independent. The mechanisms underlying this biologically important variation in pad efficiency are still unclear. We suggest that switching between stress concentration (easy detachment) and uniform load distribution (strong attachment) via shear forces is one of the key mechanisms enabling the dynamic control of adhesion during locomotion.
Collapse
Affiliation(s)
- David Labonte
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Labonte D, Federle W. Rate-dependence of 'wet' biological adhesives and the function of the pad secretion in insects. SOFT MATTER 2015; 11:8661-73. [PMID: 26376599 DOI: 10.1039/c5sm01496d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many insects use soft adhesive footpads for climbing. The surface contact of these organs is mediated by small volumes of a liquid secretion, which forms thin films in the contact zone. Here, we investigate the role of viscous dissipation by this secretion and the 'bulk' pad cuticle by quantifying the rate-dependence of the adhesive force of individual pads. Adhesion increased with retraction speed, but this effect was independent of the amount of pad secretion present in the contact zone, suggesting that the secretion's viscosity did not play a significant role. Instead, the rate-dependence can be explained by relating the strain energy release rate to the speed of crack propagation, using an established empirical power law. The 'wet' pads' behaviour was akin to that of 'dry' elastomers, with an equilibrium energy release rate close to that of dry van-der-Waals contacts. We suggest that the secretion mainly serves as a 'release layer', minimising viscous dissipation and thereby reducing the time- and 'loading-history'-dependence of the adhesive pads. In contrast to many commercial adhesives which derive much of their strength from viscous dissipation, we show that the major modulator of adhesive strength in 'wet' biological adhesive pads is friction, exhibiting a much larger effect than retraction speed. A comparison between 'wet' and 'dry' biological adhesives, using both results from this study and the literature, revealed a striking lack of differences in attachment performance under varying experimental conditions. Together, these results suggest that 'wet' and 'dry' biological adhesives may be more similar than previously thought.
Collapse
|
39
|
Glatz BA, Tebbe M, Kaoui B, Aichele R, Kuttner C, Schedl AE, Schmidt HW, Zimmermann W, Fery A. Hierarchical line-defect patterns in wrinkled surfaces. SOFT MATTER 2015; 11:3332-3339. [PMID: 25803776 DOI: 10.1039/c5sm00318k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate a novel approach for controlling the formation of line-defects in wrinkling patterns by introducing step-like changes in the Young's modulus of elastomeric substrates supporting thin, stiff layers. Wrinkles are formed upon treating the poly(dimethylsiloxane) (PDMS) substrates by UV/Ozone (UVO) exposure in a uniaxially stretched state and subsequent relaxation. Line defects such as minutiae known from fingerprints are a typical feature in wrinkling patterns. The position where these defects occur is random for homogenous substrate elasticity and film thickness. However, we show that they can be predetermined by using PDMS substrates consisting of areas with different cross-linking densities. While changing the cross-linking density is well known to influence the wrinkling wavelength, we use this parameter in this study to force defect formation. The defect formation is monitored in situ using light microscopy and the mechanical parameters/film thicknesses are determined using imaging AFM indentation measurements. Thus the observed wrinkle-wavelengths can be compared to theoretical predictions. We study the density and morphology of defects for different changes in elasticity and compare our findings with theoretical considerations based on a generalized Swift-Hohenberg-equation to simply emulate the observed pattern-formation process, finding good agreement. The fact that for suitable changes in elasticity, well-ordered defect patterns are observed is discussed with respect to formation of hierarchical structures for applications in optics and nanotechnology.
Collapse
Affiliation(s)
- Bernhard A Glatz
- Department of Physical Chemistry II, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Suzuki K, Hirai Y, Ohzono T. Oscillating friction on shape-tunable wrinkles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10121-10131. [PMID: 24724925 DOI: 10.1021/am5010738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Friction on soft materials is strongly correlated with the associated deformation, which may be controlled by the surface topography. We investigate the wearless sliding friction between a rigid hemispherical indenter and a deformable textured surface, which is shape-tunable wrinkles. The size of the indenter is comparable to the wavelength of the wrinkles. We evaluate the effects on the friction of the aspect ratio of the wrinkles, the applied normal load, and the alignment direction of the wrinkles relative to the sliding direction. The frictional oscillations are observed during sliding in the direction perpendicular to the alignment using optical images and friction profiles. The correlation of friction force oscillation with deformation of the wrinkles is elucidated using Hertz contact theory. Within a cycle of frictional oscillation, the friction force increases as the front part of the indenter elastically plows the crests. When the normal load is high and/or the aspect ratio of the wrinkles is low, the indenter continues to squash the wrinkles and remains in contact with them during sliding. Consequently, the amplitude of friction force oscillation relative to the averaged friction force decreases.
Collapse
Affiliation(s)
- Kosuke Suzuki
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | | | | |
Collapse
|
41
|
Grohmann C, Blankenstein A, Koops S, Gorb SN. Attachment of Galerucella nymphaeae (Coleoptera, Chrysomelidae)to surfaces with different surface energy. J Exp Biol 2014; 217:4213-20. [DOI: 10.1242/jeb.108902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Numerous studies deal with insect attachment on surfaces with different roughness, however, little is known about insect attachment on surfaces with different chemistry. In the present study, we describe attachment structures of the water-lily leaf beetle Galerucella nymphaeae (Linnaeus, 1758) and test the hypothesis that larval and adult stages can generate strongest attachment on surfaces with contact angles that are similar to those of leaves of their host plants. The larvae bear a smooth attachment system with arolium-like structures at their legs and a pygopodium at the abdomen tip. Adults have pointed setae on the ventral side of the two proximal tarsomeres and densely arranged spatula-shaped ones on their third tarsomere. In a centrifugal force tester, larvae and adults attained highest friction forces and safety factors on surfaces with a water contact angle of 83° compared to those of 6, 26 and 109°. This comes close to the contact angle of their host plant Nuphar lutea (86°). The similarity of larval and adult performances might be a result of a similar chemical composition of their attachment fluid. We compare our findings with previous studies on the forces insects generate on surfaces with different surface energies.
Collapse
|