1
|
Bae JH, Kim HS. A pH-Responsive Protein Assembly through Clustering of a Charge-Tunable Single Amino Acid Repeat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47100-47109. [PMID: 39216082 DOI: 10.1021/acsami.4c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Specific targeting of tumor cells is a key to achieving high therapeutic efficacy while minimizing off-target side effects. As a general approach to targeting diverse tumor cells, considerable attention has been paid to the tumor microenvironment, particularly its slightly acidic pH (6.5-6.8). However, existing pH-sensitive nanomaterials, based on organic polymers and proteins, often lack sufficient pH sensitivity and specificity. Here, we demonstrate a strategy to construct a pH-responsive protein assembly through clustering of a single amino acid repeat as a charge-tunable moiety. As a proof of concept, a histidine peptide with varying lengths was displayed on the surface of a ferritin assembly composed of 24 subunits by genetic fusion to a subunit. The resulting self-assembled ferritin particles, termed "pHerricle (pH-responsive ferritin particle)", were shown to exhibit a specific binding to tumor cells in response to pH changes through cooperative effects of histidine peptides. Increasing the histidine peptide length from 0 to 12 residues increased the pHerricle's cell-binding capacity by 21-fold and allowed modulation of the targetable pH range. General applicability as a tumor cell-targeting platform was shown by specific delivery of a cytotoxic cargo by the pHerricle into tumor cells of various origins in a pH-dependent manner.
Collapse
Affiliation(s)
- Jin-Ho Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
2
|
Wu Y, Li J, Liu L, Chu X, Zhong M, Li H, Zhao C, Fu H, Sun Y, Li Y. Hyaluronic acid nanoparticles for targeted oral delivery of doxorubicin: Lymphatic transport and CD44 engagement. Int J Biol Macromol 2024; 273:133063. [PMID: 38880443 DOI: 10.1016/j.ijbiomac.2024.133063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
The oral delivery of doxorubicin (DOX), an anti-cancer drug, encounters multiple hurdles such as limited gastrointestinal permeability, P-glycoprotein-mediated efflux, brief intestinal residence, and rapid degradation. This study introduced a novel approach utilizing hyaluronic acid (HA)-grafted fatty acid monoglycerides (HGD) to encapsulate DOX, forming HGD-DOX nanoparticles, aimed at enhancing its oral bioavailability. Drug encapsulated by HGD provided several advantages, including extended drug retention in the gastrointestinal tract, controlled release kinetics, and promotion of lymphatic absorption in the intestine. Additionally, HGD-DOX nanoparticles could specifically target CD44 receptors, potentially increasing therapeutic efficacy. The uptake mechanism of HGD-DOX nanoparticles primarily involved clathrin-mediated, caveolin-mediated and macropinocytosis endocytosis. Pharmacokinetic analysis further revealed that HGD significantly prolonged the in vivo residence time of DOX. In vivo imaging and pharmacodynamic studies indicated that HGD possessed tumor-targeting capabilities and exhibited a significant inhibitory effect on tumor growth, while maintaining an acceptable safety profile. Collectively, these findings position HGD-DOX nanoparticles as a promising strategy to boost the oral bioavailability of DOX, offering a potential avenue for improved cancer treatment.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liang Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhong Chu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Zhong
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Wang S, Tang Y, Kou X, Chen J, Edgar KJ. Dextran Macroinitiator for Synthesis of Polysaccharide- b-Polypeptide Block Copolymers via NCA Ring-Opening Polymerization. Biomacromolecules 2024; 25:3122-3130. [PMID: 38696355 DOI: 10.1021/acs.biomac.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (Đ < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.
Collapse
Affiliation(s)
- Shuo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, Analyses and Testing Center, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Junyi Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Walvekar P, Lulinski P, Kumar P, Aminabhavi TM, Choonara YE. A review of hyaluronic acid-based therapeutics for the treatment and management of arthritis. Int J Biol Macromol 2024; 264:130645. [PMID: 38460633 DOI: 10.1016/j.ijbiomac.2024.130645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Hyaluronic acid (HA), a biodegradable, biocompatible and non-immunogenic therapeutic polymer is a key component of the cartilage extracellular matrix (ECM) and has been widely used to manage two major types of arthritis, osteoarthritis (OA) and rheumatoid arthritis (RA). OA joints are characterized by lower concentrations of depolymerized (low molecular weight) HA, resulting in reduced physiological viscoelasticity, while in RA, the associated immune cells are over-expressed with various cell surface receptors such as CD44. Due to HA's inherent viscoelastic property and its ability to target CD44, there has been a surge of interest in developing HA-based systems to deliver various bioactives (drugs and biologics) and manage arthritis. Considering therapeutic benefits of HA in arthritis management and potential advantages of novel delivery systems, bioactive delivery through HA-based systems is beginning to display improved outcomes over bioactive only treatment. The benefits include enhanced bioactive uptake due to receptor-mediated targeting, prolonged retention of bioactives in the synovium, reduced expressions of proinflammatory mediators, enhanced cartilage regeneration, reduced drug toxicity due to sustained release, and improved and cost-effective treatment. This review provides an underlying rationale to prepare and use HA-based bioactive delivery systems for arthritis applications. With special emphasis given to preclinical/clinical results, this article reviews various bioactive-loaded HA-based particulate carriers (organic and inorganic), gels, scaffolds and polymer-drug conjugates that have been reported to treat and manage OA and RA. Furthermore, the review identifies several key challenges and provides valuable suggestions to address them. Various developments, strategies and suggestions described in this review may guide the formulation scientists to optimize HA-based bioactive delivery systems as an effective approach to manage and treat arthritis effectively.
Collapse
Affiliation(s)
- Pavan Walvekar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; Department of Pharmaceutics, SET's College of Pharmacy, Dharwad 580 002, Karnataka, India
| | - Piotr Lulinski
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
5
|
Casadidio C, Hartman JEM, Mesquita B, Haegebaert R, Remaut K, Neumann M, Hak J, Censi R, Di Martino P, Hennink WE, Vermonden T. Effect of Polyplex Size on Penetration into Tumor Spheroids. Mol Pharm 2023; 20:5515-5531. [PMID: 37811785 PMCID: PMC10630948 DOI: 10.1021/acs.molpharmaceut.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Ovarian cancer is one of the most lethal gynecological cancers in the world. In recent years, nucleic acid (NA)-based formulations have been shown to be promising treatments for ovarian cancer, including tumor nodules. However, gene therapy is not that far advanced in clinical reality due to unfavorable physicochemical properties of the NAs, such as high molecular weight, poor cellular uptake, rapid degradation by nucleases, etc. One of the strategies used to overcome these drawbacks is the complexation of anionic NAs via electrostatic interactions with cationic polymers, resulting in the formation of so-called polyplexes. In this work, the role of the size of pDNA and siRNA polyplexes on their penetration into ovarian-cancer-based tumor spheroids was investigated. For this, a methoxypoly(ethylene glycol) poly(2-(dimethylamino)ethyl methacrylate) (mPEG-pDMAEMA) diblock copolymer was synthesized as a polymeric carrier for NA binding and condensation with either plasmid DNA (pDNA) or short interfering RNA (siRNA). When prepared in HEPES buffer (10 mM, pH 7.4) at a nitrogen/phosphate (N/P) charge ratio of 5 and pDNA polyplexes were formed with a size of 162 ± 11 nm, while siRNA-based polyplexes displayed a size of 25 ± 2 nm. The polyplexes had a slightly positive zeta potential of +7-8 mV in the same buffer. SiRNA and pDNA polyplexes were tracked in vitro into tumor spheroids, resembling in vivo avascular ovarian tumor nodules. For this purpose, reproducible spheroids were obtained by coculturing ovarian carcinoma cells with primary mouse embryonic fibroblasts in different ratios (5:2, 1:1, and 2:5). Penetration studies revealed that after 24 h of incubation, siRNA polyplexes were able to penetrate deeper into the homospheroids (composed of only cancer cells) and heterospheroids (cancer cells cocultured with fibroblasts) compared to pDNA polyplexes which were mainly located in the rim. The penetration of the polyplexes was slowed when increasing the fraction of fibroblasts present in the spheroids. Furthermore, in the presence of serum siRNA polyplexes encoding for luciferase showed a high cellular uptake in 2D cells resulting in ∼50% silencing of luciferase expression. Taken together, these findings show that self-assembled small siRNA polyplexes have good potential as a platform to test ovarian tumor nodulus penetration..
Collapse
Affiliation(s)
- Cristina Casadidio
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
- School
of Pharmacy, Drug Delivery Division, University
of Camerino, CHiP Research Center, Via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
| | - Jet E. M. Hartman
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Bárbara
S. Mesquita
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Ragna Haegebaert
- Laboratory
of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory
of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Myriam Neumann
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Jaimie Hak
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Roberta Censi
- School
of Pharmacy, Drug Delivery Division, University
of Camerino, CHiP Research Center, Via Madonna delle Carceri, 62032 Camerino, Macerata, Italy
- Recusol
Srl, Via del Bastione
16, 62032 Camerino, Macerata, Italy
| | - Piera Di Martino
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti and Pescara, Via dei Vestini 1, 66100 Chieti, Chieti, Italy
- Recusol
Srl, Via del Bastione
16, 62032 Camerino, Macerata, Italy
| | - Wim E. Hennink
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Utrecht University 99, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
6
|
Cavallaro PA, De Santo M, Belsito EL, Longobucco C, Curcio M, Morelli C, Pasqua L, Leggio A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2476. [PMID: 37686984 PMCID: PMC10490457 DOI: 10.3390/nano13172476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Breast cancer represents the most common cancer type and one of the major leading causes of death in the female worldwide population. Overexpression of HER2, a transmembrane glycoprotein related to the epidermal growth factor receptor, results in a biologically and clinically aggressive breast cancer subtype. It is also the primary driver for tumor detection and progression and, in addition to being an important prognostic factor in women diagnosed with breast cancer, HER2 is a widely known therapeutic target for drug development. The aim of this review is to provide an updated overview of the main approaches for the diagnosis and treatment of HER2-positive breast cancer proposed in the literature over the past decade. We focused on the different targeting strategies involving antibodies and peptides that have been explored with their relative outcomes and current limitations that need to be improved. The review also encompasses a discussion on targeted peptides acting as probes for molecular imaging. By using different types of HER2-targeting strategies, nanotechnology promises to overcome some of the current clinical challenges by developing novel HER2-guided nanosystems suitable as powerful tools in breast cancer imaging, targeting, and therapy.
Collapse
Affiliation(s)
- Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Emilia Lucia Belsito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Camilla Longobucco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| |
Collapse
|
7
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
8
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Tumor vasculature VS tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
10
|
Sedighi M, Mahmoudi Z, Ghasempour A, Shakibaie M, Ghasemi F, Akbari M, Abbaszadeh S, Mostafavi E, Santos HA, Shahbazi MA. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354:128-145. [PMID: 36599396 DOI: 10.1016/j.jconrel.2022.12.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
11
|
Zhou J, Li K, Zang X, Xie Y, Song J, Chen X. ROS-responsive Galactosylated-nanoparticles with Doxorubicin Entrapment for Triple Negative Breast Cancer Therapy. Int J Nanomedicine 2023; 18:1381-1397. [PMID: 36987427 PMCID: PMC10040171 DOI: 10.2147/ijn.s396087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) is one of the most aggressive tumors with high metastasis and mortality, which constitutes 15~20% of all breast cancers. Chemotherapy remains main therapeutic option in the treatment of patients with TNBC. Methods We developed reactive oxygen species (ROS)-responsive galactosylated nanoparticles (DOX@NPs) as an efficiently targeted carrier for doxorubicin (DOX) delivery to inhibit the growth of TNBC in vitro and in vivo. DOX@NPs were composed of polyacrylate galactose and phenylboronic derivatives conjugation. The in vitro cytotoxicity, cellular uptake, cell apoptosis and cycle distribution of tumor cells treated with different formulations were investigated. Meanwhile in vivo biodistribution and antitumor effects were investigated in a 4T1 tumor-bearing mouse model. Results DOX@NPs showed good ROS responsiveness and rapid DOX release in the presence of H2O2. Furthermore, our data suggested that DOX@NPs could effectively trigger tumor cells apoptosis and cycle arrest, efficiently accumulate into tumor sites, and suppress tumor growth without adverse side effects. Conclusion Our results suggested DOX@NP with potent potential as a promising nanocarrier for TNBC therapy, which deserved further investigation for other cancer treatment.
Collapse
Affiliation(s)
- Jingyi Zhou
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Kangkang Li
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Xinlong Zang; Xuehong Chen, Email ;
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Jinxiao Song
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Gao N, Fu Y, Gong H, Liu H, Li W. Hyaluronic acid and cholecalciferol conjugate based nanomicelles: Synthesis, characterization, and cytotoxicity against MCF-7 breast cancer cells. Carbohydr Res 2022; 522:108706. [DOI: 10.1016/j.carres.2022.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
|
13
|
Imtiyaz Z, He J, Leng Q, Agrawal AK, Mixson AJ. pH-Sensitive Targeting of Tumors with Chemotherapy-Laden Nanoparticles: Progress and Challenges. Pharmaceutics 2022; 14:pharmaceutics14112427. [PMID: 36365245 PMCID: PMC9692785 DOI: 10.3390/pharmaceutics14112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Accumulating chemotherapeutic drugs such as doxorubicin within a tumor while limiting the drug dose to normal tissues is a central goal of drug delivery with nanoparticles. Liposomal products such as Doxil® represent one of the marked successes of nanoparticle-based strategies. To replicate this success for cancer treatment, many approaches with nanoparticles are being explored in order to direct and release chemotherapeutic agents to achieve higher accumulation in tumors. A promising approach has been stimulus-based therapy, such as the release of chemotherapeutic agents from the nanoparticles in the acidic environments of the tumor matrix or the tumor endosomes. Upon reaching the acidic environments of the tumor, the particles, which are made up of pH-dependent polymers, become charged and release the entrapped chemotherapy agents. This review discusses recent advances in and prospects for pH-dependent histidine-based nanoparticles that deliver chemotherapeutic agents to tumors. The strategies used by investigators include an array of histidine-containing peptides and polymers which form micelles, mixed micelles, nanovesicles, polyplexes, and coat particles. To date, several promising histidine-based nanoparticles have been demonstrated to produce marked inhibition of tumor growth, but challenges remain for successful outcomes in clinical trials. The lessons learned from these histidine-containing particles will provide insight in the development of improved pH-dependent polymeric delivery systems for chemotherapy.
Collapse
Affiliation(s)
- Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - Jiaxi He
- 20511 Seneca Meadows Pkwy, Suite 260, RNAimmune, Germantown, MD 20876, USA
| | - Qixin Leng
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - Atul K. Agrawal
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3223; Fax: +1-410-706-8414
| |
Collapse
|
14
|
Redox-Sensitive Multifunctional Hyaluronic acid-based Nanomicelles with Fine-controlled Anticancer Drug Release. Int J Pharm 2022; 629:122402. [DOI: 10.1016/j.ijpharm.2022.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
15
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
16
|
Li J, Gao Y, Liu S, Cai J, Zhang Q, Li K, Liu Z, Shi M, Wang J, Cui H. Aptamer-functionalized Quercetin Thermosensitive Liposomes for Targeting Drug Delivery and Antitumor Therapy. Biomed Mater 2022; 17. [PMID: 36001994 DOI: 10.1088/1748-605x/ac8c75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
Chemo-thermotherapy, as a promising cancer combination therapy strategy, has attracted widespread attention. In this study, a novel aptamer functionalized thermosensitive liposome encapsulating hydrophobic drug quercetin was fabricated as an efficient drug delivery system. This aptamer-functionalized quercetin thermosensitive liposomes (AQTSL) combined the merits of high-loading yield, sustained drug release, long-term circulation in the body of PEGylated liposomes, passive targeting provided by 100-200 nm nanoparticles, active targeting and improved internalization effects offered by AS1411 aptamer, and temperature-responsive of quercetin release. In addition, AQTSL tail vein injection combined with 42℃ water bath heating on tumor site (AQTSL+42℃)treatment inhibited the tumor growth significantly compared with the normal saline administration (p<0.01), and the inhibition rate reached 75%. Furthermore, AQTSL+42℃ treatment also slowed down the tumor growth significantly compared with QTSL combined with 42℃ administration (p<0.05), confirming that AS1411 decoration on QTSL increased the active targeting and internalization effects of the drug delivery system, and AS1411 aptamer itself might also contribute to the tumor inhibition. These data indicate that AQTSL is a potential carrier candidate for different hydrophobic drugs and tumor targeting delivery, and this kind of targeted drug delivery system combined with temperature responsive drug release mode is expected to achieve an ideal tumor therapy effect.
Collapse
Affiliation(s)
- Jian Li
- Yanshan University, No.438,Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Yanting Gao
- Yanshan University, No.438, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Shihe Liu
- Yanshan University, No.438,Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Jiahui Cai
- Yanshan University, No.438, Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Qing Zhang
- Yanshan University, No.438, Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Kun Li
- Yanshan University, No. 438, Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Zhiwei Liu
- Yanshan University, No. 438, West Section of Hebei Street, Qinhuangdao, Hebei, 066004, CHINA
| | - Ming Shi
- Yanshan University, No.438, Hebei Street, Qinhuangdao, Hebei Province, 066004, CHINA
| | - Jidong Wang
- Yanshan University, No. 438, Hebei Street, Qinhuangdao, 066000, CHINA
| | - Hongxia Cui
- Yanshan University, No. 438, Hebei Street, Qinhuangdao, Hebei Province, 066004, CHINA
| |
Collapse
|
17
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
18
|
Tumor-associated macrophage membrane-camouflaged pH-responsive polymeric micelles for combined cancer chemotherapy-sensitized immunotherapy. Int J Pharm 2022; 624:121911. [PMID: 35700870 DOI: 10.1016/j.ijpharm.2022.121911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
The low immunogenicity and tumor immunosuppressive microenvironment (TIM) are two major obstacles for cancer immunotherapy. Synergistically immunogenic cell death induction and tumor-associated macrophages depletion could perfectly overcome this limitation. Herein, a tumor-associated macrophage (TAMs) membrane-camouflaged pH-responsive doxorubicin (DOX) loaded hyaluronic acid (HA)-g-poly (histidine) polymeric micelles (DHP@M2) was fabricated for the first time. DHP@M2 could effectively accumulated into tumor regions via TAMs membrane mediated immune camouflage. In acidic tumor microenvironment, particle size of DHP was enlarged due to decrease hydrophobic interaction of inner core, which caused a "membrane escape effect" to expose inner HA residue. Together high expression of α4β1 integrin, DHP@M2 could reach CD44/VCAM-1 dual-targetability to facilitate intracellular DOX accumulation for efficient ICD induction. Meanwhile, TAMs membrane could absorb colony stimulating factor 1(CSF1) through high expression of its receptor (CSF1R) on TAMs membrane to deplete TAMs in tumor tissues and relieved TIM. This strategy could efficiently induce cytotoxic T lymphocyte (CTLs) infiltration for antitumor immune response and inhibit tumor progression in 4T1 tumor bearing Balb/c mice. Therefore, DHP@M2 is suitable for cancer chemotherapy-sensitized immunotherapy.
Collapse
|
19
|
Wu J, Zhai T, Sun J, Yu Q, Feng Y, Li R, Wang H, Ouyang Q, Yang T, Zhan Q, Deng L, Qin M, Wang F. Mucus-permeable polymyxin B-hyaluronic acid/ poly (lactic-co-glycolic acid) nanoparticle platform for the nebulized treatment of lung infections. J Colloid Interface Sci 2022; 624:307-319. [DOI: 10.1016/j.jcis.2022.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
20
|
Chitosan-Hyaluronan Nanoparticles for Vinblastine Sulfate Delivery: Characterization and Internalization Studies on K-562 Cells. Pharmaceutics 2022; 14:pharmaceutics14050942. [PMID: 35631528 PMCID: PMC9143110 DOI: 10.3390/pharmaceutics14050942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
In the present study, we developed chitosan/hyaluronan nanoparticles (CS/HY NPs) for tumor targeting with vinblastine sulfate (VBL), that can be directed to the CD44 transmembrane receptor, over-expressed in cancer cells. NPs were prepared by coating with HY-preformed chitosan/tripolyphosphate (CS/TPP) NPs, or by polyelectrolyte complexation of CS with HY. NPs with a mean hydrodynamic radius (RH) of 110 nm, 12% polydispersity index and negative zeta potential values were obtained by a direct complexation process. Transmission Electron Microscopy (TEM) images showed spherical NPs with a non-homogeneous matrix, probably due to a random localization of CS and HY interacting chains. The intermolecular interactions occurring between CS and HY upon NPs formation were experimentally evidenced by micro-Raman (µ-Raman) spectroscopy, through the analysis of the spectral changes of characteristic vibrational bands of HY during NP formation, in order to reveal the involvement of specific chemical groups in the process. Optimized NP formulation efficiently encapsulated VBL, producing a drug sustained release for 20 h. In vitro studies demonstrated a fast internalization of labeled CS/HY NPs (within 6 h) on K-562 human myeloid leukemia cells. Pre-saturation of CD44 by free HY produced a slowing-down of NP uptake over 24 h, demonstrating the need of CD44 for the internalization of HY-based NPs.
Collapse
|
21
|
Dardeer HM, Toghan A, Zaki MEA, Elamary RB. Design, Synthesis and Evaluation of Novel Antimicrobial Polymers Based on the Inclusion of Polyethylene Glycol/TiO 2 Nanocomposites in Cyclodextrin as Drug Carriers for Sulfaguanidine. Polymers (Basel) 2022; 14:polym14020227. [PMID: 35054634 PMCID: PMC8780372 DOI: 10.3390/polym14020227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Polymers and their composites have recently attracted attention in both pharmaceutical and biomedical applications. Polyethylene glycol (PEG) is a versatile polymer extensively used in medicine. Herein, three novel PEG-based polymers that are pseudopolyrotaxane (PEG/α-CD) (1), titania–nanocomposite (PEG/TiO2NPs) (2), and pseudopolyrotaxane–titania–nanocomposite (PEG/α-CD/TiO2NPs) (3), were synthesized and characterized. The chemical structure, surface morphology, and optical properties of the newly materials were examined by FT-IR, 1H-NMR, SEM, and UV–Vis., respectively. The prepared polymers were used as drug carriers of sulfaguanidine as PEG/α-CD/Drug (4), PEG/TiO2NPs/Drug (5), and PEG/α-CD/TiO2NPs/Drug (6). The influence of these drug-carrying formulations on the physical and chemical characteristics of sulfaguanidine including pharmacokinetic response, solubility, and tissue penetration was explored. Evaluation of the antibacterial and antibiofilm effect of sulfaguanidine was tested before and after loading onto the prepared polymers against some Gram-negative and positive bacteria (E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus (MRSA)), as well. The results of this work turned out to be very promising as they confirmed that loading sulfaguanidine to the newly designed polymers not only showed superior antibacterial and antibiofilm efficacy compared to the pure drug, but also modified the properties of the sulfaguanidine drug itself.
Collapse
Affiliation(s)
- Hemat M. Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Arafat Toghan
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
- Correspondence: or
| | - Magdi E. A. Zaki
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Rokaia B. Elamary
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
22
|
Pan YT, Ding YF, Han ZH, Yuwen L, Ye Z, Mok GSP, Li S, Wang LH. Hyaluronic acid-based nanogels derived from multicomponent self-assembly for imaging-guided chemo-photodynamic cancer therapy. Carbohydr Polym 2021; 268:118257. [PMID: 34127228 DOI: 10.1016/j.carbpol.2021.118257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022]
Abstract
Multifunctional theranostic nanoplatforms integrated of imaging function, multi-modality therapy, stimuli-responsiveness, and targeted delivery are of highly desirable attributes in achieving precise medicine. However, preparation of multifunctional nanoplatforms often involves laborious, multiple steps and inevitably utilizes low-biocompatible or non-functional components. Herein we report a facile, one-step self-assembly strategy to fabricate hyaluronic acid (HA)-based multifunctional tumor theranostic nanoplatform by employing magnetic resonance imaging (MRI) agent Mn2+ as a reversible crosslink agent for histidine-grafted HA, along with simultaneously loading chemotherapeutic agent doxorubicin hydrochloride (DOX) and photodynamic therapy agent chlorin e6, to realize MRI-guided targeted chemo-photodynamic cancer therapy. The targeted delivery and stimuli-responsive payload release were demonstrated in vitro and in vivo. Furthermore, the combined chemo-photodynamic therapy of the nanoassembly dramatically improved the cancer therapeutic outcome, in comparison with that of free DOX and nanoplatform solely loaded DOX in a melanoma bearing mice. Our one step assemble strategy is of great potential in clinic transformation.
Collapse
Affiliation(s)
- Ya-Ting Pan
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuan-Fu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China
| | - Zhi-Hao Han
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhan Ye
- UltraSpec Lab, Victoria, BC V8P 2N1, Canada
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China
| | - Shengke Li
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lian-Hui Wang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
23
|
Chaudhry GES, Akim A, Naveed Zafar M, Safdar N, Sung YY, Muhammad TST. Understanding Hyaluronan Receptor (CD44) Interaction, HA-CD44 Activated Potential Targets in Cancer Therapeutics. Adv Pharm Bull 2021; 11:426-438. [PMID: 34513617 PMCID: PMC8421618 DOI: 10.34172/apb.2021.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex mechanism involving a series of cellular events. The glycoproteins such as hyaluronan (HA) are a significant element of extracellular matrix (ECM), involve in the onset of cancer developmental process. The pivotal roles of HA in cancer progression depend on dysregulated expression in various cancer. HA, also gain attention due to consideration as a primary ligand of CD44 receptor. The CD44, complex transmembrane receptor protein, due to alternative splicing in the transcription process, various CD44 isoforms predominantly exist. The overexpression of distinct CD44 isoforms (CD44v) standard (CD44s) depends on the tumour type and stage. The receptor proteins, CD44 engage in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. HA-CD44 interaction trigger survival pathways that result in cell proliferation, invasion ultimately complex metastasis. The interaction and binding of ligand-receptor HA-CD44 regulate the downstream cytoskeleton pathways involve in cell survival or cell death. Thus, targeting HA, CD44 (variant and standard) isoform, and HA-CD44 binding consider as an attractive and useful approach towards cancer therapeutics. The use of various inhibitors of HA, hyaluronidases (HYALs), and utilizing targeted Nano-delivery of anticancer agents and antibodies against CD44, peptides gives promising results in vitro and in vivo. However, they are in clinical trials with favourable and unfavourable outcomes, which reflects the need for various modifications in targeting agents and a better understanding of potential targets in tumour progression pathways.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Naila Safdar
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
24
|
Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym 2021; 264:118015. [PMID: 33910717 DOI: 10.1016/j.carbpol.2021.118015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/16/2023]
Abstract
Owing to its outstanding water-retention ability, viscoelasticity, biocompatibility and non-immunogenicity, Hyaluronic acid (HA), a natural linear polymer alternating linked by d-glucuronic acid and N-acetylglucosamine, has been widely employed in cosmetic, medical and clinical applications. With the development of synthetic biology and bioprocessing optimization, HA production via microbial fermentation is an economical and sustainable alternative over traditional animal extraction methods. Indeed, recently Streptococci and other recombinant systems for HA synthesis has received increasing interests due to its technical advantages. This review summarizes the production of HA by microorganisms and demonstrates its synthesis mechanism, focusing on the current status in various production systems, as well as common synthetic biology strategies include driving more carbon flux into HA biosynthesis and regulating the molecular weight (MW), and finally discusses the major challenges and prospects.
Collapse
|
25
|
Efficient and selective cancer therapy using pro-oxidant drug-loaded reactive oxygen species (ROS)-responsive polypeptide micelles. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC, Sohail M, Khan M, Thu HE. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel) 2021; 13:670. [PMID: 33562376 PMCID: PMC7914759 DOI: 10.3390/cancers13040670] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
Collapse
Affiliation(s)
- Muhammad Abdur Rahim
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Abdul Jabar
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan;
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville 3631, Durban 4000, South Africa
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health and Office of VP for Research and Graduate Studies, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates;
- Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Heather C Aziz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Abbottabad Campus, Abbottabad 45550, Khyber Pakhtunkhwa, Pakistan;
| | - Mirazam Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Hnin Ei Thu
- Research and Innovation Department, Lincolon University College, Petaling Jaya 47301, Selangor, Malaysia;
- Innoscience Research Institute, Skypark, Subang Jaya 47650, Selangor, Malaysia
| |
Collapse
|
27
|
Cadena Castro D, Gatti G, Martín SE, Uberman PM, García MC. Promising tamoxifen-loaded biocompatible hybrid magnetic nanoplatforms against breast cancer cells: synthesis, characterization and biological evaluation. NEW J CHEM 2021. [DOI: 10.1039/d0nj04226a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Improved efficacy and safety of tamoxifen-loaded hybrid nanocarriers based on Fe3O4 nanoparticles, l-cysteine and hyaluronic acid for breast cancer therapy.
Collapse
Affiliation(s)
- Diego Cadena Castro
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Córdoba
- Argentina
| | - Gerardo Gatti
- Fundación para el Progreso de la Medicina
- Laboratorio de Investigación en Cáncer
- Córdoba
- Argentina
| | - Sandra E. Martín
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Córdoba
- Argentina
| | - Paula M. Uberman
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Química Orgánica
- Córdoba
- Argentina
| | - Mónica C. García
- Universidad Nacional de Córdoba
- Facultad de Ciencias Químicas
- Departamento de Ciencias Farmacéuticas
- Córdoba
- Argentina
| |
Collapse
|
28
|
Liu B, Jiao L, Chai J, Bao C, Jiang P, Li Y. Encapsulation and Targeted Release. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Gong N, Zhang Y, Teng X, Wang Y, Huo S, Qing G, Ni Q, Li X, Wang J, Ye X, Zhang T, Chen S, Wang Y, Yu J, Wang PC, Gan Y, Zhang J, Mitchell MJ, Li J, Liang XJ. Proton-driven transformable nanovaccine for cancer immunotherapy. NATURE NANOTECHNOLOGY 2020; 15:1053-1064. [PMID: 33106640 PMCID: PMC7719078 DOI: 10.1038/s41565-020-00782-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/16/2020] [Indexed: 05/05/2023]
Abstract
Cancer vaccines hold great promise for improved cancer treatment. However, endosomal trapping and low immunogenicity of tumour antigens usually limit the efficiency of vaccination strategies. Here, we present a proton-driven nanotransformer-based vaccine, comprising a polymer-peptide conjugate-based nanotransformer and loaded antigenic peptide. The nanotransformer-based vaccine induces a strong immune response without substantial systemic toxicity. In the acidic endosomal environment, the nanotransformer-based vaccine undergoes a dramatic morphological change from nanospheres (about 100 nanometres in diameter) into nanosheets (several micrometres in length or width), which mechanically disrupts the endosomal membrane and directly delivers the antigenic peptide into the cytoplasm. The re-assembled nanosheets also boost tumour immunity via activation of specific inflammation pathways. The nanotransformer-based vaccine effectively inhibits tumour growth in the B16F10-OVA and human papilloma virus-E6/E7 tumour models in mice. Moreover, combining the nanotransformer-based vaccine with anti-PD-L1 antibodies results in over 83 days of survival and in about half of the mice produces complete tumour regression in the B16F10 model. This proton-driven transformable nanovaccine offers a robust and safe strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Zhang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Yongchao Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Shuaidong Huo
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen, China
| | - Guangchao Qing
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Qiankun Ni
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianlei Li
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Ye
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Tingbin Zhang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Shizhu Chen
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Yongji Wang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Paul C Wang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington DC, USA
- Department of Electrical Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Yaling Gan
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, China.
| |
Collapse
|
30
|
Long M, Liu S, Shan X, Mao J, Yang F, Wu X, Qiu L, Chen J. Self-assembly of pH-sensitive micelles for enhanced delivery of doxorubicin to melanoma cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Xu B, Zhou W, Cheng L, Zhou Y, Fang A, Jin C, Zeng J, Song X, Guo X. Novel Polymeric Hybrid Nanocarrier for Curcumin and Survivin shRNA Co-delivery Augments Tumor Penetration and Promotes Synergistic Tumor Suppression. Front Chem 2020; 8:762. [PMID: 33134256 PMCID: PMC7550741 DOI: 10.3389/fchem.2020.00762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
A major barrier for co-delivery of gene medicine with small molecular chemotherapeutic drugs in solid tumors is the inadequate tumor penetration and transfection. In this study, a novel polymeric nanocarrier with integrated properties of tumor penetration, nuclear targeting, and pH-responsive features was designed, and further used to achieve the synergistic anti-tumor effect of curcumin (CUR) and survivin shRNA (pSUR). The polymeric hybrid nanocarrier was constructed from the FDA-approved polymer PLGA and a novel conjugated triblock polymer W5R4K-PEG2K-PHIS (WPH). CUR and pSUR were simultaneously encapsulated in the dual-drug-loaded nanoparticles (CUR/pSUR-NPs) by a modified double-emulsion solvent evaporation (W/O/W) method. The obtained nanoparticles exhibited better pharmaceutical properties with a uniform spherical morphology and sustained release manners of CUR and pSUR. Excellent features including preferable cellular uptake, efficient endosomal escape, enhanced tumor penetration, and elevated transfection efficiency were further proven. Additionally, a markedly enhanced anti-tumor efficacy for CUR/shRNA-NPs was achieved on SKOV-3 and Hela cells. The synergistic anti-tumor effect involved the inhibition of tumor cell proliferation, induction of cell apoptosis, and the activation of caspase-3 pathways. This work sets up an innovative co-delivery nanosystem to suppress tumor growth, contributing to the development of a comprehensive nanoparticulate strategy for future clinical applications.
Collapse
Affiliation(s)
- Bei Xu
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Otolaryngology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Wen Zhou
- Department of Otolaryngology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Cheng
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chaohui Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Guo
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Abbasi S, Yousefi G, Tamaddon AM, Firuzi O. Paclitaxel-loaded polypeptide-polyacrylamide nanomicelles overcome drug-resistance by enhancing lysosomal membrane permeability and inducing apoptosis. J Biomed Mater Res A 2020; 109:18-30. [PMID: 32418316 DOI: 10.1002/jbm.a.37003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023]
Abstract
The aim of the current project was to investigate the in vitro properties of Paclitaxel (PTX)-loaded pHPMA5kD -pHis5kD -pLeu3kD nanomicelles (NMs) on multidrug resistance cell line. Circular dichroism analysis was done to investigate the effect of pH on the secondary structure of the copolymer. Cytotoxicity assay together with fluorescence imaging and flow cytometry were performed to get an insight about toxicity and cellular uptake mechanism of NMs. Acridine orange assay, rhodamine 123 (Rh123) accumulation assay, and apoptosis analysis were conducted for further investigation. It was found that the secondary structure of the copolymer changed in response to pH, PTX-loaded NMs had higher cytotoxicity on both drug-sensitive (MES-SA and MCF-7) and multidrug resistant cells (MES-SA/DX5) compared to free PTX, and interestinly free copolymer inhibited the growth of MES-SA/DX5 cells while it was nontoxic on drug-sensitive cells. Moreover, the copolymer was able to induce lysosome membrane permeation and increase Rh123 accumulation inside cells indicating inhibition of the P-gp efflux pumps. Finally, apoptosis was strongly induced in MES-SA/DX5 cells upon treatment with PTX-loaded NMs. It can be concluded that the designed hybrid copolymer is a good candidate for in vivo assay and developing a powerful system against multidrug resistance tumors.
Collapse
Affiliation(s)
- Sahar Abbasi
- Department of Pharmaceutics, School of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali-Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: synthesis, characterization and pharmacokinetic study. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1776282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Moloud Kazemi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hasanzadeh
- Department of Medical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
34
|
Hu Q, Wang Y, Xu L, Chen D, Cheng L. Transferrin Conjugated pH- and Redox-Responsive Poly(Amidoamine) Dendrimer Conjugate as an Efficient Drug Delivery Carrier for Cancer Therapy. Int J Nanomedicine 2020; 15:2751-2764. [PMID: 32368053 PMCID: PMC7184127 DOI: 10.2147/ijn.s238536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/21/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction A multifunctional redox- and pH-responsive polymeric drug delivery system is designed and investigated for targeted anticancer drug delivery to liver cancer. Methods The nanocarrier (His-PAMAM-ss-PEG-Tf, HP-ss-PEG-Tf) is constructed based on generation 4 polyamidoamine dendrimer (G4 PAMAM). Optimized amount of histidine (His) residues is grafted on the surface of PAMAM to obtain enhanced pH-sensitivity and proton-buffering capacity. Disulfide bonds (ss) are introduced between PAMAM and PEG to reach accelerated intracellular drug release. Transferrin (Tf) was applied to achieve active tumor targeting. Doxorubicin (DOX) is loaded in the hydrophobic cavity of the nanocarrier to exert its anti-tumor effect. Results The results obtained from in vitro and in vivo evaluation indicate that HP-ss-PEG-Tf/DOX complex has pH and redox dual-sensitive properties, and exhibit higher cellular uptake and cytotoxicity than the other control groups. Flow cytometry and confocal microscopy display internalization of HP-ss-PEG-Tf/DOX via clathrin mediated endocytosis and effective endosomal escape in HepG2 cancer cells. Additionally, cyanine 7 labeled HP-ss-PEG-Tf conjugate could quickly accumulate in the HepG2 tumor. Remarkably, HP-ss-PEG-Tf/DOX present superior anticancer activity, enhanced apoptotic activity and lower heart and kidney toxicity in vivo. Discussion Thus, HP-ss-PEG-Tf is proved to be a promising candidate for effective targeting delivery of DOX into the tumor.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Yifei Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Lu Xu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Dawei Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lifang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
35
|
Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020; 323:203-224. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Nano-drug/gene delivery systems (DDS) are powerful weapons for the targeted delivery of various therapeutic molecules in treatment of tumors. Nano systems are being extensively investigated for drug and gene delivery applications because of their exceptional ability to protect the payload from degradation in vivo, prolong circulation of the nanoparticles (NPs), realize controlled release of the contents, reduce side effects, and enhance targeted delivery among others. However, the specific properties required for a DDS vary at different phase of the complex delivery process, and these requirements are often conflicting, including the surface charge, particle size, and stability of DDS, which severely reduces the efficiency of the drug/gene delivery. Therefore, researchers have attempted to fabricate structure, size, or charge changeable DDS by introducing various tumor microenvironment (TME) stimuli-responsive elements into the DDS to meet the varying requirements at different phases of the delivery process, thus improving drug/gene delivery efficiency. This paper summarizes the most recent developments in TME stimuli-responsive DDS and addresses the aforementioned challenges.
Collapse
|
36
|
Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic Acid-Based Theranostic Nanomedicines for Targeted Cancer Therapy. Cancers (Basel) 2020; 12:E940. [PMID: 32290285 PMCID: PMC7226393 DOI: 10.3390/cancers12040940] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.
Collapse
Affiliation(s)
- So Yun Lee
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Woo Yeup Jeong
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
37
|
Zhao J, Zheng D, Tao Y, Li Y, Wang L, Liu J, He J, Lei J. Self-assembled pH-responsive polymeric nanoparticles based on lignin-histidine conjugate with small particle size for efficient delivery of anti-tumor drugs. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Zhao G, Sun Y, Dong X. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug-Resistant Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2383-2395. [PMID: 32036662 DOI: 10.1021/acs.langmuir.9b03722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a novel redox-sensitive micellar system for the co-delivery of doxorubicin (Dox) and a chemosensitizer (curcumin, Cur) to overcome the multidrug resistance (MDR) in cancer cells. Dox and Cur were co-conjugated onto a zwitterionic polymer, poly(carboxybetaine) (pCB), to form Cur-pCB-Dox that self-assembled into stable micelles (164.2 ± 4.8 nm). Single-drug conjugates (pCB-Dox and pCB-Cur) were prepared for comparisons. Compared to the high half-maximal inhibitory concentration (IC50) of Dox (437.2 μg/mL), the IC50 value of pCB-Dox (14.1 μg/mL) was only 1/33 that of Dox. Confocal laser scanning microscopy and flow cytometry revealed the greatly enhanced cell uptake of the conjugate due to the enhanced permeability and retention effect of tumor cells on the micellar conjugate. Co-delivery of pCB-Dox with pCB-Cur further reduced the IC50 value by 37% (8.9 μg/mL). More importantly, Cur-pCB-Dox exhibited the strongest cytotoxicity against MCF-7/Adr cells (IC50, 5.87 μg/mL) because the co-delivered Dox and Cur on one carrier specifically transported into the same cells, which inhibited the efflux of Dox by Cur, led to a higher intracellular Dox concentration and made the drugs exert synergistic effects at the targeting regions. The results proved the zwitterionic micelles as promising drug co-delivery vehicles for fighting against MDR.
Collapse
Affiliation(s)
- Guangfu Zhao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Zhao Y, Wan P, Wang J, Li P, Hu Q, Zhao R. Polysaccharide from vinegar baked radix bupleuri as efficient solubilizer for water-insoluble drugs of Chinese medicine. Carbohydr Polym 2020; 229:115473. [DOI: 10.1016/j.carbpol.2019.115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/20/2019] [Accepted: 10/13/2019] [Indexed: 01/09/2023]
|
40
|
Wang P, Liu W, Liu S, Yang R, Pu Y, Zhang W, Wang X, Liu X, Ren Y, Chi B. pH-responsive nanomicelles of poly(ethylene glycol)-poly(ε-caprolactone)-poly(L-histidine) for targeted drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:277-292. [PMID: 31665964 DOI: 10.1080/09205063.2019.1687132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Here, a novel pH-responsive block copolymer, poly (ethylene glycol)-poly(ε-caprolactone)-poly(L-histidine) (PEG-PCL-PHis), was synthesized and designed for anti-cancer drug delivery with excellent biocompatible, biodegradable, and strong drug loading efficiency. 1H-NMR, IF-IR, and GPC were used to characterize the structure of the PEG-PCL-PHis copolymer. In addition, the morphology, particle size, Zeta potential, and critical micelle concentration (CMC) of different degree of polymerization were determined by transmission electron microscopy (TEM), dynamic light scattering granulometer (DLS), and fluorescence spectrometer, respectively. The strong affinity between the core of micelles and hydrophobic drug was manifested with 15.09% drug loading content and 84.65% entrapment efficiency. In vitro release of DOX from the block copolymer micelle demonstrated, the PEG-PCL-PHis copolymer micelle has stable and durable drug releasing ability accompanied with pH-sensitivity. From the mechanism of cellular uptake the micelles, the pathway of drug release was captured by confocal laser scanning microscope. These experiments demonstrated the safe delivery for anticancer medicine through this novel copolymer. In conclusion, the PEG-PCL-PHis copolymer micelle has great potential to become a safe drug carrier for cancer chemotherapy.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| |
Collapse
|
41
|
Lin S, Ge C, Wang D, Xie Q, Wu B, Wang J, Nan K, Zheng Q, Chen W. Overcoming the Anatomical and Physiological Barriers in Topical Eye Surface Medication Using a Peptide-Decorated Polymeric Micelle. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39603-39612. [PMID: 31580053 DOI: 10.1021/acsami.9b13851] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The sealed anatomical features of the eye and its physiological activity that rapidly removes drugs are called anatomical and physiological barriers, which are the cause of more than 90% of drug loss. This aspect remains a critical issue in eye surface medication. Thus, promoting tissue permeability of drugs as well as prolonging their retention on the eye surface can improve their bioavailability and enhance their therapeutic effects. Thanks to the existence of a negatively charged mucin layer on the eye surface, several peptide-decorated polymeric micelles were prepared to enhance the interaction between the micelle and eye surface, thus prolonging the drug retention on the eye surface and promoting its tissue permeability. Tacrolimus (also known as FK506) is a hydrophobic macrolide immunosuppressant used to treat dry eye syndrome and other eye diseases. However, its hydrophobic nature makes its delivery as a topical eye surface medication difficult, with the risk of side effects due to overdoses. Therefore, the aim of this work is to evaluate the ability of FK506 micelles in promoting their permeability on the eye surface. Our results showed that the positively charged nanomicelles could significantly prolong FK506 retention on the eye surface and enhance its corneal permeability in ex vivo and in vivo conditions. FK506 nanomicelles exhibited superior curing effects against dry eye diseases than the FK506 suspension and a commercial FK506 formula. It exerted better inhibitory effects on eye surface inflammation and corneal epithelium apoptosis when examined by a slip lamp and a transferase-mediated dUTP nick end labeling assay, respectively. Further assays revealed the higher suppressive effects on the expression of several inflammation-related factors at an mRNA and protein level. Hence, our results suggested that these positively charged nanomicelles might be a good drug delivery system for ocular surface medication.
Collapse
Affiliation(s)
- Sen Lin
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou 325000 , China
| | | | | | | | | | | | - Kaihui Nan
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou 325000 , China
| | | | | |
Collapse
|
42
|
Walvekar P, Gannimani R, Salih M, Makhathini S, Mocktar C, Govender T. Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA). Colloids Surf B Biointerfaces 2019; 182:110388. [DOI: 10.1016/j.colsurfb.2019.110388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022]
|
43
|
Closer to Nature Through Dynamic Culture Systems. Cells 2019; 8:cells8090942. [PMID: 31438519 PMCID: PMC6769584 DOI: 10.3390/cells8090942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Mechanics in the human body are required for normal cell function at a molecular level. It is now clear that mechanical stimulations play significant roles in cell growth, differentiation, and migration in normal and diseased cells. Recent studies have led to the discovery that normal and cancer cells have different mechanosensing properties. Here, we discuss the application and the physiological and pathological meaning of mechanical stimulations. To reveal the optimal conditions for mimicking an in vivo microenvironment, we must, therefore, discern the mechanotransduction occurring in cells.
Collapse
|
44
|
Augustine R, Kalva N, Kim HA, Zhang Y, Kim I. pH-Responsive Polypeptide-Based Smart Nano-Carriers for Theranostic Applications. Molecules 2019; 24:E2961. [PMID: 31443287 PMCID: PMC6719039 DOI: 10.3390/molecules24162961] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Smart nano-carriers have attained great significance in the biomedical field due to their versatile and interesting designs with different functionalities. The initial stages of the development of nanocarriers mainly focused on the guest loading efficiency, biocompatibility of the host and the circulation time. Later the requirements of less side effects with more efficacy arose by attributing targetability and stimuli-responsive characteristics to nano-carriers along with their bio- compatibility. Researchers are utilizing many stimuli-responsive polymers for the better release of the guest molecules at the targeted sites. Among these, pH-triggered release achieves increasing importance because of the pH variation in different organ and cancer cells of acidic pH. This specific feature is utilized to release the guest molecules more precisely in the targeted site by designing polymers having specific functionality with the pH dependent morphology change characteristics. In this review, we mainly concert on the pH-responsive polypeptides and some interesting nano-carrier designs for the effective theranostic applications. Also, emphasis is made on pharmaceutical application of the different nano-carriers with respect to the organ, tissue and cellular level pH environment.
Collapse
Affiliation(s)
- Rimesh Augustine
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Nagendra Kalva
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Ho An Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Yu Zhang
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Il Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea.
| |
Collapse
|
45
|
Xi Y, Jiang T, Yu Y, Yu J, Xue M, Xu N, Wen J, Wang W, He H, Shen Y, Chen D, Ye X, Webster TJ. Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy. Int J Nanomedicine 2019; 14:6425-6437. [PMID: 31496695 PMCID: PMC6691947 DOI: 10.2147/ijn.s211981] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Curcumin (CUR) is a general ingredient of traditional Chinese medicine, which has potential antitumor effects. However, its use clinically has been limited due to its low aqueous solubility and bioavailability. In order to improve the therapeutic effect of CUR on osteosarcoma (i.e., bone cancer), a multifunctional micelle was developed here by combining active bone accumulating ability with tumor CD44 targeting capacity. METHODS The CUR loaded micelles were self-assembled by using alendronate-hyaluronic acid-octadecanoic acid (ALN-HA-C18) as an amphiphilic material. The obtained micelles were characterized for size and drug loading. In addition, the in vitro release behavior of CUR was investigated under PBS (pH 5.7) medium containing 1% Tween 80 at 37℃. Furthermore, an hydroxyapatite (the major inorganic component of bone) affinity experiment was studied. In vitro antitumor activity was evaluated. Finally, the anti-tumor efficiency was studied. RESULTS The size and drug loading of the CUR loaded ALN-HA-C18 micelles were about 118 ± 3.6 nm and 6 ± 1.2%, respectively. CUR was released from the ALN-HA-C18 micelles in a sustained manner after 12 h. The hydroxyapatite affinity experiment indicated that CUR loaded ALN-HA-C18 micelles exhibited a high affinity to bone. CUR loaded ALN-HA-C18 micelles exhibited much higher cytotoxic activity against MG-63 cells compared to free CUR. Finally, CUR loaded ALN-HA-C18 micelles effectively delayed anti-tumor growth properties in osteosarcoma bearing mice as compared with free CUR. CONCLUSION The present study suggested that ALN-HA-C18 is a novel promising micelle for osteosarcoma targeting and delivery of the hydrophobic anticancer drug CUR.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu215500, Jiangsu, People’s Republic of China
| | - Yinglan Yu
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Mintao Xue
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Ning Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Weiheng Wang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Hailong He
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Daquan Chen
- Department of Pharmaceutics, School of Pharmacy, Yantai University, Yantai264005, People’s Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
46
|
Wang C, Zhu J, Ma J, Yang Y, Cui X. Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: In vitro and in vivo evaluation. Int J Pharm 2019; 567:118436. [DOI: 10.1016/j.ijpharm.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
|
47
|
Cross-linking of hyaluronic acid by curcumin analogue to construct nanomicelles for delivering anticancer drug. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Sun Y, Wu H, Dong W, Zhou J, Zhang X, Liu L, Zhang X, Cheng H, Guan J, Zhao R, Mao S. Molecular simulation approach to the rational design of self-assembled nanoparticles for enhanced peroral delivery of doxorubicin. Carbohydr Polym 2019; 218:279-288. [DOI: 10.1016/j.carbpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022]
|
49
|
The utilization of low molecular weight heparin-poloxamer associated Laponite nanoplatform for safe and efficient tumor therapy. Int J Biol Macromol 2019; 134:63-72. [PMID: 31071393 DOI: 10.1016/j.ijbiomac.2019.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
|
50
|
Rippe M, Cosenza V, Auzély-Velty R. Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications. Pharmaceutics 2019; 11:E338. [PMID: 31311150 PMCID: PMC6681414 DOI: 10.3390/pharmaceutics11070338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
The rapid advancement in medicine requires the search for new drugs, but also for new carrier systems for more efficient and targeted delivery of the bioactive molecules. Among the latter, polymeric nanocarriers have an increasingly growing potential for clinical applications due to their unique physical and chemical characteristics. In this regard, nanosystems based on hyaluronic acid (HA), a polysaccharide which is ubiquitous in the body, have attracted particular interest because of the biocompatibility, biodegradability and nonimmunogenic property provided by HA. Furthermore, the fact that hyaluronic acid can be recognized by cell surface receptors in tumor cells, makes it an ideal candidate for the targeted delivery of anticancer drugs. In this review, we compile a comprehensive overview of the different types of soft nanocarriers based on HA conjugated or complexed with another polymer: micelles, nanoparticles, nanogels and polymersomes. Emphasis is made on the properties of the polymers used as well as the synthetic approaches for obtaining the different HA-polymer systems. Fabrication, characterization and potential biomedical applications of the nanocarriers will also be described.
Collapse
Affiliation(s)
- Marlène Rippe
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Vanina Cosenza
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Rachel Auzély-Velty
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France.
| |
Collapse
|