1
|
Mohammadi S, Khavarpour M, Ghadi A. Design of multiple-function matrix encapsulated with Marjoram extract to support cellular functions, stimulate collagen synthesis and decrease infection in wound. Sci Rep 2024; 14:21109. [PMID: 39256491 PMCID: PMC11387659 DOI: 10.1038/s41598-024-71525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to assess the role of the combination of design techniques of the engineered substrates, and the effect of encapsulating Marjoram (Origanum Majorana L.) into the matrix network was studied. To this end, PVA-PEG matrices were designed through 3 techniques of freeze-thaw (FT), the combination of both methods of freeze-drying and freeze-thawing(FT-FD), and ternary technique(freeze-drying,freeze-thawing,cross-linking(FT-FD/CL)), by combining equal volume ratios of both polymers. The results indicated the ternary technique can provide better physicochemical properties(porosity: 96%, lower degradation rate, higher modulus) compared to FT and FT-FD methods. Afterward, encapsulation of Marjoram-extracted bio-actives in the matrix network designed with the ternary technique demonstrated that the increase in the extract concentration up to 3% can increase encapsulation efficiency. The encapsulation also caused a more cohesive network by better bonding between functional groups in herbal biomolecules and polymer chains of the matrix. Mass transport mechanisms and release kinetics of matrix-encapsulated bio-actives indicated a deviation from Fickian diffusion and the release by diffusion and swelling process. Biologically, matrix-loaded herbal carbohydrate(Epi-alpha-Cadinol) improved fibroblast adhesion and distribution on the substrate surface, and led to the better synthesis of collagen fibers, especially in 3% herbal extract, and antibacterial activities owing to the controlled release of sesquiterpenoids and N-Acetyl-L-proline.
Collapse
Affiliation(s)
- Shahab Mohammadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Maryam Khavarpour
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Arezoo Ghadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
2
|
Lan X, Luo M, Li M, Mu L, Li G, Chen G, He Z, Xiao J. Swim bladder-derived biomaterials: structures, compositions, properties, modifications, and biomedical applications. J Nanobiotechnology 2024; 22:186. [PMID: 38632585 PMCID: PMC11022367 DOI: 10.1186/s12951-024-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Animal-derived biomaterials have been extensively employed in clinical practice owing to their compositional and structural similarities with those of human tissues and organs, exhibiting good mechanical properties and biocompatibility, and extensive sources. However, there is an associated risk of infection with pathogenic microorganisms after the implantation of tissues from pigs, cattle, and other mammals in humans. Therefore, researchers have begun to explore the development of non-mammalian regenerative biomaterials. Among these is the swim bladder, a fish-derived biomaterial that is rapidly used in various fields of biomedicine because of its high collagen, elastin, and polysaccharide content. However, relevant reviews on the biomedical applications of swim bladders as effective biomaterials are lacking. Therefore, based on our previous research and in-depth understanding of this field, this review describes the structures and compositions, properties, and modifications of the swim bladder, with their direct (including soft tissue repair, dural repair, cardiovascular repair, and edible and pharmaceutical fish maw) and indirect applications (including extracted collagen peptides with smaller molecular weights, and collagen or gelatin with higher molecular weights used for hydrogels, and biological adhesives or glues) in the field of biomedicine in recent years. This review provides insights into the use of swim bladders as source of biomaterial; hence, it can aid biomedicine scholars by providing directions for advancements in this field.
Collapse
Affiliation(s)
- Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Meiling Li
- Southwest Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Kaur D, Purwar R. Nanotechnological advancement in artificial intelligence for wound care. NANOTECHNOLOGICAL ASPECTS FOR NEXT-GENERATION WOUND MANAGEMENT 2024:281-318. [DOI: 10.1016/b978-0-323-99165-0.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Salmanin Amiri M, Ghadi A, Sharifzadeh Baei M. Design of bio-scaffold conjugated with chitosan-PEG nano-carriers containing bio-macromolecules of Verbascum sinuatum L. to differentiate human adipose-derived stem cells into dermal keratinocytes. Int J Biol Macromol 2024; 255:127520. [PMID: 37865358 DOI: 10.1016/j.ijbiomac.2023.127520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Regenerative medicine and drug delivery systems provide promising approaches for the treatment of skin lesions. However, the design of engineered substrates containing therapeutic agents for cell proliferation and its differentiation into skin cells, with skin-like patterns, is the major challenge. Here, to overcome this problem, a hybrid scaffold conjugated with nanoparticles containing the extract of Verbascum sinuatum L. flowers (HE) was designed. To this end, (chitosan-PEG)-based nanocarriers (Chi-PEG) were first prepared in the volume ratios of 90:10, 80:20, 70:30, and 50:50 v/v. The results indicated that the 70:30 ratio possessed better physical/morphologic properties along with more suitable stability than other nanoparticles (encapsulation-efficiency:86.34 %, zeta-potential:21.2 mV, and PDI:0.30). Afterward, PCL-collagen biologic scaffold (PCL-Coll) were prepared by the lyophilization method, then conjugated with selected nanoparticles(Chi-PEG70:30-HE). Notably, in addition to PCL-Coll/Chi-PEG-HE, two scaffolds of PCL-Coll and PCL-Coll/Chi-PEG were prepared to evaluate the role of conjugation in the release behavior of herbal bio-macromolecules. Based on the results, the conjugation process was led to a more stable release, compared to unconjugated nanoparticles. The mentioned process also created an integrated network along with better physicomechanical properties [modulus:12.31 MPa, tensile strength:4.44 MPa, smaller pore size(2 μm), and better swelling (100.27 %) with a symmetrical wettability on the surface]. PCL-Coll/Chi-PEG-HE scaffold was also resulted in higher expression levels of K10 and K14 keratinocytes with biomimetic patterns than PCL-Coll/Chi-PEG scaffold. This could be due to the active ingredients of V. sinuatum extract like alkaloids, flavonoids, and triterpenoids which imparts the wound healing (anti-inflammatory, anti-bacterial, anti-oxidant) properties to this scaffold. It seems that the use of bioactive materials like herbal extracts, in the form of encapsulated into polymeric nanocarriers, in the structure of engineered scaffolds can be a promising option for regenerating damaged skin without scarring. Hence, this study can provide innovative insights into the combination of two techniques of drug delivery and tissue engineering to design bio-scaffolds containing bioactive molecules with better therapeutic approaches.
Collapse
Affiliation(s)
- Mahsa Salmanin Amiri
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 678, Iran
| | - Arezoo Ghadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 678, Iran.
| | - Mazyar Sharifzadeh Baei
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol 678, Iran
| |
Collapse
|
5
|
Song Z, Yu T, Ge C, Shen X, Li P, Wu J, Tang C, Liu T, Zhang D, Li S. Advantage effect of Dalbergia pinnata on wound healing and scar formation of burns. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116872. [PMID: 37393027 DOI: 10.1016/j.jep.2023.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalbergia pinnata, as a natural and ethnic medicine in China, has been used for burns and wounds with a long history, which has the effect of invigorating blood and astringent sores. However, there were no reports on the advantage activity of burns. AIM OF STUDY The purpose of this study was to screen out the best active extract part of Dalbergia pinnata and investigate its therapeutic effect on wound healing and scar resolution. MATERIALS AND METHODS Rat burn model was established and the healing effects of extracts from Dalbergia pinnata on burn wounds were evaluated by the percentage of wound contraction and period of epithelialization. Histological observation, immunohistochemistry, immunofluorescence and ELISA were used for the examination of inflammatory factors, TGF-β1, neovascularization and collagen fibers through the period of epithelialization. In addition, the effect of the optimal extraction site on fibroblast cells was evaluated by cell proliferation and cell migration assays. The extracts of Dalbergia pinnata were analyzed by UPLC-Q/TOF-MS or GC-MS technique. RESULTS Compared to the model group, there were better wound healing, suppressed inflammatory factors, more neovascularization as well as newly formed collagen in the ethyl acetate extract (EAE) and petroleum ether extract (PEE) treatment groups. The ratio of Collagen I and Collagen III was lower in the EAE and PEE treatment groups, suggesting a potential for reduced scarring. Furthermore, EAE and PEE could repair wounds by up-regulating TGF-β1 in the early stage of wound repair and down-regulating TGF-β1 in the late stage. In vitro studies showed that both EAE and PEE were able to promote NIH/3T3 cells proliferation and migration compared with the control group. CONCLUSIONS In this study, EAE and PEE were found to significantly accelerate wound repair and might have an inhibitory effect on the generation of scars. It was also hypothesized that the mechanism might be related to the regulation of TGF-β1 secretion. This study provided an experimental basis for the development of topical drugs for the treatment of burns with Dalbergia pinnata.
Collapse
Affiliation(s)
- Zhuoyue Song
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510006, Guangdong, PR China; Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Tian Yu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Chengcheng Ge
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China.
| | - Xiuting Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Pan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Jinchuan Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510006, Guangdong, PR China.
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Tao Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Danyan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| | - Shijie Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, PR China.
| |
Collapse
|
6
|
Weng T, Yang M, Zhang W, Jin R, Xia S, Zhang M, Wu P, He X, Han C, Zhao X, Wang X. Dual gene-activated dermal scaffolds regulate angiogenesis and wound healing by mediating the coexpression of VEGF and angiopoietin-1. Bioeng Transl Med 2023; 8:e10562. [PMID: 37693053 PMCID: PMC10487340 DOI: 10.1002/btm2.10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 09/12/2023] Open
Abstract
The vascularization of dermal substitutes is a key challenge in efforts to heal deep skin defects. In this study, dual gene-activated dermal scaffolds (DGADSs-1) were fabricated by loading nanocomposite particles of polyethylenimine (PEI)/multiple plasmid DNAs (pDNAs) encoding vascular endothelial growth factor and angiopoietin-1 at a ratio of 1:1. In a similar manner, DGADSs-2 were loaded with a chimeric plasmid encoding both VEGF and Ang-1. In vitro studies showed that both types of DGADSs released PEI/pDNA nanoparticles in a sustained manner; they demonstrated effective transfection ability, leading to upregulated expression of VEGF and Ang-1. Furthermore, both types of DGADSs promoted fibroblast proliferation and blood vessel formation, although DGADSs-1 showed a more obvious promotion effect. A rat full-thickness skin defect model showed that split-thickness skin transplanted using a one-step method could achieve full survival at the 12th day after surgery in both DGADSs-1 and DGADSs-2 groups, and the vascularization time of dermal substitutes was significantly shortened. Compared with the other three groups of scaffolds, the DGADSs-1 group had significantly greater cell infiltration, collagen deposition, neovascularization, and vascular maturation, all of which promoted wound healing. Thus, compared with single-gene-activated dermal scaffolds, DGADSs show greater potential for enhancing angiogenesis. DGADSs with different loading modes also exhibited differences in terms of angiogenesis; the effect of loading two genes (DGADSs-1) was better than the effect of loading a chimeric gene (DGADSs-2). In summary, DGADSs, which continuously upregulate VEGF and Ang-1 expression, offer a new functional tissue-engineered dermal substitute with the ability to activate vascularization.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
- Department of Burn and Plastic SurgeryChildren's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical CenterHangzhouChina
| | - Min Yang
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Wei Zhang
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Ronghua Jin
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Sizhan Xia
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Pan Wu
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Xiaojie He
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Chunmao Han
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| | - Xiong Zhao
- Department of Burn and Plastic SurgeryChildren's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical CenterHangzhouChina
| | - Xingang Wang
- Department of Burns & Wound Care CentreSecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Severe Trauma and Burns of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
7
|
Dasgupta S, Gope A, Mukhopadhyay A, Kumar P, Chatterjee J, Barui A. Chitosan-collagen-fibrinogen uncrosslinked scaffolds possessing skin regeneration and vascularization potential. J Biomed Mater Res A 2023; 111:725-739. [PMID: 36573698 DOI: 10.1002/jbm.a.37488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Clinical success of regenerative medicine for treating deep-tissue skin injuries depends on the availability of skin grafts. Though bioengineered constructs are tested clinically, lack of neovascularization provide only superficial healing. Thus constructs, which promotes wound healing and supports vascularization has gained priority in tissue engineering. In this study, chitosan-collagen-fibrinogen (CCF) scaffold was fabricated using freeze-drying method without using any chemical crosslinkers. CCF scaffolds proved cytocompatibility and faster healing in in vitro scratch assay of primary human adult dermal fibroblasts cells with progressively increasing vascular endothelial growth factor-A and reducing vascular endothelial growth factor receptor 1 expressions. Skin regeneration evaluated on in vivo full thickness wound model confirmed faster remodeling with angiogenic signatures in CCF scaffold-implanted mice. Histopathological observations corroborated with stereo-zoom and SS-optical coherence tomography images of wound sites to prove the maturation of healing-bed, after 12 days of CCF implantation. Therefore, it is concluded that CCF scaffolds are promising for skin tissue regeneration and demonstrates pro-angiogenic potential.
Collapse
Affiliation(s)
- Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Ayan Gope
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Anurup Mukhopadhyay
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Prashant Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| |
Collapse
|
8
|
Pan X, You C, Wu P, Wang X, Han C. The optimization of PLGA knitted mesh reinforced-collagen/chitosan scaffold for the healing of full-thickness skin defects. J Biomed Mater Res B Appl Biomater 2023; 111:763-774. [PMID: 36367718 PMCID: PMC10099260 DOI: 10.1002/jbm.b.35187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
Collagen-based scaffolds reveals promising to repair severe skin defects. The mechanical strength of collagen-based scaffold (CCS) limited its clinical application. Embedding poly(lactic-co-glycolic) acid (PLGA) knitted mesh into CCS improves the mechanical strength of the scaffold. This study was conducted to optimize the configuration of PLGA knitted mesh-collagen-chitosan scaffold (PCCS), and explore possible mechanisms. PLGA knitted mesh was embedded in CCS through freeze-drying method. With the PLGA knitted mesh located at the bottom, middle, or both bottom and top layers of the CCS, three kinds of PCCS were developed. A full-thickness skin wound model was established in Sprague Dawley rats to evaluate the therapeutic effects of different PCCS against CCS. The properties and healing effect of the scaffolds were investigated. Several growth factors and chemotactic factors, that is, VEGF, PDGF, CD31, α-SMA, TGF-β1, and TGF-β3 were analyzed and evaluated. Re-epithelialization and angiogenesis were observed in all animal groups with the treatment of three kinds of PCCS scaffolds and the CCS scaffold (control). The protein and gene expression of VEGF, PDGF, CD31, α-SMA, TGF-β1, and TGF-β3 showed different dynamics at different time points. Based on the healing effects and the expression of growth factors and chemotactic factors, scaffold with the PLGA knitted mesh located at the bottom layer of the CCS demonstrated the best healing effect and accelerated re-epithelialization and angiogenesis among all the scaffolds evaluated. PCCS with the PLGA mesh located in the bottom layer of the scaffold accelerated wound healing by creating a more supportive environment for re-epithelialization and angiogenesis.
Collapse
Affiliation(s)
- Xuanliang Pan
- Department of Burns and Wound Repair, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, People's Republic of China
| | - Chuangang You
- Department of Burns and Wound Repair, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, People's Republic of China
| | - Pan Wu
- Department of Burns and Wound Repair, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xingang Wang
- Department of Burns and Wound Repair, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, People's Republic of China
| | - Chunmao Han
- Department of Burns and Wound Repair, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Chen L, Huang C, Zhong Y, Chen Y, Zhang H, Zheng Z, Jiang Z, Wei X, Peng Y, Huang L, Niu L, Gao Y, Ma J, Yang L. Multifunctional sponge scaffold loaded with concentrated growth factors for promoting wound healing. iScience 2022; 26:105835. [PMID: 36624841 PMCID: PMC9823238 DOI: 10.1016/j.isci.2022.105835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Although both are applied in regenerative medicine, acellular dermal matrix (ADM) and concentrated growth factor (CGF) have their respective shortcoming: The functioning of CGF is often hindered by sudden release effects, among other problems, and ADM can only be used in outer dressing for wound healing. In this study, a compound network with physical-chemical double cross-linking was constructed using chemical cross-linking and the intertwining of ADM and chitosan chains under freezing conditions; equipped with good biocompatibility and cell/tissue affinity, the heparin-modified composite scaffold was able to significantly promote cell adhesion and proliferation to achieve adequate fixation and slow down the release of CGF; polydopamine nanoparticles having excellent near-infrared light photothermal conversion ability could significantly promote the survival of rat autologous skin grafts. In a word, this multifunctional composite scaffold is a promising new type of implant biomaterial capable of delivering CGF to promote the healing of full-thickness skin defects.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yu Zhong
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yujia Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Libin Niu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| |
Collapse
|
10
|
Shu H, Xia Z, Qin X, Wang X, Lu W, Luo Q, Zhang Z, Xiong X. The clinical efficacy of collagen dressing on chronic wounds: A meta-analysis of 11 randomized controlled trials. Front Surg 2022; 9:978407. [PMID: 36117827 PMCID: PMC9473315 DOI: 10.3389/fsurg.2022.978407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aims to evaluate the clinical efficacy of collagen dressing for patients with chronic wounds. Materials and methods Relevant randomized controlled trials were searched from the databases such as PubMed, EMBASE, and the Cochrane library as of January 2022. For dichotomous outcomes and continuous outcomes, risk ratio and mean difference were calculated, respectively. Subgroup analysis was performed according to the type of chronic ulcer and follow-up. In addition, trial sequential analysis (TSA) was performed to further verify the results. Jadad score was used to assess the quality of trials. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was utilized to assess the level of evidence for outcomes. Results In 11 studies, a total of 961 patients of whom 485 were in the collagen group. Compared with standard of care (SOC) alone, the group that added an extra collagen dressing achieved a higher wound healing rate (Risk Ratio = 1.53; 95% CI, 1.33–1.77). The collagen group also showed a higher healing velocity than the SOC group (Mean Difference, 2.69; 95% CI, 0.87–4.51). In addition, the adverse events related to dressing between the two groups were similar (Risk Ratio = 0.67; 95% CI, 0.44–1.01). Conclusion Collagen dressing increases the wound healing rate and may be an effective and safe treatment for chronic wound management. However, more extensive research shall be conducted to substantiate these results. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=245728, identifier: CRD42021245728.
Collapse
Affiliation(s)
- Hongxin Shu
- Department of Vascular Surgery, The First Hospital of Nanchang, Nanchang, China
- Second Clinical Medical College, Nanchang University Medical School, Nanchang, China
| | - Zhiyu Xia
- Second Clinical Medical College, Nanchang University Medical School, Nanchang, China
| | - Xuan Qin
- Department of Vascular Surgery, The First Hospital of Nanchang, Nanchang, China
| | - Xiaowei Wang
- Second Clinical Medical College, Nanchang University Medical School, Nanchang, China
| | - Weihang Lu
- Vascular and Endovascular Surgery, the PLA General Hospital, Beijing, China
| | - Qingyu Luo
- Department of Vascular Surgery, The First Hospital of Nanchang, Nanchang, China
| | - Zhenxiong Zhang
- Department of Vascular Surgery, The First Hospital of Nanchang, Nanchang, China
| | - Xiaowei Xiong
- Department of Vascular Surgery, The First Hospital of Nanchang, Nanchang, China
- Correspondence: Xiaowei Xiong
| |
Collapse
|
11
|
Zhang J, Elango J, Wang S, Hou C, Miao M, Li J, Na L, Wu W. Characterization of Immunogenicity Associated with the Biocompatibility of Type I Collagen from Tilapia Fish Skin. Polymers (Basel) 2022; 14:polym14112300. [PMID: 35683972 PMCID: PMC9182742 DOI: 10.3390/polym14112300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen from fish has been proven to have a low antigenicity that has no difference in the genetic codes compared with mammalian-based collagen. This study was designed to investigate the impact of tilapia skin collagen on immunogenicity and biocompatibility in vivo and in vitro. The structural characteristics of both acid-soluble and pepsin-soluble collagen (ASC and PSC), determined using SDS-PAGE and atomic force microscopy imaging experiments, revealed that the collagen had the basic characteristics of type I collagen (COL-I). The in vitro biocompatibility of the collagens showed good cell proliferation against human foreskin fibroblast (HFF-1) cells. PSC and ASC were considered to be almost non-hemolytic biomaterials with favorable blood compatibility in hemolysis tests. The in vivo antigenicity of the collagen in an ICR mouse model evoked an acceptable specific inflammatory response compared to bovine collagen. The implant’s position had developed a complete granulation tissue and the sponge disappeared after 8 weeks. The level of cytokines produced by the COL-I immune response was much lower than bovine collagen, which indicated the appropriate implantable property and biodegradability of the collagens. In conclusion, the tilapia COL-I has a lower immunogenicity with better compatibility than bovine COL-I and is a potential alternative to conventional mammalian collagens in biomedical uses.
Collapse
Affiliation(s)
- Jingyi Zhang
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China;
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China or (J.E.); (C.H.)
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Shujun Wang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Chunyu Hou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China or (J.E.); (C.H.)
| | - Meng Miao
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (M.M.); (J.L.)
| | - Jia Li
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (M.M.); (J.L.)
| | - Lixin Na
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China;
- Correspondence: (L.N.); (W.W.)
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China or (J.E.); (C.H.)
- Correspondence: (L.N.); (W.W.)
| |
Collapse
|
12
|
Xie Y, Qiao K, Yue L, Tang T, Zheng Y, Zhu S, Yang H, Fang Z. A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound. Bioact Mater 2022; 17:248-260. [PMID: 35386438 PMCID: PMC8965089 DOI: 10.1016/j.bioactmat.2022.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties. Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS. The S-DCBC/CS composites could promote epidermal growth and collagen production.
Collapse
Affiliation(s)
- Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Lina Yue
- Hebei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical and Environmental Engineering, North China Institute of Science and Technology, Langfang, 065201, Hebei, China
| | - Tao Tang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
- Corresponding author.
| | - Shihui Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Corresponding author.
| | - Huiyi Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ziyuan Fang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
13
|
Nikolskiy VI, Sergatskiy KI, Sheremet DP, Shabrov AV. [Scaffold technologies in regenerative medicine: history of the issue, current state and prospects of application]. Khirurgiia (Mosk) 2022:36-41. [PMID: 36398953 DOI: 10.17116/hirurgia202211136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Development of methods for replacing human tissue defects based on scaffold technologies in regenerative surgery proves the prospects of this industry. High-tech manufacturing of scaffold matrices suggests complete replacement of obsolete methods of treatment with new developments in the near future. At the same time, additional studies devoted to these methods and their results are needed. One of the promising goals for development of scaffold technologies is creation of versatile materials used in various fields of regenerative medicine.
Collapse
|
14
|
Sun L, Li L, Wang Y, Li M, Xu S, Zhang C. A collagen-based bi-layered composite dressing for accelerated wound healing. J Tissue Viability 2021; 31:180-189. [PMID: 34538555 DOI: 10.1016/j.jtv.2021.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
AIM OF THE STUDY The aim of the study was to fabricate collagen-based composite dressings, evaluate the efficiency for wound healing and reveal the mechanism of promoting wound healing. MATERIALS AND METHODS An innovative bi-layered composite wound dressing was developed using two marine biomacromolecules (collagen and chitosan). Full-thickness skin defect model was performed to evaluate the wound healing activity in vivo. The levels of inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin (IL-1, IL-6, IL-8) and growth factors like transforming growth factor beta (TGF-β), vascular epidermal growth factor (VEGF) and basic fibroblast growth factor (bFGF) were quantified by ELISA assays. The total amount of collagen was quantified by hydroxyproline content. The proliferation and viability of fibroblast cells cultured on collagen sponges were determined by CCK-8 assay. RESULTS The results of wound closure and histopathological analysis indicated that non-crosslinked collagen-based bi-layered composite dressing stimulated wound healing, accelerated re-epithelialization and accomplished wound healing within a time span of 28 days. The results of levels of inflammatory cytokines and growth factors showed that collagen-based composite dressings could reduce the inflammatory response and upregulate growth factors levels to accelerate the wound healing. The results of hydroxyproline content and CCK-8 assay indicated that collagen-based composite dressings could also promote collagen synthesis and fibroblasts viability and proliferation. CONCLUSION The non-crosslinked collagen-based bi-layered composite dressing could be applied for an efficient and ideal wound dressing. Therefore, the findings provided the essential theoretical basis for the potential of collagen-based composite dressing applied in wound healing fields.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510300, PR China.
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510300, PR China.
| | - Mingbo Li
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Shumin Xu
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Chengpeng Zhang
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| |
Collapse
|
15
|
Sun L, Li M, Gong T, Feng J. Preparation and evaluation of an innovative antibacterial bi-layered composite dressing for skin wound healing. J Tissue Viability 2021; 30:454-461. [PMID: 33962852 DOI: 10.1016/j.jtv.2021.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 02/01/2023]
Abstract
AIM OF THE STUDY The aim of the current study was to develop collagen-based bi-layered composite dressings with antibacterial property and evaluate the efficiency for wound healing. MATERIALS AND METHODS A bi-layered composite wound dressing was fabricated using two marine biomacromolecules (collagen and chitosan or carboxymethyl chitosan). Non-crosslinked and N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/N-Hydroxy succinimide (EDC/NHS) cross-linked collagen sponges fabricated by vacuum freeze-drying technology was used as the inner layer. The medical spun-laced nonwoven coated with chitosan and carboxymethyl chitosan was used as the outer layer. The antibacterial activities against E. coli and S. aureus were evaluated by the inhibition zone assay. Deep second-degree scald model was performed to evaluate the efficiency of bi-layered composite dressings for wound healing. RESULTS In view of comprehensive evaluation of appearance and in vitro antibacterial activity, medical spun-laced nonwoven coated with 3% of chitosan solution was chosen to be used as the optimized preparation conditions to produce the outer layer of composite dressing, which acted as a barrier against microorganisms and provided mechanical support. Furthermore, the results of wound closure and histopathological analysis indicated that EDC/NHS cross-linked collagen-based bi-layered composite dressing was superior to non-crosslinked and commercial products, which stimulated the wound healing process and accomplished deep second-degree scalded skin healing within a time span of 28 days. CONCLUSION The EDC/NHS cross-linked collagen-based bi-layered composite dressing had immense potential to be applied for an ideal wound dressing for more efficient and faster wound healing. Therefore, the findings provided the essential theoretical basis for great potential of collagen-based composite dressing used in wound healing applications.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China.
| | - Mingbo Li
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Tengfei Gong
- Weihai Food and Drug Inspection Testing Center, No.52, Xin Wei Road, Weihai, Shandong Province, 264200, PR China
| | - Jianling Feng
- Weihai Food and Drug Inspection Testing Center, No.52, Xin Wei Road, Weihai, Shandong Province, 264200, PR China
| |
Collapse
|
16
|
He C, Ke M, Zhong Z, Ye Q, He L, Chen Y, Zhou J. Effect of the Degree of Acetylation of Chitin Nonwoven Fabrics for Promoting Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:1833-1842. [PMID: 35014529 DOI: 10.1021/acsabm.0c01536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chitin and chitosan have been extensively used as wound dressings because of their special functions to promote wound healing. However, there was little focus on the effects of the degree of acetylation (DA) on wound healing. In this work, the regenerated chitin nonwoven fabrics with DA values of 90, 71, 60, and 42% were prepared, and the morphology and physical performances of the fabrics were characterized. Moreover, the effects of DA of the chitin nonwoven fabrics on wound recovery were studied with a full-thickness skin defect model in rats. In vitro experiments indicated that the chitin nonwoven fabrics exhibited good biocompatibility and blood compatibility and a low blood-clotting index (BCI). In vivo experiments revealed that the chitin nonwoven fabrics could accelerate wound healing more effectively than gauze by promoting re-epithelialization and collagen deposition as well as by stimulating neovascularization. The results of the wound healing process showed that DA of the chitin nonwoven fabrics had a profound effect on promoting wound healing. Notably, the regenerated chitin nonwoven fabrics with 71% DA significantly improved the wound healing compared to the commercial wound dressing Algoplaque film. Therefore, the regenerated chitin nonwoven fabrics are promising candidates for wound healing.
Collapse
Affiliation(s)
- Chen He
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Meifang Ke
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Liu He
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Jinping Zhou
- Department of Chemistry, Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Evaluation of Acellular Dermal Matrix (ADM) as a Scaf-fold for Adipose-Derived Stem Cell Transfer in the Rat Model. World J Plast Surg 2021. [DOI: 10.52547/wjps.10.2.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021; 12:20417314211028574. [PMID: 34345398 PMCID: PMC8283073 DOI: 10.1177/20417314211028574] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Skin and skin appendages are vulnerable to injury, requiring rapidly reliable regeneration methods. In recent years, 3D bioprinting has shown potential for wound repair and regeneration. 3D bioprinting can be customized for skin shape with cells and other materials distributed precisely, achieving rapid and reliable production of bionic skin substitutes, therefore, meeting clinical and industrial requirements. Additionally, it has excellent performance with high resolution, flexibility, reproducibility, and high throughput, showing great potential for the fabrication of tissue-engineered skin. This review introduces the common techniques of 3D bioprinting and their application in skin tissue engineering, focusing on the latest research progress in skin appendages (hair follicles and sweat glands) and vascularization, and summarizes current challenges and future development of 3D skin printing.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Wu
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronghua Jin
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Sizhan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuangang You
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
da Silva HN, da Silva MC, dos Santos FSF, da Silva Júnior JAC, Barbosa RC, Fook MVL. Chitosan Woven Meshes: Influence of Threads Configuration on Mechanical, Morphological, and Physiological Properties. Polymers (Basel) 2020; 13:polym13010047. [PMID: 33375542 PMCID: PMC7795709 DOI: 10.3390/polym13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop meshes from the weaving of mono- and multifilament wet-spun chitosan (CS), for possible biomedical applications. In the wet-spinning process, CS solution (4% w/v) was extruded in a coagulation bath containing 70% sodium hydroxide solution (0.5 M), and 30% methanol was used. The multifilament thread was prepared by twisted of two and three monofilaments. CS threads obtained were characterized by tensile tests and scanning electron microscopy (SEM). Moreover, it was verified from the morphological tests that threads preserve the characteristics of the individual filaments and present typical “skin-core” microstructure obtained by wet spinning. CS woven meshes obtained were evaluated by optical microscopy (OM), tensile test, swelling degree, and in vitro enzymatic biodegradation. Mechanical properties, biodegradation rate, and amount of fluid absorbed of CS woven meshes were influenced by thread configuration. Hydrated CS meshes showed a larger elastic zone than the dry state. Therefore, CS woven meshes were obtained with modular properties from thread configuration used in weaving, suggesting potential applications in the biomedical field, like dressings, controlled drug delivery systems, or mechanical support.
Collapse
Affiliation(s)
- Henrique Nunes da Silva
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - Milena Costa da Silva
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - Flavia Suzany Ferreira dos Santos
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - José Alberto Campos da Silva Júnior
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - Rossemberg Cardoso Barbosa
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil;
| | - Marcus Vinícius Lia Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil;
- Correspondence: ; Tel.: +55-(83)-2101-1841
| |
Collapse
|
20
|
Shahin H, Elmasry M, Steinvall I, Söberg F, El-Serafi A. Vascularization is the next challenge for skin tissue engineering as a solution for burn management. BURNS & TRAUMA 2020; 8:tkaa022. [PMID: 32766342 PMCID: PMC7396265 DOI: 10.1093/burnst/tkaa022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Indexed: 12/19/2022]
Abstract
Skin regeneration represents a promising line of management for patients with skin loss, including burn victims. The current approach of spraying single cells over the defective areas results in variable success rates in different centers. The modern approach is to synthesize a multilayer skin construct that is based on autologous stem cells. One of the main complications with different types of transplants is sloughing due to the absence of proper vascularization. Ensuring proper vascularization will be crucial for the integration of skin constructs with the surrounding tissues. Combination of the right cells with scaffolds of proper physico-chemical properties, vascularization can be markedly enhanced. The material effect, pore size and adsorption of certain proteins, as well as the application of appropriate growth factors, such as vascular endothelial growth factors, can have an additive effect. A selection of the most effective protocols is discussed in this review.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
- Faculty of Biotechnology, MSA University, 26 July Mehwar Road, 125 85, 6th October City. Egypt
| | - Moustafa Elmasry
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Folke Söberg
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ahmed El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| |
Collapse
|
21
|
Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020; 8:3574-3600. [PMID: 32555780 DOI: 10.1039/d0bm00157k] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering (TE) provides a practicable method for tissue and organ repair or substitution. As the most important component of TE, a scaffold plays a critical role in providing a growing environment for cell proliferation and functional differentiation as well as good mechanical support. And the restorative effects are greatly dependent upon the nature of the scaffold including the composition, morphology, structure, and mechanical performance. Medical textiles have been widely employed in the clinic for a long time and are being extensively investigated as TE scaffolds. However, unfortunately, the advantages of textile technology cannot be fully exploited in tissue regeneration due to the ignoring of the diversity of fabric structures. Therefore, this review focuses on textile-based scaffolds, emphasizing the significance of the fabric design and the resultant characteristics of cell behavior and extracellular matrix reconstruction. The structure and mechanical behavior of the fabrics constructed by various textile techniques for different tissue repairs are summarized. Furthermore, the prospect of structural design in the TE scaffold preparation was anticipated, including profiled fibers and some unique and complex textile structures. Hopefully, the readers of this review would appreciate the importance of structural design of the scaffold and the usefulness of textile-based TE scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sun L, Li B, Song W, Zhang K, Fan Y, Hou H. Comprehensive assessment of Nile tilapia skin collagen sponges as hemostatic dressings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110532. [PMID: 32228912 DOI: 10.1016/j.msec.2019.110532] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 05/20/2019] [Accepted: 12/05/2019] [Indexed: 02/01/2023]
Abstract
Nile tilapia skin collagen sponge was fabricated by lyophilization and cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in the presence of N-hydroxysuccinimide (EDC/NHS). The physicochemical properties were examined. The EDC/NHS cross-linked collagen sponge presented an enhanced water absorption capacity. In addition, biocompatibility and hemostatic efficiency were evaluated by acute systemic toxicity assay, dermal irritation test, intradermal reaction test, sensitization test, cytotoxicity, blood clotting assay in vitro, and liver and femoral artery hemorrhage models in vivo. Results showed that the produced collagen sponges before and after EDC/NHS cross-linking had excellent biocompatibility. Furthermore, EDC/NHS cross-linking promoted fibroblast cells viability and proliferation reflected by the MTT reduction assay. Meanwhile, EDC/NHS cross-linked collagen sponge exhibited the best blood clotting ability and hemostatic efficiency in rat femoral artery hemorrhage model in comparison with non-crosslinked and commercial collagen sponges. Our results demonstrated that the fabricated collagen sponges could be used as perfect hemostatic dressings.
Collapse
Affiliation(s)
- Leilei Sun
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province 264005, PR China
| | - Bafang Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Wenkui Song
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Kai Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266237, PR China.
| |
Collapse
|
23
|
Izadyari Aghmiuni A, Heidari Keshel S, Sefat F, Akbarzadeh Khiyavi A. Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. Int J Biol Macromol 2019; 142:668-679. [PMID: 31622718 DOI: 10.1016/j.ijbiomac.2019.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
The use of biological macromolecules like quince seed mucilage (QSM), as the common curative practice has a long history in traditional folk medicine to cure wounds and burns. However, this gel cannot be applied on exudative wounds because of the high water content and non-absorption of infection of open wounds. It also limits cell-to-cell interactions and leads to the slow wound healing process. In this study to overcome these problems, a novel QSM-based hybrid scaffold modified by PCL/PEG copolymer was designed and characterized. The properties of this scaffold (PCL/QSM/PEG) were also compared with four scaffolds of PCL/PEG, PCL/Chitosan/PEG, chitosan, and QSM, to assess the role of QSM and the combined effect of polymers in improving the function of skin tissue-engineered scaffolds. It was found, the physicochemical properties play a crucial role in regulating cell behaviors so that, PCL/QSM/PEG as a smart/stimuli-responsive bio-matrix promotes not only human-adipose stem cells (h-ASCs) adhesion but also supports fibroblasts growth, via providing a porous-network. PCL/QSM/PEG could also induce keratinocytes at a desirable level for wound healing, by increasing the mechanobiological signals. Immunocytochemistry analysis confirmed keratinocytes differentiation pattern and their normal phenotype on PCL/QSM/PEG. Our study demonstrates, QSM as a differentiation/growth-promoting biological factor can be a proper candidate for design of wound dressings and skin tissue-engineered substrates containing cell.
Collapse
Affiliation(s)
- Azadeh Izadyari Aghmiuni
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran; Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK; Interdisciplinary Research Centre in Polymer Science & Technology (IRC Polymer), University of Bradford, Bradford, UK
| | | |
Collapse
|
24
|
Wang C, Li B, Chen T, Mei N, Wang X, Tang S. Preparation and bioactivity of acetylated konjac glucomannan fibrous membrane and its application for wound dressing. Carbohydr Polym 2019; 229:115404. [PMID: 31826490 DOI: 10.1016/j.carbpol.2019.115404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 09/29/2019] [Indexed: 02/02/2023]
Abstract
Biomaterial-host interactions significantly affect tissue repair, which is modulated by macrophages. In this study, a polysaccharide, konjac glucomannan (KGM), was acetylated with different degrees of substitution (DS), and the acetylated KGM (AceKGM)-based fibrous membrane was designed to modulate the activity of macrophages for accelerating wound healing. AceKGM was biocompatible and easily dissolved in organic solvents. The adhesion force between Raw264.7 cells and the AceKGM substrate was quantitatively detected by atomic force microscopy (AFM). The enzyme-linked immunosorbent assay (ELISA) results showed that the AceKGM fibrous membrane enhanced macrophage expression of anti-inflammatory and pro-regenerative cytokines, and the DS of AceKGM significantly affected membrane bioactivity. The full-thickness mouse skin wound repair experiments indicated that the AceKGM-containing fibrous membranes significantly accelerated wound healing by promoting re-epithelialization, tissue remodeling, and collagen deposition. In summary, AceKGM-based fibrous membranes have potential as bioactive scaffolds for wound regeneration.
Collapse
Affiliation(s)
- Chuang Wang
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Bing Li
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Tao Chen
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Naibin Mei
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Xiaoying Wang
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China
| | - Shunqing Tang
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Ahtzaz S, Sher Waris T, Shahzadi L, Anwar Chaudhry A, Ur Rehman I, Yar M. Boron for tissue regeneration-it’s loading into chitosan/collagen hydrogels and testing on chorioallantoic membrane to study the effect on angiogenesis. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Samreen Ahtzaz
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Tayyaba Sher Waris
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
- Engineering Department, Lancaster University, Lancaster, UK
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| |
Collapse
|
26
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
27
|
Li Y, Zhu C, Fan D, Fu R, Ma P, Duan Z, Li X, Lei H, Chi L. A Bi-Layer PVA/CMC/PEG Hydrogel with Gradually Changing Pore Sizes for Wound Dressing. Macromol Biosci 2019; 19:e1800424. [PMID: 30840367 DOI: 10.1002/mabi.201800424] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/24/2019] [Indexed: 12/17/2022]
Abstract
Wound dressings are vital for cutaneous wound healing. In this study, a bi-layer dressing composed of polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol (PVA/CMC/PEG) hydrogels is produced through a thawing-freezing method based on the study of the pore size of single-layer hydrogels. Then the physical properties and healing of full-thickness skin defects treated with hydrogels are inspected. The results show that the pore size of the single-layer PVA/CMC/PEG hyrogel can be controlled. The obtained non-adhesive bi-layer hydrogels show gradually increasing pore sizes from the upper to the lower layer and two layers are well bonded. In addition, bi-layer dressings with good mechanical properties can effectively prevent bacterial penetration and control the moisture loss of wounds to maintain a humid environment for wounds. A full-thickness skin defect test shows that bi-layer hydrogels can significantly accelerate wound closure. The experiment indicates that the bi-layer PVA/CMC/PEG hydrogels can be used as potential wound dressings.
Collapse
Affiliation(s)
- Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Xian Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China.,Shaanxi Research and Development Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.,Biotechnology and Biomedical Research Institute, Research Institute, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Lei Chi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, 710069, China
| |
Collapse
|
28
|
Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0243-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Basu P, Narendrakumar U, Arunachalam R, Devi S, Manjubala I. Characterization and Evaluation of Carboxymethyl Cellulose-Based Films for Healing of Full-Thickness Wounds in Normal and Diabetic Rats. ACS OMEGA 2018; 3:12622-12632. [PMID: 30411013 PMCID: PMC6217532 DOI: 10.1021/acsomega.8b02015] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/20/2018] [Indexed: 05/16/2023]
Abstract
Artificial skin substitute made of polymeric films are of great demand in the field of skin tissue engineering. We report here the fabrication of carboxymethyl cellulose (CMC) and poly(ethylene glycol) (PEG) blend films by solution casting method for wound healing applications. The physicochemical characteristics and the thermal stability of the films were analyzed. The surface morphology shows crystalline structures with large hexagonal-like platelet crystals of CMC on the surface of the films. Pure CMC films exhibited higher tensile strength than the CMC/PEG blend films. The swelling ratio (SR) of the films was influenced by the pH of Tris-HCL buffer (2.0, 5.0, and 7.0), which increased with increase in pH. The hemocompatibility assay and cytotoxicity test using NIH 3T3 fibroblast cells showed that the films were biocompatible. To evaluate the wound healing efficacy, the films were applied in full-thickness wounds created in normal and diabetic Wistar albino rats. The wounds healed faster with pure CMC film compared to blend films in both normal and diabetic rats, evidenced by intensive collagen formation in histopathological analysis. Thus, the films have potential application in skin regeneration, thereby to restore the structural and functional characteristics of the skin.
Collapse
Affiliation(s)
- Poulami Basu
- Department
of Bio Sciences, School of Bio Sciences and Technology, and Department of
Manufacturing, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Uttamchand Narendrakumar
- Department
of Bio Sciences, School of Bio Sciences and Technology, and Department of
Manufacturing, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Ruckmani Arunachalam
- Department
of Pharmacology, Chettinad Hospital and
Research Institute, Chettinad Academy of Research and Education, Chennai 603103, India
| | - Sobita Devi
- Department
of Pharmacology, Chettinad Hospital and
Research Institute, Chettinad Academy of Research and Education, Chennai 603103, India
| | - Inderchand Manjubala
- Department
of Bio Sciences, School of Bio Sciences and Technology, and Department of
Manufacturing, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
- E-mail:
| |
Collapse
|
30
|
Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell Tissue Res 2018; 375:709-721. [PMID: 30338376 DOI: 10.1007/s00441-018-2927-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Full-thickness skin defect is one of the main clinical problems, which cannot be repaired spontaneously. The aim of this study was to evaluate the feasibility of combining nanofibers with ADM as a bilayer scaffold for treatment of full-thickness skin wounds in a single-step procedure. The nanofibrous polycaprolactone/fibrinogen scaffolds were fabricated by electrospinning. Subsequently, mesenchymal stem cells were isolated from rat adipose tissues and characterized by flow cytometry. Cell adhesion, proliferation, and the epidermal differentiation potential of adipose-derived stem cells (ADSCs) on nanofibrous scaffolds were investigated by scanning electron microscopy (SEM), alamarBlue, and real-time PCR, respectively. In animal studies, full-thickness excisional wounds were created on the back of rats and treated with following groups: ADM, ADM-ADSCs, nanofiber, nanofiber-ADSCs, bilayer, and bilayer-ADSCs. In all groups, wounds were harvested on days 14 and 21 after treatment to evaluate re-epithelialization, blood vessel density, and collagen content. The results indicated that ADSCs seeded on ADM, nanofiber, and bilayer scaffolds can promote re-epithelialization, angiogenesis, and collagen remodeling in comparison with cell-free scaffolds. In conclusion, nanofiber-ADSCs showed the best results for re-epithelialization (according to histological scoring), average blood vessel density (92.7 ± 6.8), and collagen density (87.4 ± 4.9%) when compared to the control and other experimental groups.
Collapse
|
31
|
Elango J, Lee JW, Wang S, Henrotin Y, de Val JEMS, M Regenstein J, Lim SY, Bao B, Wu W. Evaluation of Differentiated Bone Cells Proliferation by Blue Shark Skin Collagen via Biochemical for Bone Tissue Engineering. Mar Drugs 2018; 16:E350. [PMID: 30257422 PMCID: PMC6212988 DOI: 10.3390/md16100350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 02/01/2023] Open
Abstract
Collagen from a marine resource is believed to have more potential activity in bone tissue engineering and their bioactivity depends on biochemical and structural properties. Considering the above concept, pepsin soluble collagen (PSC) and acid soluble collagen (ASC) from blue shark (Prionace glauca) skin were extracted and its biochemical and osteogenic properties were investigated. The hydroxyproline content was higher in PSC than ASC and the purified collagens contained three distinct bands α₁, α2, and β dimer. The purity of collagen was confirmed by the RP-HPLC profile and the thermogravimetric data showed a two-step thermal degradation pattern. ASC had a sharp decline in viscosity at 20⁻30 °C. Scanning electron microscope (SEM) images revealed the fibrillar network structure of collagens. Proliferation rates of the differentiated mouse bone marrow-mesenchymal stem (dMBMS) and differentiated osteoblastic (dMC3T3E1) cells were increased in collagen treated groups rather than the controls and the effect was dose-dependent, which was further supported by higher osteogenic protein and mRNA expression in collagen treated bone cells. Among two collagens, PSC had significantly increased dMBMS cell proliferation and this was materialized through increasing RUNX2 and collagen-I expression in bone cells. Accordingly, the collagens from blue shark skin with excellent biochemical and osteogenic properties could be a suitable biomaterial for therapeutic application.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jung Woo Lee
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 606791, Korea.
| | - Shujun Wang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, CHU Sart-Tilman, 4000 Liège, Belgium.
| | | | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA.
| | - Sun Young Lim
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 606791, Korea.
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
32
|
PLGA: From a classic drug carrier to a novel therapeutic activity contributor. J Control Release 2018; 289:10-13. [PMID: 30244137 DOI: 10.1016/j.jconrel.2018.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is well known for its biocompatibility and minimal toxicity. It is one of the most promising biodegradable polymeric drug delivery systems able to get endorsement from regulatory bodies to enter market. For many decades, PLGA has been functioning as an excipient, which by definition is pharmaceutically inert at a given dose of formulation. Lactate (one of the hydrolysis products of PLGA) has a key role in biochemical pathways and could improve physiological activities in certain illnesses by exerting therapeutic effects such as angiogenesis and promotion of healing. These activities, however, depend on the released amounts and metabolic clearance of lactate and route of formulation delivery. In the current commentary, along with several key notes on the lactate interactions, we would like to inform the PLGA research community that lactate (resulting from local delivery of physiologically significant amount of PLGA) may positively or negatively affect therapeutic efficacy of certain drugs. Hence, the excipient role of PLGA may be investigated for its potential pharmacological contributions in some biomedical applications.
Collapse
|
33
|
Ba Z, Chen Z, Huang Y, Feng D, Zhao Q, Zhu J, Wu D. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation. Int J Nanomedicine 2018; 13:3883-3896. [PMID: 30013342 PMCID: PMC6038888 DOI: 10.2147/ijn.s162262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION It is predicted that with increased life expectancy in the whole world, there will be a greater demand for synthetic biomedical materials to repair or regenerate lost, injured or diseased tissues. Natural polymers, as biomedical materials, have been widely applied in the field of regenerative medicine. MATERIALS AND METHODS By incorporation of nanoporous diopside bioglass (nDPB) into glia-din (GL) matrix, macro-nanoporous scaffolds of nDPB/GL composites (DGC) were fabricated by method of solution compressing and particles leaching. RESULTS The results revealed that the DGC scaffolds possessed well-interconnected macropores of 200-500 μm and nanopores of 4 nm, and the porosity and degradability of DGC scaffolds remarkably increased with the increase in nDPB content. In addition, in vitro cell experiments revealed that the adhesion and growth of MC3T3-E1 cells on DGC scaffolds were significantly promoted, which depended on nDPB content. Moreover, the results of histological evaluations confirmed that the osteogenic properties and degradability of DGC scaffolds in vivo significantly improved, which were nDPB content dependent. Furthermore, the results of immunohistochemical analysis demonstrated that, with the increase in nDPB content, the type I collagen expression in DGC scaffolds in vivo obviously enhanced, indicating excellent osteogenesis. DISCUSSION AND CONCLUSION The results demonstrated that the DGC scaffolds containing 30 wt% nDPB (30nDGC) exhibited good biocompatibility and new bone formation ability, which might have a great potential for applications in bone regeneration.
Collapse
Affiliation(s)
- Zhaoyu Ba
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Zhaoxiong Chen
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Yufeng Huang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qinghui Zhao
- Biobank, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianguang Zhu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Desheng Wu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| |
Collapse
|
34
|
Gianino E, Miller C, Gilmore J. Smart Wound Dressings for Diabetic Chronic Wounds. Bioengineering (Basel) 2018; 5:E51. [PMID: 29949930 PMCID: PMC6163915 DOI: 10.3390/bioengineering5030051] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Given their severity and non-healing nature, diabetic chronic wounds are a significant concern to the 30.3 million Americans diagnosed with diabetes mellitus (2015). Peripheral arterial diseases, neuropathy, and infection contribute to the development of these wounds, which lead to an increased incidence of lower extremity amputations. Early recognition, debridement, offloading, and controlling infection are imperative for timely treatment. However, wound characterization and treatment are highly subjective and based largely on the experience of the treating clinician. Many wound dressings have been designed to address particular clinical presentations, but a prescriptive method is lacking for identifying the particular state of chronic, non-healing wounds. The authors suggest that recent developments in wound dressings and biosensing may allow for the quantitative, real-time representation of the wound environment, including exudate levels, pathogen concentrations, and tissue regeneration. Development of such sensing capability could enable more strategic, personalized care at the onset of ulceration and limit the infection leading to amputation. This review presents an overview of the pathophysiology of diabetic chronic wounds, a brief summary of biomaterial wound dressing treatment options, and biosensor development for biomarker sensing in the wound environment.
Collapse
Affiliation(s)
- Elizabeth Gianino
- Bioengineering Department, Clemson University, Clemson, SC 29632, USA.
| | - Craig Miller
- Bioengineering Department, Clemson University, Clemson, SC 29632, USA.
| | - Jordon Gilmore
- Bioengineering Department, Clemson University, Clemson, SC 29632, USA.
| |
Collapse
|
35
|
Chereddy KK, Vandermeulen G, Préat V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen 2018; 24:223-36. [PMID: 26749322 DOI: 10.1111/wrr.12404] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/19/2015] [Indexed: 01/10/2023]
Abstract
Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned.
Collapse
Affiliation(s)
- Kiran Kumar Chereddy
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Véronique Préat
- Catholic University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| |
Collapse
|
36
|
Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J Mech Behav Biomed Mater 2018; 80:51-58. [DOI: 10.1016/j.jmbbm.2018.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
|
37
|
Munarin F, Kaiser NJ, Kim TY, Choi BR, Coulombe KLK. Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues. Tissue Eng Part C Methods 2018; 23:311-321. [PMID: 28457187 DOI: 10.1089/ten.tec.2017.0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all.
Collapse
Affiliation(s)
- Fabiola Munarin
- 1 School of Engineering, Brown University , Providence, Rhode Island
| | - Nicholas J Kaiser
- 1 School of Engineering, Brown University , Providence, Rhode Island
| | - Tae Yun Kim
- 2 Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University , Providence, Rhode Island
| | - Bum-Rak Choi
- 2 Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University , Providence, Rhode Island
| | - Kareen L K Coulombe
- 1 School of Engineering, Brown University , Providence, Rhode Island.,3 Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University , Providence, Rhode Island
| |
Collapse
|
38
|
Zhang J, Ma S, Liu Z, Geng H, Lu X, Zhang X, Li H, Gao C, Zhang X, Gao P. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles. Int J Nanomedicine 2017; 12:8855-8866. [PMID: 29276386 PMCID: PMC5733920 DOI: 10.2147/ijn.s148179] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Membranes allowing the sustained release of drugs that can achieve cell adhesion are very promising for guided bone regeneration. Previous studies have suggested that aspirin has the potential to promote bone regeneration. The purpose of this study was to prepare a local drug delivery system with aspirin-loaded chitosan nanoparticles (ACS) contained in an asymmetric collagen-chitosan membrane (CCM). Methods In this study, the ACS were fabricated using different concentrations of aspirin (5 mg, 25 mg, 50 mg, and 75 mg). The drug release behavior of ACS was studied. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to examine the micromorphology of ACS and aspirin-loaded chitosan nanoparticles contained in chitosan-collagen membranes (ACS-CCM). In vitro bone mesenchymal stem cells (BMSCs) were cultured and critical-sized cranial defects on Sprague-Dawley rats were made to evaluate the effect of the ACS-CCM on bone regeneration. Results Drug release behavior results of ACS showed that the nanoparticles fabricated in this study could successfully sustain the release of the drug. TEM showed the morphology of the nanoparticles. SEM images indicated that the asymmetric membrane comprised a loose collagen layer and a dense chitosan layer. In vitro studies showed that ACS-CCM could promote the proliferation of BMSCs, and that the degree of differentiated BMSCs seeded on CCMs containing 50 mg of ACS was higher than that of other membranes. Micro-computed tomography showed that 50 mg of ACS-CCM resulted in enhanced bone regeneration compared with the control group. Conclusion This study shows that the ACS-CCM would allow the sustained release of aspirin and have further osteogenic potential. This membrane is a promising therapeutic approach to guiding bone regeneration.
Collapse
Affiliation(s)
- Jiayu Zhang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Shiqing Ma
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Zihao Liu
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Hongjuan Geng
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Xin Lu
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Xi Zhang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Hongjie Li
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Chenyuan Gao
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Xu Zhang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| | - Ping Gao
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin
| |
Collapse
|
39
|
Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids Surf B Biointerfaces 2017; 159:89-96. [DOI: 10.1016/j.colsurfb.2017.07.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/25/2017] [Indexed: 11/23/2022]
|
40
|
Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep 2017; 7:10489. [PMID: 28874692 PMCID: PMC5585259 DOI: 10.1038/s41598-017-10481-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
Treatment of full-thickness skin defects poses significant clinical challenges including risk of infection and severe scaring. Silver nanoparticle (NAg), an effective antimicrobial agent, has provided a promising therapeutic method for burn wounds. However, the detailed mechanism remains unknown. Hence, we constructed a metallic nanosilver particles-collagen/chitosan hybrid scaffold (NAg-CCS) and investigated its potential effects on wound healing. In vitro scratch assay, immunofluorescence staining and antibacterial activity of the scaffold were all studied. In vivo NAg-CCS was applied in full-thickness skin defects in Sprague-Dawley (SD) rats and the therapeutic effects of treatment were evaluated. The results showed that NAg at a concentration of 10 ppm accelerated the migration of fibroblasts with an increase in expression of α-smooth muscle actin (α-SMA). Furthermore, in vivo studies showed increased levels of pro-inflammatory and scar-related factors as well as α-SMA, while markers for macrophage activation were up-regulated. On day 60 post transplantation of ultra-thin skin graft, the regenerated skin by NAg-CCS had a similar structure to normal skin. In summary, we demonstrated that NAg-CCS was bactericidal, anti-inflammatory and promoted wound healing potentially by regulating fibroblast migration and macrophage activation, making it an ideal dermal substitute for wound regeneration.
Collapse
|
41
|
Ding ZZ, Ma J, He W, Ge ZL, Lu Q, Kaplan DL. Simulation of ECM with Silk and Chitosan Nanocomposite Materials. J Mater Chem B 2017; 5:4789-4796. [PMID: 29098078 PMCID: PMC5662207 DOI: 10.1039/c7tb00486a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular matrix (ECM) is a system used to model the design of biomaterial matrices for tissue regeneration. Various biomaterial systems have been developed to mimic the composition or microstructure of the ECM. However, emulating multiple facets of the ECM in these systems remains a challenge. Here, a new strategy is reported which addresses this need by using silk fibroin and chitosan (CS) nanocomposite materials. Silk fibroin was first assembled into ECM-mimetic nanofibers in water and then blended with CS to introduce the nanostructural cues. Then the ratios of silk fibroin and CS were optimized to imitate the protein and glycosaminoglycan compositions. These biomaterial scaffolds had suitable compositions, hierarchical nano-to-micro structures, and appropriate mechanical properties to promote cell proliferation in vitro, and vascularization and tissue regeneration in vivo. Compared to previous silk-based scaffolds, these scaffolds achieved improvements in biocompatibility, suggesting promising applications in the future in tissue regeneration.
Collapse
Affiliation(s)
- Z. Z. Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - J. Ma
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - W. He
- Department of Maxillofacial Surgery, The People’s Hospital, Qinghai 4000115-4, People’s Republic of China
| | - Z. L. Ge
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People’s Republic of China
| | - Q. Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - D. L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
42
|
Jeong KH, Park D, Lee YC. Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1278-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Pilehvar-Soltanahmadi Y, Nouri M, Martino MM, Fattahi A, Alizadeh E, Darabi M, Rahmati-Yamchi M, Zarghami N. Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Exp Cell Res 2017; 357:192-201. [PMID: 28527695 DOI: 10.1016/j.yexcr.2017.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023]
Abstract
Electrospun nanofibrous scaffolds containing natural substances with wound healing properties such as Emu oil (EO) may have a great potential for increasing the efficiency of stem cell-based skin bioengineering. For this purpose, EO blended PCL/PEG electrospun nanofibrous mats were successfully fabricated and characterized using FE-SEM, FTIR and Universal Testing Machine. The efficiency of the scaffolds in supporting the adherence, cytoprotection, proliferation and differentiation of adipose tissue-derived stem cells (ADSCs) to keratinocyte was evaluated. GC/MS and HPLC were used to determine the composition of pure EO, which revealed to be mainly fatty acids and carotenoids. FE-SEM and cell proliferation assays showed that adhesion and proliferation of ADSCs on EO-PCL/PEG nanofibers was significantly higher than on PCL/PEG nanofibers. Additionally, EO-PCL/PEG nanofibers with free radical scavenging properties conferred a cytoprotective effect against cell-damaging free radicals, while the ability to support cell adhesion and growth was maintained or even improved. Immunostaining of ADSCs on EO-PCL/PEG nanofibers confirmed the change in morphology of ADSCs from spindle to polygonal shape suggesting their differentiation toward an epidermal linage. Moreover, the expression levels of the keratin 10, filaggrin, and involucrin that are involved in epidermal differentiation were upregulated in a stage-specific manner. This preliminary study shows that EO-PCL/PEG nanofibers could be a good candidate for the fabrication of wound dressings and skin bioengineered substitutes with ADSCs.
Collapse
Affiliation(s)
- Younes Pilehvar-Soltanahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Australian Regenerative Medicine Institute, Monash University, Clayton 3800, Australia
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton 3800, Australia
| | - Amir Fattahi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati-Yamchi
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. ScientificWorldJournal 2017; 2017:8639898. [PMID: 28567441 PMCID: PMC5439263 DOI: 10.1155/2017/8639898] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023] Open
Abstract
Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration. However, there is a wide variability in terms of physicochemical characteristics of chitosan used in some studies and its combinations with other biomaterials, making it difficult to compare results and standardize its properties. The current systematic review of literature on the use of chitosan for tissue regeneration consisted of a study of 478 articles in the PubMed database, which resulted, after applying inclusion criteria, in the selection of 61 catalogued, critically analysed works. The results demonstrated the effectiveness of chitosan-based biomaterials in 93.4% of the studies reviewed, whether or not combined with cells and growth factors, in the regeneration of various types of tissues in animals. However, the absence of clinical studies in humans, the inadequate experimental designs, and the lack of information concerning chitosan's characteristics limit the reproducibility and relevance of studies and the clinical applicability of chitosan.
Collapse
|
45
|
Liu T, Dan W, Dan N, Liu X, Liu X, Peng X. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:202-211. [PMID: 28532022 DOI: 10.1016/j.msec.2017.03.256] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 11/18/2022]
Abstract
Collagen-chitosan composite film modified with grapheme oxide (GO) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), termed CC-G-E film, was loaded with basic fibroblast growth factor (bFGF) as the development of an efficacious wound healing device. In this study we report a novel drug delivery system that prevents the initial burst release and loss of bioactivity of drugs in vitro and in vivo applications. The results showed that CC-G-E film possessed improved thermal stability and a higher rate of crosslinking with increased mechanical properties when the dosage of GO was between 0.03% and 0.07%. It was shown that the in vitro release of bFGF from CC-G-E film continued for more than 28d. Furthermore, the CC-G-E films demonstrated excellent in vitro biocompatibility following culture with L929 fibroblasts in terms of cell adhesion and proliferation. CC-G-E films were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. Results showed that the CC-G-E film accelerated the wound healing process compared with the blank control. Based on all the results, it was concluded that CC-G-E film operates as a novel drug delivery system and due to its performance in wound remodeling, has potential to be developed as a wound dressing material.
Collapse
Affiliation(s)
- Ting Liu
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Weihua Dan
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China.
| | - Nianhua Dan
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xinhua Liu
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xuexu Liu
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Xu Peng
- Laboratory Animal Center of Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Liu S, Chu M, Zhu Y, Li L, Wang L, Gao H, Ren L. A novel antibacterial cellulose based biomaterial for hernia mesh applications. RSC Adv 2017. [DOI: 10.1039/c6ra26216c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bacterial cellulose/collagen–hydroxypropyltrimethyl ammonium chloride chitosan composite (BCC–H), as an ideal artificial hernia mesh, was synthesized by combining solution impregnation with the EDC/NHS chemical crosslinking method .
Collapse
Affiliation(s)
- Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Minglei Chu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Yongjun Zhu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Lifeng Li
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Lin Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Huichang Gao
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- China
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| |
Collapse
|
47
|
Wang Y, Wang X, Shang J, Liu H, Yuan Y, Guo Y, Huang B, Zhou Y. Repairing the ruptured annular fibrosus by using type I collagen combined with citric acid, EDC and NHS: an in vivo study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 26:884-893. [PMID: 28004245 DOI: 10.1007/s00586-016-4898-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/06/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To explore the effect of citric acid (CA)-1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) collagen gel on repairing annular defects. METHODS Type I collagen was extracted from the rat-tail tendon and crosslinked with CA at different mass ratio using EDC and NHS as crosslinking reagents to prepare four kinds of collagen gels. Forty-eight adult SD rats were divided into first sham group (n = 8), second group (n = 10) which was punctured and injected with CA-EDC/NHS collagen gel, third group (n = 10) which was punctured and injected with CA-EDC/NHS collagen gel, fourth group (n = 10) which was punctured and injected with EDC/NHS collagen gel, and fifth group (n = 10) which was punctured and untreated. X-ray images and magnetic resonance imaging images were obtained before puncture and at the 1st, 2nd, and 4th week after puncture. At each time point, disc height index (%DHI), voxel count and modified MRI Pfirrmann grading were collected and analyzed. All animals were killed at the 4th week to study the morphology. RESULTS The discs in the second group showed only slight degeneration compared with the healthy discs, and the results of %DHI (average 79%), voxel count (average 126.9), Pfirrmann grading (average grade 1.3) and morphology in the second group indicated less degeneration tendency compared with the other three puncture groups at the 4th week (P < 0.05). The annular fibrosus was partially repaired by the collagen gels that bridged the defects. CONCLUSIONS CA-EDC/NHS collagen gel is capable of repairing annular defects induced by needle puncture, which may be closely related to the dose of CA.
Collapse
Affiliation(s)
- Yan Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, 400037, Chongqing, China
| | - Xiaoting Wang
- Department of Pharmacy, Urumqi General Hospital of Lanzhou Military Region, 359 North Youhao Road, Saybagh District, 830000, Urumqi, China
| | - Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, 400037, Chongqing, China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, 400037, Chongqing, China
| | - Yi Yuan
- Department of Pharmacy, Third Military Medical University, 30 Gaotanyan street, Shapingba District, 400038, Chongqing, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Third Military Medical University, 10 Changjiang street, Yuzhong District, 400042, Chongqing, China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, 400037, Chongqing, China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Shapingba District, 400037, Chongqing, China.
| |
Collapse
|
48
|
Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus cirrhosus) scale origin. Int J Biol Macromol 2016; 93:1507-1518. [DOI: 10.1016/j.ijbiomac.2016.04.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 01/06/2023]
|
49
|
Van Griensven M, Rosado Balmayor E. Immunogenic Reaction of Implanted Biomaterials from Nature. BIOMATERIALS FROM NATURE FOR ADVANCED DEVICES AND THERAPIES 2016:429-443. [DOI: 10.1002/9781119126218.ch23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol 2016; 37:613-625. [PMID: 27439727 DOI: 10.1080/07388551.2016.1209157] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascularization is a key process in skin tissue engineering, determining the biological function of artificial skin implants. Hence, efficient vascularization strategies are a major prerequisite for the safe application of these implants in clinical practice. Current approaches include (i) modification of structural and physicochemical properties of dermal scaffolds, (ii) biological scaffold activation with growth factor-releasing systems or gene vectors, and (iii) generation of prevascularized skin substitutes by seeding scaffolds with vessel-forming cells. These conventional approaches may be further supplemented by emerging strategies, such as transplantation of adipose tissue-derived microvascular fragments, 3D bioprinting and microfluidics, miRNA modulation, cell sheet engineering, and fabrication of photosynthetic scaffolds. The successful translation of these vascularization strategies from bench to bedside may pave the way for a broad clinical implementation of skin tissue engineering.
Collapse
Affiliation(s)
- Florian S Frueh
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany.,b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Michael D Menger
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany
| | - Nicole Lindenblatt
- b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Pietro Giovanoli
- b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Matthias W Laschke
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany
| |
Collapse
|