1
|
Gomez S, Millán JL. Zinc-alkaline phosphatase at sites of aortic calcification. J Mol Histol 2024; 55:465-479. [PMID: 38850447 PMCID: PMC11306377 DOI: 10.1007/s10735-024-10207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Zinc (Zn) is a normal trace element in mineralizing tissues, but it is unclear whether it is primarily bound to the mineral phase or to organic molecules involved in the mineralization process, or both. Tissue-nonspecific alkaline phosphatase (TNAP) is a Zn metalloenzyme with two Zn ions bound to the M1 and M2 catalytic sites that functions to control the phosphate/pyrophosphate ratio during biomineralization. Here, we studied aortas from Tagln-Cre +/-; HprtALP/Y TNAP overexpressor (TNAP-OE) mice that develop severe calcification. Zn histochemistry was performed using the sulfide-silver staining method in combination with a Zn partial extraction procedure to localize mineral-bound (mineral Zn) and TNAP-bound Zn (tenacious Zn), since soluble Zn (loose Zn) is extracted during fixation of the specimens. Two synthetic bone mineral composites with different Zn content, bone ash, and rat epiphyseal growth plate cartilage were used as controls for Zn staining. In order to correlate the distribution of mineral and tenacious Zn with the presence of mineral deposits, the aortas were examined histologically in unstained and stained thin sections using various light microscopy techniques. Our results show that 14 and 30 dpn, TNAP is concentrated in the calcifying matrix and loses Zn as Ca2+ progressively displaces Zn2+ at the M1 and M2 metal sites. Thus, in addition to its catalytic role TNAP has an additional function at calcifying sites as a Ca-binding protein.
Collapse
Affiliation(s)
- Santiago Gomez
- Departamento Anatomía Patológica, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela 9, Cádiz, 11003, Spain.
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Thangadurai S, Majkut M, Milgram J, Zaslansky P, Shahar R, Raguin E. Focused ion beam-SEM 3D study of osteodentin in the teeth of the Atlantic wolfish Anarhichas lupus. J Struct Biol 2024; 216:108062. [PMID: 38224900 DOI: 10.1016/j.jsb.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/25/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
The palette of mineralized tissues in fish is wide, and this is particularly apparent in fish dentin. While the teeth of all vertebrates except fish contain a single dentinal tissue type, called orthodentin, dentin in the teeth of fish can be one of several different tissue types. The most common dentin type in fish is orthodentin. Orthodentin is characterized by several key structural features that are fundamentally different from those of bone and from those of osteodentin. Osteodentin, the second-most common dentin type in fish (based on the tiny fraction of fish species out of ∼30,000 extant fish species in which tooth structure was so far studied), is found in most Selachians (sharks and rays) as well as in several teleost species, and is structurally different from orthodentin. Here we examine the hypothesis that osteodentin is similar to anosteocytic bone tissue in terms of its micro- and nano-structure. We use Focused Ion Beam-Scanning Electron Microscopy (FIB/SEM), as well as several other high-resolution imaging techniques, to characterize the 3D architecture of the three main components of osteodentin (denteons, inter-denteonal matrix, and the transition zone between them). We show that the matrix of osteodentin, although acellular, is extremely similar to mammalian osteonal bone matrix, both in general morphology and in the three-dimensional nano-arrangement of its mineralized collagen fibrils. We also document the presence of a complex network of nano-channels, similar to such networks recently described in bone. Finally, we document the presence of strings of hyper-mineralized small 'pearls' which surround the denteonal canals, and characterize their structure.
Collapse
Affiliation(s)
- Senthil Thangadurai
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marta Majkut
- ESRF - The European Synchrotron Radiation Facility, ID 19, Grenoble, France
| | - Joshua Milgram
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitaetsmedizin, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Emeline Raguin
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| |
Collapse
|
3
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
4
|
Brozou A, Mannino MA, Van Malderen SJM, Garrevoet J, Pubert E, Fuller BT, Dean MC, Colard T, Santos F, Lynnerup N, Boldsen JL, Jørkov ML, Soficaru AD, Vincze L, Le Cabec A. Using SXRF and LA-ICP-TOFMS to Explore Evidence of Treatment and Physiological Responses to Leprosy in Medieval Denmark. BIOLOGY 2023; 12:184. [PMID: 36829463 PMCID: PMC9952905 DOI: 10.3390/biology12020184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Leprosy can lead to blood depletion in Zn, Ca, Mg, and Fe and blood enrichment in Cu. In late medieval Europe, minerals were used to treat leprosy. Here, physiological responses to leprosy and possible evidence of treatment are investigated in enamel, dentine, and cementum of leprosy sufferers from medieval Denmark (n = 12) and early 20th century Romania (n = 2). Using SXRF and LA-ICP-TOFMS, 12 elements were mapped in 15 tooth thin sections, and the statistical covariation of paired elements was computed to assess their biological relevance. The results show marked covariations in the Zn, Ca, and Mg distributions, which are compatible with clinical studies but cannot be directly attributed to leprosy. Minerals used historically as a treatment for leprosy show no detectable intake (As, Hg) or a diffuse distribution (Pb) related to daily ingestion. Intense Pb enrichments indicate acute incorporations of Pb, potentially through the administration of Pb-enriched medication or the mobilization of Pb from bone stores to the bloodstream during intense physiological stress related to leprosy. However, comparisons with a healthy control group are needed to ascertain these interpretations. The positive correlations and the patterns observed between Pb and essential elements may indicate underlying pathophysiological conditions, demonstrating the potential of SXRF and LA-ICP-TOFMS for paleopathological investigations.
Collapse
Affiliation(s)
- Anastasia Brozou
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marcello A. Mannino
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
| | - Stijn J. M. Van Malderen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
- Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000 Gent, Belgium
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Eric Pubert
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France
| | - Benjamin T. Fuller
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
- Géosciences Environnement Toulouse, UMR 5563, CNRS, Observatoire Midi-Pyrénées, 31400 Toulouse, France
| | - M. Christopher Dean
- Department of Earth Sciences, Centre for Human Evolution Research, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Thomas Colard
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France
- Department of Oral and Maxillofacial Radiology, University of Lille, Lille University Hospital, F-59000 Lille, France
| | - Frédéric Santos
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France
| | - Niels Lynnerup
- Department of Forensic Medicine, University of Copenhagen, Frederik V’s Vej 11, 2100 Copenhagen, Denmark
| | - Jesper L. Boldsen
- Department of Forensic Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Marie Louise Jørkov
- Department of Forensic Medicine, University of Copenhagen, Frederik V’s Vej 11, 2100 Copenhagen, Denmark
| | - Andrei Dorian Soficaru
- ‘Francisc I. Rainer’ Institute of Anthropology, Romanian Academy, 050474 Bucharest, Romania
| | - Laszlo Vincze
- Department of Chemistry, X-ray Microspectroscopy and Imaging Research Group (XMI), Ghent University, Krijgslaan 281 S12, 9000 Ghent, Belgium
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| |
Collapse
|
5
|
Park JS, Chen H, James KC, Natanson LJ, Stock SR. Three-dimensional mapping of mineral in intact shark centra with energy dispersive x-ray diffraction. J Mech Behav Biomed Mater 2022; 136:105506. [PMID: 36228402 DOI: 10.1016/j.jmbbm.2022.105506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The centra of shark vertebrae consist of cartilage mineralized by a bioapatite similar to bone's carbonated hydroxyapatite, and, without a repair mechanism analogous to remodeling in bone, these structures still survive millions of cycles of high-strain loading. The main structures of the centrum are an hourglass-shaped double cone and the intermedialia which supports the cones. Little is known about the nanostructure of shark centra, specifically the relationship between bioapatite and cartilage fibers, and this study uses energy dispersive diffraction (EDD) with polychromatic synchrotron x-radiation to study the spatial organization of the mineral phase and its crystallographic texture. The unique energy-sensitive detector array at beamline 6-BM-B, the Advanced Photon Source, enables EDD to quantify the texture within each sampling volume with one exposure while constructing 3D maps via specimen translation across the sampling volume. This study maps a centrum from two shark orders, a carcharhiniform and a lamniform, with different intermedialia structures. In the blue shark (Prionace glauca, Carcharhiniformes), the bioapatite's c-axes are oriented laterally within the centrum's cone walls but axially within the wide wedges of the intermedialia; the former is interpreted to resist lateral deformation, the latter to support axial loads. In the shortfin mako (Isurus oxyrinchus, Lamniformes), there is some tendency for c-axis variation with position, but the situation is unclear because one dimension of the sampling volume is considerably larger than the thickness and spacing of the intermedialia's radially-oriented lamellae. Because elastic modulus in collagen plus bioapatite mineralized tissues varies significantly with both volume fraction of bioapatite and crystallographic texture, the present 3D EDD-derived maps should inform future 3D numerical models of shark centra under applied load.
Collapse
Affiliation(s)
- J S Park
- The Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - H Chen
- Mineral Physics Inst, Stony Brook Univ., Stony Brook, NY, USA.
| | - K C James
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA.
| | - L J Natanson
- (retired) Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Narragansett, RI, USA.
| | - S R Stock
- Dept. of Cell and Developmental Biology, Feinberg School of Medicine and Simpson Querrey Inst., Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Demeshkant V, Cwynar P, Slivinska K. Horse Tooth Enamel Ultrastructure: A Review of Evolutionary, Morphological, and Dentistry Approaches. Folia Biol (Praha) 2021. [DOI: 10.3409/fb_69-2.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review searches for and analyzes existing knowledge on horse tooth anatomy in terms of evolutionary and morphological changes, feeding habits, breeding practices, and welfare. More than 150 articles from relevant databases were analyzed, taking into account the issues of our experimental
research on the ultrastructure of Equidae tooth enamel. After our analysis, the knowledge on this subject accumulated up in the past, almost 50 years has been logically arranged into three basic directions: evolutionary-palaeontological, morpho-functional, and dentistic, which is also demonstrated
by the latest trends in the study of enamel morphology and in the practice of equine dentistry. The obtained data show that in recent years we have observed a rapid increase in publications and a thematic expansion of the scope of research. It is caused by the need to deepen knowledge in theory
and in the practice of feeding species in nature and in captivity as well as the possibility of using new technical resources to improve the excellence of such research. It is a summary of the knowledge of a certain stage of equine tooth enamel studies for this period of time, which serves
as the basis for our experimental research (the materials are prepared for publication) and at the same time, defines research perspectives for the next stage of development.
Collapse
|
7
|
Lainović T, Margueritat J, Martinet Q, Dagany X, Blažić L, Pantelić D, Rabasović MD, Krmpot AJ, Dehoux T. Micromechanical imaging of dentin with Brillouin microscopy. Acta Biomater 2020; 105:214-222. [PMID: 31988041 DOI: 10.1016/j.actbio.2020.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/10/2023]
Abstract
The structure of teeth can be altered by diet, age or diseases such as caries and sclerosis. It is very important to characterize their mechanical properties to predict and understand tooth decay, design restorative dental procedures, and investigate their tribological behavior. However, existing imaging techniques are not well suited to investigating the micromechanics of teeth, in particular at tissue interfaces. Here, we describe a microscope based on Brillouin light scattering (BLS) developed to probe the spectrum of the light scattered from tooth tissues, from which the mechanical properties (sound velocity, viscosity) can be inferred with a priori knowledge of the refractive index. BLS is an inelastic process that uses the scattering of light by acoustic waves in the GHz range. Our microscope thus reveals the mechanical properties at the micrometer scale without contact with the sample. BLS signals show significant differences between sound tissues and pathological lesions, and can be used to precisely delineate carious dentin. We also show maps of the sagittal and transversal planes of sound tubular dentin that reveal its anisotropic microstructure at 1 µm resolution. Our observations indicate that the collagen-based matrix of dentine is the main load-bearing structure, which can be considered as a fiber-reinforced composite. In the vicinity of polymeric tooth-filling materials, we observed the infiltration of the adhesive complex into the opened tubules of sound dentine. The ability to probe the quality of this interfacial layer could lead to innovative designs of biomaterials used for dental restorations in contemporary adhesive dentistry, with possible direct repercussions on decision-making during clinical work. STATEMENT OF SIGNIFICANCE: Mechanical properties of teeth can be altered by diet, age or diseases. Yet existing imaging modalities cannot reveal the micromechanics of the tooth. Here we developed a new type of microscope that uses the scattering of a laser light by naturally-occurring acoustic waves to probe mechanical changes in tooth tissues at a sub-micrometer scale without contact to the sample. We observe significant mechanical differences between healthy tissues and pathological lesions. The contrast in mechanical properties also reveals the microstructure of the polymer-dentin interfaces. We believe that this new development of laser spectroscopy is very important because it should lead to innovative designs of biomaterials used for dental restoration, and allow delineating precisely destructed dentin for minimally-invasive strategies.
Collapse
|
8
|
Hu J, Sui T. Insights into the reinforcement role of peritubular dentine subjected to acid dissolution. J Mech Behav Biomed Mater 2020; 103:103614. [PMID: 32090938 DOI: 10.1016/j.jmbbm.2019.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Human dentine is a mineralised dental tissue that consists of dentinal tubules surrounded by two distinct dentinal phases: peritubular dentine (PTD) and intertubular dentine (ITD). Dental caries, which manifests itself as a consequence of demineralisation, is one of the most common chronic diseases that affect the function of human teeth. Due to the difference in the packing density of crystallites, PTD and ITD exhibit different reaction rates to acid dissolution. The present study evaluates how the effective Young's modulus degrades and how the effective stress redistributes in demineralised human dentine as a result of incremental acid dissolution process. An analytical two-layer composite model is proposed and used for the effective Young's modulus calculation. 3D numerical representative volume elements (RVEs) with different variations in PTD fraction and dentinal tubule density are established to evaluate effective stress redistribution and examine the critical factors that can affect the mechanical performance. The models are then applied on an actual dentine bulk sample. The results reveal how PTD serves as a protection to ITD thus highlight the important role that PTD plays for the structural integrity of dentine. The obtained insights are crucial for advancing the understanding of a variety of natural and therapeutic effects from the mechanical perspective, e.g. the mechanical performance assessment of human dentine subject to complex dynamic processes of de- and re-mineralisation that can occur in human dental caries and dental treatments. It will ultimately inspire the biomimetic design towards strengthening the dentine and dentine-like materials.
Collapse
Affiliation(s)
- Jianan Hu
- Sente Software Ltd., 40 Occam Road, Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
| | - Tan Sui
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
9
|
Shi Y, Shen D, Zheng H, Wu Z, Shao C, Zhang L, Pan H, Tang R, Fu B. Therapeutic Management of Demineralized Dentin Surfaces Using a Mineralizing Adhesive To Seal and Mineralize Dentin, Dentinal Tubules, and Odontoblast Processes. ACS Biomater Sci Eng 2019; 5:5481-5488. [PMID: 33464067 DOI: 10.1021/acsbiomaterials.9b00619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dentin hypersensitivity is attributable to the exposed dentin and its patent tubules. We proposed the therapeutic management of demineralized dentin surfaces using a mineralizing adhesive to seal and remineralize dentin, dentinal tubules, and odontoblast processes. An experimental self-etch adhesive and a mineralizing adhesive consisting of the self-etch adhesive and 20 wt % poly-aspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles were prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. After 60 acid-etched midcoronal dentin disks were treated with distilled water (control), a desensitizing agent (Gluma), the experimental self-etch adhesive, and the mineralizing adhesive, dentin permeability was measured and mineralization was evaluated by Raman, FTIR, XRD, TEM, and selected-area electron diffraction, irrespective of abrasive and acidic challenges. In vitro cytotoxicity of the adhesive and the mineralizing adhesive was assessed by Cell Counting Kit-8. The mineralizing adhesive possessed excellent biocompatibility. We proposed a hybrid mineralization layer composed of the light-cured mineralizing adhesive and the mineralized dentin surfaces, as well as interiorly mineralized resin tags and odontoblast processes inside of the dentinal tubules. This hybrid mineralization not only reduced dentin permeability but also resisted abrasive and acidic attacks.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | - Dongni Shen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | - Haiyan Zheng
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | | | | | - Leiqing Zhang
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | | | | | - Baiping Fu
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| |
Collapse
|
10
|
Sui T, Dluhoš J, Li T, Zeng K, Cernescu A, Landini G, Korsunsky AM. Structure-Function Correlative Microscopy of Peritubular and Intertubular Dentine. MATERIALS 2018; 11:ma11091493. [PMID: 30134596 PMCID: PMC6164774 DOI: 10.3390/ma11091493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022]
Abstract
Peritubular dentine (PTD) and intertubular dentine (ITD) were investigated by 3D correlative Focused Ion Beam (FIB)-Scanning Electron Microscopy (SEM)-Energy Dispersive Spectroscopy (EDS) tomography, tapping mode Atomic Force Microscopy (AFM) and scattering-type Scanning Near-Field Optical Microscopy (s-SNOM) mapping. The brighter appearance of PTD in 3D SEM-Backscattered-Electron (BSE) imaging mode and the corresponding higher grey value indicate a greater mineral concentration in PTD (~160) compared to ITD (~152). However, the 3D FIB-SEM-EDS reconstruction and high resolution, quantitative 2D map of the Ca/P ratio (~1.8) fail to distinguish between PTD and ITD. This has been further confirmed using nanoscale 2D AFM map, which clearly visualised biopolymers and hydroxyapatite (HAp) crystallites with larger mean crystallite size in ITD (32 ± 8 nm) than that in PTD (22 ± 3 nm). Correlative microscopy reveals that the principal difference between PTD and ITD arises primarily from the nanoscale packing density of the crystallites bonded together by thin biopolymer, with moderate contribution from the chemical composition difference. The structural difference results in the mechanical properties variation that is described by the parabolic stiffness-volume fraction correlation function introduced here. The obtained results benefit a microstructure-based mechano-chemical model to simulate the chemical etching process that can occur in human dental caries and some of its treatments.
Collapse
Affiliation(s)
- Tan Sui
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Jiří Dluhoš
- TESCAN Brno, s.r.o., Libušina třída 1, 623 00 Brno, Czech Republic.
| | - Tao Li
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore.
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore.
| | - Adrian Cernescu
- Neaspec GmbH, Bunsenstr. 5, Martinsried, D-82152 Munich, Germany.
| | - Gabriel Landini
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK.
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| |
Collapse
|
11
|
Stock S, Seto J, Deymier A, Rack A, Veis A. Growth of second stage mineral in Lytechinus variegatus. Connect Tissue Res 2018; 59:345-355. [PMID: 29083939 PMCID: PMC6252257 DOI: 10.1080/03008207.2017.1391233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose and Aims: Sea urchin teeth consist of calcite and form in two stages with different magnesium contents. The first stage structures of independently formed plates and needle-prisms define the shape of the tooth, and the columns of the second stage mineral cements the first stage structures together and control the fracture behavior of the mature tooth. This study investigates the nucleation and growth of the second stage mineral. MATERIALS AND METHODS Scanning electron microscopy (SEM) and synchrotron microComputed Tomography characterized the structures of the second phase material found in developing of Lytechinus variegatus teeth. RESULTS Although the column development is a continuous process, defining four phases of column formation captures the changes that occur in teeth of L. variegatus. The earliest phase consists of small 1-2 µm diameter hemispheres, and the second of 5-10 µm diameter, mound-like structures with a nodular surface, develops from the hemispheres. The mounds eventually bridge the syncytium between adjacent plates and form hyperboloid structures (phase three) that appear like mesas when plates separate during the fracture. The mesa diameter increases with time until the column diameter is significantly larger than its height, defining the fourth phase of column development. Energy dispersive x-ray spectroscopy confirms that the columns contain more magnesium than the underlying plates; the ratios of magnesium to calcium are consistent with compositions derived from x-ray diffraction. CONCLUSION Columns grow from both bounding plates. The presence of first phase columns interspersed among third stage mesas indicates very localized control of mineralization.
Collapse
Affiliation(s)
- S.R. Stock
- Dept. of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Corresponding author: Mail address: as above 303 E. Chicago Ave., 60611-3008,
| | - Jong Seto
- Dept. of Biomaterials, Max Planck Inst. for Colloids and Interfaces, Potsdam, Germany,presently at: Dept. of Bioengineering and Therapeutic Sciences, University of California – San Francisco, San Francisco, CA, USA
| | - A.C. Deymier
- Dept. of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,presently at: Dept. of Orthopaedic Surgery, Columbia University, New York, NY, USA
| | - A. Rack
- European Synchrotron Radiation Facility, Grenoble, France
| | - A. Veis
- Dept. of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Dean C, Le Cabec A, Spiers K, Zhang Y, Garrevoet J. Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. J R Soc Interface 2018; 15:20170626. [PMID: 29321271 PMCID: PMC5805964 DOI: 10.1098/rsif.2017.0626] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/08/2017] [Indexed: 11/12/2022] Open
Abstract
Cementum and the incremental markings it contains have been widely studied as a means of ageing animals and retrieving information about diet and nutrition. The distribution of trace elements in great ape and fossil hominin cementum has not been studied previously. Synchrotron X-ray fluorescence (SXRF) enables rapid scanning of large tissue areas with high resolution of elemental distributions. First, we used SXRF to map calcium, phosphorus, strontium and zinc distributions in great ape dentine and cementum. At higher resolution, we compared zinc and strontium distributions in cellular and acellular cementum in regions where clear incremental markings were expressed. We then mapped trace element distributions in fossil hominin dentine and cementum from the 1.55-1.65 million year old site of Koobi Fora, Kenya. Zinc, in particular, is a precise marker of cementum increments in great apes, and is retained in fossil hominin cementum, but does not correspond well with the more diffuse fluctuations observed in strontium distribution. Cementum is unusual among mineralized tissues in retaining so much zinc. This is known to reduce the acid solubility of hydroxyapatite and so may confer resistance to resorption by osteoclasts in the dynamic remodelling environment of the periodontal ligament and alveolar bone.
Collapse
Affiliation(s)
- Christopher Dean
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Adeline Le Cabec
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Kathryn Spiers
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Yi Zhang
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
13
|
Stock S, Finney L, Telser A, Maxey E, Vogt S, Okasinski J. Cementum structure in Beluga whale teeth. Acta Biomater 2017; 48:289-299. [PMID: 27836805 DOI: 10.1016/j.actbio.2016.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/02/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023]
Abstract
A large fraction of the volume of Beluga whale (Delphinapterus leucas) teeth consists of cementum, a mineralized tissue which grows throughout the life of the animal and to which the periodontal ligaments attach. Annular growth bands or growth layer groups (GLGs) form within Beluga cementum, and this study investigates GLG structure using X-ray fluorescence mapping and X-ray diffraction mapping with microbeams of synchrotron radiation. The Ca and Zn fluorescent intensities and carbonated hydroxyapatite (cAp) diffracted intensities rise and fall together and match the light-dark bands visible in transmitted light micrographs. Within the bands of maximum Ca and Zn intensity, the ratio of Zn to Ca is slightly higher than in the minima bands. Further, the GLG cAp, Ca and Zn modulation is preserved throughout the cementum for durations >25year. STATEMENT OF SIGNIFICANCE Cementum is an important tooth tissue to which the periodontal ligaments attach and consists primarily of carbonated apatite mineral and collagen. In optical microscopy of cementum thin sections, light/dark bands are formed annually, and age at death is determined by counting these bands. We employ synchrotron X-ray diffraction and X-ray fluorescence mapping to show the bands in Beluga whale cementum result from differences in mineral content and not from differences in collagen orientation as was concluded by others. Variation in Zn fluorescent intensity was found to be very sensitive indicator of changing biomineralization and suggest that Zn plays an important role this process.
Collapse
|
14
|
Berès F, Isaac J, Mouton L, Rouzière S, Berdal A, Simon S, Dessombz A. Comparative Physicochemical Analysis of Pulp Stone and Dentin. J Endod 2016; 42:432-8. [PMID: 26794341 DOI: 10.1016/j.joen.2015.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Odontoblasts are responsible for the synthesis of dentin throughout the life of the tooth. Tooth pulp tissue may undergo a pathologic process of mineralization, resulting in formation of pulp stones. Although the prevalence of pulp stones in dental caries is significant, their development and histopathology are poorly understood, and their precise composition has never been established. The aim of the present study was to investigate the physicochemical properties of the mineralized tissues of teeth to elucidate the pathologic origin of pulp stones. METHODS Areas of carious and healthy dentin of 8 decayed teeth intended for extraction were analyzed and compared. In addition, 6 pulp stones were recovered from 5 teeth requiring root canal treatment. The samples were embedded in resin, sectioned, and observed by scanning electron microscopy and energy-dispersive spectroscopy. X-ray diffraction was performed to identify phases and crystallinity. X-ray fluorescence provided information on the elemental composition of the samples. RESULTS Pulp stones showed heterogeneous structure and chemical composition. X-ray diffraction revealed partially carbonated apatite. X-ray fluorescence identified P, Ca, Cu, Zn, and Sr within dentin and pulp stones. Zn and Cu concentrations were higher in pulp stones and carious dentin compared with healthy dentin. CONCLUSIONS Pulpal cells produce unstructured apatitic mineralizations containing abnormally high Zn and Cu levels.
Collapse
Affiliation(s)
- Fleur Berès
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Descartes University, Paris, France
| | - Juliane Isaac
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France; Laboratory of Morphogenesis Molecular Genetics, Department of Developmental and Stem Cells Biology, Institut Pasteur, CNRS URA 2578, Paris, France
| | - Ludovic Mouton
- ITODYS, UMR 7086 CNRS, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Stephan Rouzière
- Laboratoire de Physique des Solides, Paris-Sud University, CNRS, UMR 8502, Orsay, France
| | - Ariane Berdal
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France
| | - Stéphane Simon
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France; Hopital de la Pitié Salpêtrière, Service d'Odontologie, Paris, France.
| | - Arnaud Dessombz
- Univ Paris 07, Univ Paris 06, Univ Paris 05, Equipe Berdal, Unites Mixtes Rech 11, Ctr Rech Cordeliers, INSERM, Lab Physiopathol Orale, Paris, France; UFR d'Odontologie, Paris Diderot University, Paris, France
| |
Collapse
|
15
|
Abstract
The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone's remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material's performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions.
Collapse
Affiliation(s)
- S R Stock
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611-3008, USA,
| |
Collapse
|
16
|
Forien JB, Fleck C, Cloetens P, Duda G, Fratzl P, Zolotoyabko E, Zaslansky P. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin. NANO LETTERS 2015; 15:3729-3734. [PMID: 26009930 DOI: 10.1021/acs.nanolett.5b00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The tough bulk of dentin in teeth supports enamel, creating cutting and grinding biostructures with superior failure resistance that is not fully understood. Synchrotron-based diffraction methods, utilizing micro- and nanofocused X-ray beams, reveal that the nm-sized mineral particles aligned with collagen are precompressed and that the residual strains vanish upon mild annealing. We show the link between the mineral nanoparticles and known damage propagation trajectories in dentin, suggesting a previously overlooked compression-mediated toughening mechanism.
Collapse
Affiliation(s)
| | - Claudia Fleck
- ‡Materials Engineering, Berlin Institute of Technology, 10623 Berlin, Germany
| | - Peter Cloetens
- §European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Georg Duda
- †Julius Wolff Institute, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Peter Fratzl
- ⊥Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Emil Zolotoyabko
- ¶Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Paul Zaslansky
- †Julius Wolff Institute, Charité-Universitätsmedizin, 13353 Berlin, Germany
| |
Collapse
|