1
|
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5157. [PMID: 39517433 PMCID: PMC11546690 DOI: 10.3390/ma17215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg) has attracted considerable attention as a biodegradable material for medical implants owing to its excellent biocompatibility, mitigating long-term toxicity and stress shielding. Nevertheless, challenges arise from its rapid degradation and low corrosion resistance under physiological conditions. To overcome these challenges, titanium (biocompatibility and corrosion resistance) has been integrated into Mg. The incorporation of titanium significantly improves mechanical and corrosion resistance properties, thereby enhancing performance in biological settings. Mg-Ti alloys are produced through mechanical alloying and spark plasma sintering (SPS). The SPS technique transforms powder mixtures into bulk materials while preserving structural integrity, resulting in enhanced corrosion resistance, particularly Mg80-Ti20 alloy in simulated body fluids. Moreover, Mg-Ti alloy revealed no more toxicity when assessed on pre-osteoblastic cells. Furthermore, the ability of Mg-Ti-based alloy to create composites with polymers such as PLGA (polylactic-co-glycolic acid) widen their biomedical applications by regulating degradation and ensuring pH stability. These alloys promote temporary orthopaedic implants, offering initial load-bearing capacity during the healing process of fractures without requiring a second surgery for removal. To address scalability constraints, further research is necessary to investigate additional consolidation methods beyond SPS. It is essential to evaluate the relationship between corrosion and mechanical loading to confirm their adequacy in physiological environments. This review article highlights the importance of mechanical characterization and corrosion evaluation of Mg-Ti alloys, reinforcing their applicability in fracture fixation and various biomedical implants.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Sandra Gajević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | | | - Reshab Pradhan
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Slavica Miladinović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | - Aleksandar Ašonja
- Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Blaža Stojanović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| |
Collapse
|
2
|
Osafo SA, Etinosa PO, Obayemi JD, Salifu AA, Asumadu T, Klenam D, Agyei-Tuffour B, Dodoo-Arhin D, Yaya A, Soboyejo WO. Hydroxyapatite nano-pillars on TI-6Al-4V: Enhancements in cell spreading and proliferation during cell/surface integration. J Biomed Mater Res A 2024; 112:1778-1792. [PMID: 38630051 DOI: 10.1002/jbm.a.37726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024]
Abstract
Despite the attractive combinations of cell/surface interactions, biocompatibility, and good mechanical properties of Ti-6Al-4V, there is still a need to enhance the early stages of cell/surface integration that are associated with the implantation of biomedical devices into the human body. This paper presents a novel, easy and reproducible method of nanoscale and nanostructured hydroxyapatite (HA) coatings on Ti-6Al-4V. The resulting nanoscale coatings/nanostructures are characterized using a combination of Raman spectroscopy, scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The nanostructured/nanoscale coatings are shown to enhance the early stages of cell spreading and integration of bone cells (hFOB cells) on Ti-6Al-4V surfaces. The improvements include the acceleration of extra-cellular matrix, cell spreading and proliferation by nanoscale HA structures on the coated surfaces. The implications of the results are discussed for the development of HA nanostructures for the improved osseointegration of Ti-6Al-4V in orthopedic and dental applications.
Collapse
Affiliation(s)
- Sarah Akua Osafo
- Department of Materials Science and Engineering, University of Ghana, Accra, Ghana
- Department of Biomaterial Science, Dental School, University of Ghana, Korle Bu Campus, Accra, Ghana
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Precious Osayamen Etinosa
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - John David Obayemi
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, Massachusetts, USA
| | - Ali Azeko Salifu
- Department of Engineering, Boston College, Chestnut Hill, Massachusetts, USA
| | - Tabiri Asumadu
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Materials Engineering, Sunyani Technical University, Sunyani, Ghana
- Department of Mechanical Engineering, College of Engineering, State University of New York (SUNY) Polytechnic Institute, Utica, New York, USA
| | - Desmond Klenam
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Academic Development Unit and School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | | | - David Dodoo-Arhin
- Department of Materials Science and Engineering, University of Ghana, Accra, Ghana
| | - Abu Yaya
- Department of Materials Science and Engineering, University of Ghana, Accra, Ghana
| | - Winston Oluwole Soboyejo
- Department of Mechanical Engineering, Program in Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, Massachusetts, USA
- Department of Mechanical Engineering, College of Engineering, State University of New York (SUNY) Polytechnic Institute, Utica, New York, USA
| |
Collapse
|
3
|
Guan Q, Hu T, Zhang L, Yu M, Niu J, Ding Z, Yu P, Yuan G, An Z, Pei J. Concerting magnesium implant degradation facilitates local chemotherapy in tumor-associated bone defect. Bioact Mater 2024; 40:445-459. [PMID: 39027327 PMCID: PMC11255111 DOI: 10.1016/j.bioactmat.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects, substantial tumor recurrence, and long-lasting bone reconstruction post tumor resection. Magnesium and its alloys have recently emerged in clinics as orthopedics implantable metals but mostly restricted to mechanical devices. Here, by deposition of calcium-based bilayer coating on the surface, a Mg-based composite implant platform is developed with tailored degradation characteristics, simultaneously integrated with chemotherapeutic (Taxol) loading capacity. The delicate modulation of Mg degradation occurring in aqueous environment is observed to play dual roles, not only in eliciting desirable osteoinductivity, but allows for modification of tumor microenvironment (TME) owing to the continuous release of degradation products. Specifically, the sustainable H2 evolution and Ca2+ from the implant is distinguished to cooperate with local Taxol delivery to achieve superior antineoplastic activity through activating Cyt-c pathway to induce mitochondrial dysfunction, which in turn leads to significant tumor-growth inhibition in vivo. In addition, the local chemotherapeutic delivery of the implant minimizes toxicity and side effects, but markedly fosters osteogenesis and bone repair with appropriate structure degradation in rat femoral defect model. Taken together, a promising intraosseous administration strategy with biodegradable Mg-based implants to facilitate tumor-associated bone defect is proposed.
Collapse
Affiliation(s)
- Qingqing Guan
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tu Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Lei Zhang
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengjiao Yu
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiguang Ding
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pei Yu
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiquan An
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Cheng XQ, Xu W, Shao LH, Shen HQ, Liu HW. Enhanced osseointegration and antimicrobial properties of 3D-Printed porous titanium alloys with copper-strontium doped calcium silicate coatings. J Biomater Appl 2024:8853282241287916. [PMID: 39325858 DOI: 10.1177/08853282241287916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The 3D printing of porous titanium scaffolds reduces the elastic modulus of titanium alloys and promotes osteogenic integration. However, due to the biological inertness of titanium alloy materials, the implant-bone tissue interface is weakly bonded. A calcium silicate (CS) coating doped with polymetallic ions can impart various biological properties to titanium alloy materials. In this study, CuO and SrO binary-doped CS coatings were prepared on the surface of 3D-printed porous titanium alloy scaffolds using atmospheric plasma spraying and characterized by SEM, EDS, and XRD. Both CuO and SrO were successfully incorporated into the CS coating. The in vivo osseointegration evaluation of the composite coating-modified 3D-printed porous titanium alloy scaffolds was conducted using a rabbit bone defect model, showing that the in vivo osseointegration of 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy was improved. The in vitro antimicrobial properties of the 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy were evaluated through bacterial platform coating, co-culture liquid absorbance detection, and crystal violet staining experiments, demonstrating that the composite coating exhibited good antimicrobial properties. In conclusion, the composite scaffold possesses both osteointegration-promoting and antimicrobial properties, indicating a broad potential for clinical applications.
Collapse
Affiliation(s)
- Xin Qi Cheng
- Department of Orthopaedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Xu
- Department of Orthopaedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Long Hui Shao
- Department of Orthopedics, The Fifth People's Hospital of Ningxia, Shizuishan, China
| | - Hua Qiao Shen
- Graduate School, Dalian Medical University, Dalian, China
| | - Hong Wei Liu
- Department of Orthopaedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
5
|
Cui C, Zhao Y, Bai Z, Yan J, Qin D, Peng H, Liu Y, Tong J, Sun L, Wu X, Li B. The Effect of Antibacterial-Osteogenic Surface Modification on the Osseointegration of Titanium Implants: A Static and Dynamic Strategy. ACS Biomater Sci Eng 2024; 10:4093-4113. [PMID: 38829538 DOI: 10.1021/acsbiomaterials.3c01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Titanium (Ti) and its alloys are widely used biomaterials in bone repair. Although these biomaterials possess stable properties and good biocompatibility, the high elastic modulus and low surface activity of Ti implants have often been associated with infection, inflammation, and poor osteogenesis. Therefore, there is an urgent need to modify the surface of Ti implants, where changes in surface morphology or coatings loading can confer specific functions to help them adapt to the osseointegration formation phase and resist bacterial infection. This can further ensure a healthy microenvironment for bone regeneration as well as the promotion of immunomodulation, angiogenesis, and osteogenesis. Therefore, in this review, we evaluated various functional Ti implants after surface modification, both in terms of static modifications and dynamic response strategies, mainly focusing on the synergistic effects of antimicrobial activities and functionalized osteogenic. Finally, the current challenges and future perspectives are summarized to provide innovative and effective solutions for osseointegration and bone defect repair.
Collapse
Affiliation(s)
- Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| |
Collapse
|
6
|
Berger MB, Bosh K, Deng J, Jacobs TW, Cohen DJ, Boyan BD, Schwartz Z. Wnt16 Increases Bone-to-Implant Contact in an Osteopenic Rat Model by Increasing Proliferation and Regulating the Differentiation of Bone Marrow Stromal Cells. Ann Biomed Eng 2024; 52:1744-1762. [PMID: 38517621 PMCID: PMC11082046 DOI: 10.1007/s10439-024-03488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Osseointegration is a complex biological cascade that regulates bone regeneration after implant placement. Implants possessing complex multiscale surface topographies augment this regenerative process through the regulation of bone marrow stromal cells (MSCs) that are in contact with the implant surface. One pathway regulating osteoblastic differentiation is Wnt signaling, and upregulation of non-canonical Wnts increases differentiation of MSCs on these titanium substrates. Wnt16 is a non-canonical Wnt shown to regulate bone morphology in mouse models. This study evaluated the role of Wnt16 during surface-mediated osteoblastic differentiation of MSCs in vitro and osseointegration in vivo. MSCs were cultured on Ti substrates with different surface properties and non-canonical Wnt expression was determined. Subsequently, MSCs were cultured on Ti substrates +/-Wnt16 (100 ng/mL) and anti-Wnt16 antibodies (2 μg/mL). Wnt16 expression was increased in cells grown on microrough surfaces that were processed to be hydrophilic and have nanoscale roughness. However, treatment MSCs on these surfaces with exogenous rhWnt16b increased total DNA content and osteoprotegerin production, but reduced osteoblastic differentiation and production of local factors necessary for osteogenesis. Addition of anti-Wnt16 antibodies blocked the inhibitor effects of Wnt16. The response to Wnt16 was likely independent of other osteogenic pathways like Wnt11-Wnt5a signaling and semaphorin 3a signaling. We used an established rat model of cortical and trabecular femoral bone impairment following botox injections (2 injections of 8 units/leg each, starting and maintenance doses) to assess Wnt16 effects on whole bone morphology and implant osseointegration. Wnt16 injections did not alter whole bone morphology significantly (BV/TV, cortical thickness, restoration of trabecular bone) but were effective at increasing cortical bone-to-implant contact during impaired osseointegration in the botox model. The mechanical quality of the increased bone was not sufficient to rescue the deleterious effects of botox. Clinically, these results are important to understand the interaction of cortical and trabecular bone during implant integration. They suggest a role for Wnt16 in modulating bone remodeling by reducing osteoclastic activity. Targeted strategies to temporally regulate Wnt16 after implant placement could be used to improve osseointegration by increasing the net pool of osteoprogenitor cells.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Kyla Bosh
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Thomas W Jacobs
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA.
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
- Department of Periodontology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| |
Collapse
|
7
|
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, Huang W, Hu N, Hu X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res 2024; 12:28. [PMID: 38744863 PMCID: PMC11094017 DOI: 10.1038/s41413-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs). Moreover, microbial-mediated dysregulation of the bone immune microenvironment impedes the bone regeneration process, leading to impaired bone defect repair. Despite advances in surgical strategies and drug applications for the treatment of bone infections within the last decade, challenges remain in clinical management. The development and application of tissue engineering materials have provided new strategies for the treatment of bone infections, but a comprehensive review of their research progress is lacking. This review discusses the critical pathogenic mechanisms of microbes in the skeletal system and their immunomodulatory effects on bone regeneration, and highlights the prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. It will inform the development and translation of antimicrobial and bone repair tissue engineering materials for the management of bone infections.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Bei Jing, 101408, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
8
|
Maglio M, Fini M, Sartori M, Codispoti G, Borsari V, Dallari D, Ambretti S, Rocchi M, Tschon M. An Advanced Human Bone Tissue Culture Model for the Assessment of Implant Osteointegration In Vitro. Int J Mol Sci 2024; 25:5322. [PMID: 38791362 PMCID: PMC11120747 DOI: 10.3390/ijms25105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models.
Collapse
Affiliation(s)
- Melania Maglio
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Scientific Direction, 40136 Bologna, Italy;
| | - Maria Sartori
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Giorgia Codispoti
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Veronica Borsari
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| | - Dante Dallari
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Simone Ambretti
- Microbiology Unit, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Martina Rocchi
- IRCCS Istituto Ortopedico Rizzoli, Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, 40136 Bologna, Italy; (D.D.); (M.R.)
| | - Matilde Tschon
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, 40136 Bologna, Italy; (M.M.); (G.C.); (V.B.); (M.T.)
| |
Collapse
|
9
|
Shi Q, Chen J, Chen J, Liu Y, Wang H. Application of additively manufactured bone scaffold: a systematic review. Biofabrication 2024; 16:022007. [PMID: 38507799 DOI: 10.1088/1758-5090/ad35e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.
Collapse
Affiliation(s)
- Qianyu Shi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Jibing Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Junsheng Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yanfeng Liu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Hongze Wang
- School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
10
|
Xu J, Wu D, Ge B, Li M, Yu H, Cao F, Wang W, Zhang Q, Yi P, Wang H, Song L, Liu L, Li J, Zhao D. Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications. ACS Biomater Sci Eng 2024; 10:1435-1447. [PMID: 38330203 DOI: 10.1021/acsbiomaterials.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Di Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Bing Ge
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Maoyuan Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Fang Cao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Weidan Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Qing Zhang
- Integrative Laboratory, Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Pinqiao Yi
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haiyao Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Lingpeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
11
|
Zhao B, Dong Y, Shen X, He W, Jin H, Lili yao, Zheng SW, Zan X, Liu J. Construction of multifunctional coating with cationic amino acid-coupled peptides for osseointegration of implants. Mater Today Bio 2023; 23:100848. [PMID: 38033370 PMCID: PMC10682118 DOI: 10.1016/j.mtbio.2023.100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Osseointegration is an important indicator of implant success. This process can be improved by coating modified bioactive molecules with multiple functions on the surface of implants. Herein, a simple multifunctional coating that could effectively improve osseointegration was prepared through layer-by-layer self-assembly of cationic amino acids and tannic acid (TA), a negatively charged molecule. Osteogenic growth peptide (OGP) and the arginine-glycine-aspartic acid (RGD) functional polypeptides were coupled with Lys6 (K6), the two polypeptides then self-assembled with TA layer by layer to form a composite film, (TA-OGP@RGD)n. The surface morphology and biomechanical properties of the coating were analyzed in gas and liquid phases, and the deposition process and kinetics of the two peptides onto TA were monitored using a quartz crystal microbalance. In addition, the feeding consistency and adsorption ratios of the two peptides were explored by using fluorescence visualization and quantification. The (TA-OGP@RGD)n composite membrane mediated the early migration and adhesion of cells and significantly promoted osteogenic differentiation and mineralization of the extracellular matrix in vitro. Additionally, the bifunctional peptide exhibited excellent osteogenesis and osseointegration owing to the synergistic effect of the OGP and RGD peptides in vivo. Simultaneously, the (TA-OGP@RGD)n membrane regulated the balance of reactive oxygen species in the cell growth environment, thereby influencing the complex biological process of osseointegration. Thus, the results of this study provide a novel perspective for constructing multifunctional coatings for implants and has considerable application potential in orthopedics and dentistry.
Collapse
Affiliation(s)
- Bingyang Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Wei He
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hairu Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lili yao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sheng wu Zheng
- Wenzhou Celecare Medical Instruments Co.,Ltd, Wenzhou, 325000, China
| | - Xingjie Zan
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiming Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
12
|
Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 2023; 11:1269223. [PMID: 38033819 PMCID: PMC10686101 DOI: 10.3389/fbioe.2023.1269223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 12/02/2023] Open
Abstract
Bioactive glasses (BGs) are ideal biomaterials in the field of bio-restoration due to their excellent biocompatibility. Titanium alloys are widely used as a bone graft substitute material because of their excellent corrosion resistance and mechanical properties; however, their biological inertness makes them prone to clinical failure. Surface modification of titanium alloys with bioactive glass can effectively combine the superior mechanical properties of the substrate with the biological properties of the coating material. In this review, the relevant articles published from 2013 to the present were searched in four databases, namely, Web of Science, PubMed, Embase, and Scopus, and after screening, 49 studies were included. We systematically reviewed the basic information and the study types of the included studies, which comprise in vitro experiments, animal tests, and clinical trials. In addition, we summarized the applied coating technologies, which include pulsed laser deposition (PLD), electrophoretic deposition, dip coating, and magnetron sputtering deposition. The superior biocompatibility of the materials in terms of cytotoxicity, cell activity, hemocompatibility, anti-inflammatory properties, bioactivity, and their good bioactivity in terms of osseointegration, osteogenesis, angiogenesis, and soft tissue adhesion are discussed. We also analyzed the advantages of the existing materials and the prospects for further research. Even though the current research status is not extensive enough, it is still believed that BG-coated Ti implants have great clinical application prospects.
Collapse
Affiliation(s)
- Jin Liang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinYue Lu
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinRu Zheng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XiaoYu Geng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - KeXin Sun
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Kai Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
13
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
14
|
Jones SE, Nichols L, Elder SH, Priddy LB. Laser microgrooving and resorbable blast texturing for enhanced surface function of titanium alloy for dental implant applications. BIOMEDICAL ENGINEERING ADVANCES 2023; 5:100090. [PMID: 37424696 PMCID: PMC10327652 DOI: 10.1016/j.bea.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Long-term dental implant success is dependent on biocompatibility and osseointegration between the bone and the implant. Surface modifications such as laser-induced microgrooving which increase contact area can enhance osseointegration by establishing and directing a stable attachment between the implant surface and peri-implant bone. The objective of this study was to evaluate pre-osteoblast proliferation, morphology, and differentiation on titanium alloy (Ti64) surfaces-Laser-Lok© (LL), resorbable blast textured (RBT), and machined (M)-compared to tissue culture plastic (TCP) control. We hypothesized the LL surfaces would facilitate increased cellular alignment compared to all other groups, and LL and RBT surfaces would demonstrate enhanced proliferation and differentiation compared to M and TCP surfaces. Surface roughness was quantified using a surface profilometer, and water contact angle was measured to evaluate the hydrophilicity of the surfaces. Cellular function was assessed using quantitative viability and differentiation assays and image analyses, along with qualitative fluorescent (viability and cytoskeletal) imaging and scanning electron microscopy. No differences in surface roughness were observed between groups. Water contact angle indicated LL was the least hydrophilic surface, with RBT and M surfaces exhibiting greater hydrophilicity. Cell proliferation on day 2 was enhanced on both LL and RBT surfaces compared to M, and all three groups had higher cell numbers on day 2 compared to day 1. Cell orientation was driven by the geometry of the surface modification, as cells were more highly aligned on LL surfaces compared to TCP (on day 2) and RBT (on day 3). At day 21, cell proliferation was greater on LL, RBT, and TCP surfaces compared to M, though no differences in osteogenic differentiation were observed. Collectively, our results highlight the efficacy of laser microgrooved and resorbable blast textured surface modifications of Ti64 for enhancing cellular functions, which may facilitate improved osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | | | - Lauren B. Priddy
- Corresponding author: Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS 39762, USA. (L.B. Priddy)
| |
Collapse
|
15
|
Selective Grafting of Protease-Resistant Adhesive Peptides on Titanium Surfaces. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248727. [PMID: 36557865 PMCID: PMC9781125 DOI: 10.3390/molecules27248727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In orthopedic, dental, and maxillofacial fields, joint prostheses, plates, and screws are widely used in the treatment of problems related to bone tissue. However, the use of these prosthetic systems is not free from complications: the fibrotic encapsulation of endosseous implants often prevents optimal integration of the prostheses with the surrounding bone. To overcome these issues, biomimetic titanium implants have been developed where synthetic peptides have been selectively grafted on titanium surfaces via Schiff base formation. We used the retro-inverted sequence (DHVPX) from [351-359] human Vitronectin and its dimer (D2HVP). Both protease-resistant peptides showed increased human osteoblast adhesion and proliferation, an augmented number of focal adhesions, and cellular spreading with respect to the control. D2HVP-grafted samples significantly enhance Secreted Phosphoprotein 1, Integrin Binding Sialoprotein, and Vitronectin gene expression vs. control. An estimation of peptide surface density was determined by Two-photon microscopy analysis on a silanized glass model surface labeled with a fluorescent analog.
Collapse
|
16
|
Processing of the yttria stabilized zirconia-bioactive glass nano composite produced by electrophoretic deposition method. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractThe yttria-stabilized zirconia (YSZ) is added to a bioactive glass coating through the electrophoretic deposition (EPD) method to significantly improve the mechanical properties, in particular the bonding strength of the coating on the Ti substrate. In this study, suspensions of bioactive glass and YSZ powder (at the same ratio, 20 g/l) are prepared in ethanol solvent; and tri-ethanol-amine is used as the stabilizer. The effects of the EPD parameters such as deposition time and voltage are studied. The optimum coating quality is achieved at a voltage of 60 V for 10 min. After coating, sintering is performed at three different temperatures (800, 850, and 900 °C). The XRD is used to identify the structure and phase of yttria-stabilized zirconia powders and the coated samples. FE-SEM is also employed to assess the microstructure of the specimens. The highest adhesion strength ($$\sim$$
∼
4.38 MPa) is obtained at the sintering temperature of 850 °C.
Collapse
|
17
|
Soares Dos Santos MP, Bernardo RMC. Bioelectronic multifunctional bone implants: recent trends. Bioelectron Med 2022; 8:15. [PMID: 36127721 PMCID: PMC9490885 DOI: 10.1186/s42234-022-00097-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
The concept of Instrumented Smart Implant emerged as a leading research topic that aims to revolutionize the field of orthopaedic implantology. These implants have been designed incorporating biophysical therapeutic actuation, bone-implant interface sensing, implant-clinician communication and self-powering ability. The ultimate goal is to implement revist interface, controlled by clinicians/surgeons without troubling the quotidian activities of patients. Developing such high-performance technologies is of utmost importance, as bone replacements are among the most performed surgeries worldwide and implant failure rates can still exceed 10%. In this review paper, an overview to the major breakthroughs carried out in the scope of multifunctional smart bone implants is provided. One can conclude that many challenges must be overcome to successfully develop them as revision-free implants, but their many strengths highlight a huge potential to effectively establish a new generation of high-sophisticated biodevices.
Collapse
Affiliation(s)
- Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, Aveiro, Portugal.
| | - Rodrigo M C Bernardo
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
18
|
Liu B, Hou G, Yang Z, Li X, Zheng Y, Wen P, Liu Z, Zhou F, Tian Y. Repair of critical diaphyseal defects of lower limbs by 3D printed porous Ti6Al4V scaffolds without additional bone grafting: a prospective clinical study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:64. [PMID: 36104513 PMCID: PMC9474430 DOI: 10.1007/s10856-022-06685-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/22/2022] [Indexed: 05/25/2023]
Abstract
The repair of critical diaphyseal defects of lower weight-bearing limbs is an intractable problem in clinical practice. From December 2017, we prospectively applied 3D printed porous Ti6Al4V scaffolds to reconstruct this kind of bone defect. All patients experienced a two-stage surgical process, including thorough debridement and scaffold implantation. With an average follow-up of 23.0 months, ten patients with 11 parts of bone defects were enrolled in this study. The case series included three females and seven males, their defect reasons included seven parts of osteomyelitis and four parts of aseptic nonunion. The bone defects located at femur (five parts) and tibia (six parts), with an average defect distance of 12.2 cm. Serial postoperative radiologic follow-ups displayed a continuous process of new bone growing and remodeling around the scaffold. One patient suffered tibial varus deformity, and he underwent a revision surgery. The other nine patients achieved scaffold stability. No scaffold breakage occurred. In conclusion, the implantation of 3D printed Ti6Al4V scaffold was feasible and effective to reconstruct critical bone defects of lower limbs without additional bone grafting. Graphical abstract.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Guojin Hou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongwei Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xingcai Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Fang Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
19
|
In-Vitro Phenotypic Response of Human Osteoblasts to Different Degrees of Titanium Surface Roughness. Dent J (Basel) 2022; 10:dj10080140. [PMID: 36005238 PMCID: PMC9406766 DOI: 10.3390/dj10080140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: This study aimed to investigate human osteoblast (HOB) responses towards different degrees of titanium (Ti) implant surface roughness. Methods: Four degrees of Ti surface roughness were investigated on a micrometer roughness scale: smooth (S: 0.08−0.1 µm), minimally rough (MM: 0.3−0.5 µm), moderately rough (MR: 1.2−1.4 µm), and rough (R: 3.3−3.7 µm). HOB cells were cultured, expanded, and maintained according to the supplier’s protocol. Cell proliferation and cytotoxicity were assessed at day 1, 3, 5, and 10 using alamarBlue and lactate dehydrogenase colorimetric assays. Data were analyzed with one-way ANOVA, two-way ANOVA, and Tukey’s post hoc test (p = 0.05 for all tests). Results: There was no significant difference in the cell proliferation or cytotoxicity of the HOB cells in contact with the different degrees of Ti surface roughness. There was, however, a significant time effect on cell proliferation (p < 0.0001) with different exposure durations for each roughness degree. Furthermore, a positive correlation (non-significant) between proliferation and cytotoxicity was observed for all investigated degrees of surface roughness. Conclusion: All investigated roughness degrees showed comparable HOB proliferation, with the MR surface presenting the highest percentage, followed by the R, MM, ad S, surfaces, respectively. The S surface showed the highest cytotoxic effect on HOBs; however, it did not reach the cytotoxic level suggested by the ISO for any medical device to be considered cytotoxic.
Collapse
|
20
|
Zhang RZ, Shi Q, Zhao H, Pan GQ, Shao LH, Wang JF, Liu HW. In vivo study of dual functionalized mussel-derived bioactive peptides promoting 3D-printed porous Ti6Al4V scaffolds for repair of rabbit femoral defects. J Biomater Appl 2022; 37:942-958. [PMID: 35856165 DOI: 10.1177/08853282221117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 3D printed porous titanium alloy scaffolds are beneficial to enhance angiogenesis, osteoblast adhesion, and promote osseointegration. However, titanium alloys are biologically inert, which makes the bond between the implant and bone tissue weak and prone to loosening. Inspired by the natural biological marine mussels, we designed four-claw-shaped mussel-derived bioactive peptides for the decoration of porous titanium alloy scaffolds: adhesion peptide-DOPA, anchoring peptide-RGD and osteogenic-inducing peptide-BMP-2. And the bifunctionalization of 3D-printed porous titanium alloy scaffolds was evaluated in vivo in a rabbit model of bone defect with excellent promotion of osseointegration and mechanical stability. Our results show that the in vivo osseointegration ability of the modified 3D printed porous titanium alloy test piece is significantly improved, and the bifunctional polypeptide coating group E has the strongest osseointegration ability. In conclusion, our experimental design partially solves the problems of stress shielding effect and biological inertness, and provides a convenient and feasible method for the clinical application of titanium alloy implants in biomedical implant materials.
Collapse
Affiliation(s)
| | - Qin Shi
- 12582Suzhou University, Suzhou, China
| | - Huan Zhao
- 12582Suzhou University, Suzhou, China
| | | | | | | | - Hong Wei Liu
- 599923Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
21
|
Martin V, Garcia M, Montemor MDF, Fernandes JCS, Gomes PS, Fernandes MH. Simulating In Vitro the Bone Healing Potential of a Degradable and Tailored Multifunctional Mg-Based Alloy Platform. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060255. [PMID: 35735498 PMCID: PMC9219794 DOI: 10.3390/bioengineering9060255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
This work intended to elucidate, in an in vitro approach, the cellular and molecular mechanisms occurring during the bone healing process, upon implantation of a tailored degradable multifunctional Mg-based alloy. This was prepared by a conjoining anodization of the bare alloy (AZ31) followed by the deposition of a polymeric coating functionalized with hydroxyapatite. Human endothelial cells and osteoblastic and osteoclastic differentiating cells were exposed to the extracts from the multifunctional platform (having a low degradation rate), as well as the underlying anodized and original AZ31 alloy (with higher degradation rates). Extracts from the multifunctional coated alloy did not affect cellular behavior, although a small inductive effect was observed in the proliferation and gene expression of endothelial and osteoblastic cells. Extracts from the higher degradable anodized and original alloys induced the expression of some endothelial genes and, also, ALP and TRAP activities, further increasing the expression of some early differentiation osteoblastic and osteoclastic genes. The integration of these results in a translational approach suggests that, following the implantation of a tailored degradable Mg-based material, the absence of initial deleterious effects would favor the early stages of bone repair and, subsequently, the on-going degradation of the coating and the subjacent alloy would increase bone metabolism dynamics favoring a faster bone formation and remodeling process and enhancing bone healing.
Collapse
Affiliation(s)
- Victor Martin
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Mónica Garcia
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
| | - Maria de Fátima Montemor
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - João Carlos Salvador Fernandes
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
22
|
Bregoli C, Biffi CA, Morellato K, Gruppioni E, Primavera M, Rampoldi M, Lando M, Adani R, Tuissi A. Osseointegrated Metallic Implants for Finger Amputees: A Review of the Literature. Orthop Surg 2022; 14:1019-1033. [PMID: 35524645 PMCID: PMC9163974 DOI: 10.1111/os.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/01/2022] Open
Abstract
Digital trauma amputations and digital agenesis strongly affect the functionality and aesthetic appearance of the hand. Autologous reconstruction is the gold standard of treatment. Unfortunately, microsurgical options and transplantation procedures are not possible for patients who present contraindications or refuse to undergo transplantation from the toe (e.g. toe‐to‐thumb transplantation). To address these issues, osseointegrated finger prostheses are a promising alternative. The functional assessments registered during follow‐up confirmed the promising outcomes of osseointegrated prostheses in the treatment of hand finger amputees. This review outlines (a) a detailed analysis of osseointegrated finger metallic components of the implants, (b) the surgical procedures suggested in the literature, and (c) the functional assessments and promising outcomes that demonstrate the potential of these medical osseointegrated devices in the treatment of finger amputees.
Collapse
Affiliation(s)
- Chiara Bregoli
- Unit of Lecco, CNR ICMATE, National Research Council, Lecco, Italy
| | | | | | | | - Matteo Primavera
- Hand and Reconstructive Surgery Unit, Centro Traumatologico Ortopedico A. Alesini, Rome, Italy
| | - Michele Rampoldi
- Hand and Reconstructive Surgery Unit, Centro Traumatologico Ortopedico A. Alesini, Rome, Italy
| | - Mario Lando
- Department of Hand surgery and Microsurgery, University Hospital of Modena, Modena, Italy
| | - Roberto Adani
- Department of Hand surgery and Microsurgery, University Hospital of Modena, Modena, Italy
| | - Ausonio Tuissi
- Unit of Lecco, CNR ICMATE, National Research Council, Lecco, Italy
| |
Collapse
|
23
|
Kotlarz M, Ferreira AM, Gentile P, Dalgarno K. Bioprinting of cell-laden hydrogels onto titanium alloy surfaces to produce a bioactive interface. Macromol Biosci 2022; 22:e2200071. [PMID: 35365963 DOI: 10.1002/mabi.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Indexed: 11/06/2022]
Abstract
The surface of metal implants serves as a powerful signaling cue for cells. Its properties play an essential role in stabilizing the bone-implant interface and facilitating the early osseointegration by encouraging bone deposition on the surface. However, effective strategies to deliver cells to the metal surfaces are yet to be explored. Here, we use a bioprinting process called reactive jet impingement (ReJI) to deposit high concentrations (4×107 cells/mL) of mesenchymal stromal cells (MSCs) within hydrogel matrices directly onto the titanium alloy metal surfaces that vary in surface roughness and morphology. In this proof of concept study, we fabricate cell-hydrogel-metal systems with the aim of enhancing bioactivity through delivering MSCs in hydrogel matrices at the bone-implant interface. Our results show that the deposition of high cell concentrations encourages quick cell-biomaterial interactions at the hydrogel-metal surface interface, and cell morphology is influenced by the surface type. Cells migrate from the hydrogels and deposit mineralized matrix rich in calcium and phosphorus on the titanium alloy surfaces. We demonstrate that ReJI bioprinting is a promising tool to deliver cells in a three-dimensional (3D) environment before implantation that can be used when developing a new generation of medical devices for bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marcin Kotlarz
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
24
|
Attasgah R, Velasco-Rodríguez B, Pardo A, Fernández-Vega J, Arellano-Galindo L, Rosales-Rivera L, Prieto G, Barbosa S, Soltero J, Mahmoudi M, Taboada P. DEVELOPMENT OF FUNCTIONAL HYBRID SCAFFOLDS FOR WOUND HEALING APPLICATIONS. iScience 2022; 25:104019. [PMID: 35340432 PMCID: PMC8941216 DOI: 10.1016/j.isci.2022.104019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hybrid hydrogels composed of chitosan (CS) and hyaluronic acid (HA) and collagen (Coll) were prepared by polyelectrolyte complex self-assembly. These scaffolds displayed a good intermingling of the polymeric chains, with porosities above 80% and good interconnected structures with pore sizes lying between 30–115 μm. The ionic interactions between CS and HA make the scaffolds have larger storage modulus and longer LVR regions than their pure counterparts. Both quantities progressively decrease as the HA and Coll concentrations in the formulation rise. These hybrid hydrogels showed good swelling extents from ca. 420 to ca. 690% and suitable resistance to enzymatic degradation, which was slightly lower for scaffolds containing CS to larger extents or Coll in the formulation. All scaffolds were largely cytocompatible and allowed the proliferation of both mouse fibroblast and human keratinocytes with their infiltration inside, thus becoming optimal matrices for intended tissue engineering applications as well as transdermal drug delivery depots. Hybrid scaffolds were obtained by polyelectrolyte ionic self-assembly Scaffolds were largely porous with suitable pore sizes for cell proliferation Scaffolds showed exceptional swelling and good resistance to enzymatic attack They were nontoxic and enabled cell proliferation and infiltration inside the scaffold
Collapse
|
25
|
Ovchinnikov EN, Godovykh NV, Dyuryagina OV, Stogov MV, Ovchinnikov DN, Ovchinnikov NV. Antimicrobial Efficacy of Exposure of Medical Metal Implants to Direct Electric Current. BIOMEDICAL ENGINEERING 2022; 55:323-327. [DOI: 10.1007/s10527-022-10128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 09/03/2023]
|
26
|
Dai X, Bai Y, Heng BC, Li Y, Tang Z, Lin C, Liu O, He Y, Zhang X, Deng X. Biomimetic hierarchical implant surface promotes early osseointegration in osteoporosis rats by suppressing macrophage activation and osteoclastogenes. J Mater Chem B 2022; 10:1875-1885. [PMID: 35234787 DOI: 10.1039/d1tb02871e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successful implant-bone integration remains a formidable challenge in osteoporosis patients, because of excessive inflammatory reaction and osteoclastogenesis around the peri-implant bone tissue. This study designed biomimetic micro/sub-micro hierarchical surfaces on...
Collapse
Affiliation(s)
- Xiaohan Dai
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yiping Li
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Zhangui Tang
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ousheng Liu
- Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| |
Collapse
|
27
|
de Sousa BM, Correia CR, Ferreira JAF, Mano JF, Furlani EP, Soares Dos Santos MP, Vieira SI. Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. NPJ Regen Med 2021; 6:80. [PMID: 34815414 PMCID: PMC8611088 DOI: 10.1038/s41536-021-00184-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
Replacement orthopedic surgeries are among the most common surgeries worldwide, but clinically used passive implants cannot prevent failure rates and inherent revision arthroplasties. Optimized non-instrumented implants, resorting to preclinically tested bioactive coatings, improve initial osseointegration but lack long-term personalized actuation on the bone-implant interface. Novel bioelectronic devices comprising biophysical stimulators and sensing systems are thus emerging, aiming for long-term control of peri-implant bone growth through biointerface monitoring. These acting-sensing dual systems require high frequency (HF) operations able to stimulate osteoinduction/osteoconduction, including matrix maturation and mineralization. A sensing-compatible capacitive stimulator of thin interdigitated electrodes and delivering an electrical 60 kHz HF stimulation, 30 min/day, is here shown to promote osteoconduction in pre-osteoblasts and osteoinduction in human adipose-derived mesenchymal stem cells (hASCs). HF stimulation through this capacitive interdigitated system had significant effects on osteoblasts' collagen-I synthesis, matrix, and mineral deposition. A proteomic analysis of microvesicles released from electrically-stimulated osteoblasts revealed regulation of osteodifferentiation and mineralization-related proteins (e.g. Tgfb3, Ttyh3, Itih1, Aldh1a1). Proteomics data are available via ProteomeXchange with the identifier PXD028551. Further, under HF stimulation, hASCs exhibited higher osteogenic commitment and enhanced hydroxyapatite deposition. These promising osteoinductive/conductive capacitive stimulators will integrate novel bioelectronic implants able to monitor the bone-implant interface and deliver personalized stimulation to peri-implant tissues.
Collapse
Affiliation(s)
- Bárbara M de Sousa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A F Ferreira
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Edward P Furlani
- Department of Chemical and Biological Engineering, Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, NY, 14260, USA
| | - Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal.
- Faculty of Engineering, Associated Laboratory for Energy, Transports and Aeronautics (LAETA), University of Porto, 4200-465, Porto, Portugal.
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Dall'Ava L, Hothi H, Henckel J, Di Laura A, Tirabosco R, Eskelinen A, Skinner J, Hart A. Osseointegration of retrieved 3D-printed, off-the-shelf acetabular implants. Bone Joint Res 2021; 10:388-400. [PMID: 34235940 PMCID: PMC8333029 DOI: 10.1302/2046-3758.107.bjr-2020-0462.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aims The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants. Methods We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method. Results The two groups were matched for patient sex, age (61 and 63 years), time to revision (30 and 41 months), implant size (54 mm and 52 mm), and porosity (72% and 60%) (p > 0.152). There was no difference in visual bony attachment (p = 0.209). Histological analysis showed greater bone ingrowth in 3D-printed implants (p < 0.001), with mean bone attachment of 63% (SD 28%) and 37% (SD 20%), respectively. This was observed for all the outcome measures. Conclusion This was the first study to investigate osseointegration in retrieved 3D-printed acetabular implants. Greater bone ingrowth was found in 3D-printed implants, suggesting that better osseointegration can be achieved. However, the influence of specific surgeon, implant, and patient factors needs to be considered. Cite this article: Bone Joint Res 2021;10(7):388–400.
Collapse
Affiliation(s)
- Lorenzo Dall'Ava
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Stanmore, UK
| | - Harry Hothi
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Johann Henckel
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Anna Di Laura
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | | | - John Skinner
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Alister Hart
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Stanmore, UK.,Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| |
Collapse
|
29
|
Damiati LA, El-Messeiry S. An Overview of RNA-Based Scaffolds for Osteogenesis. Front Mol Biosci 2021; 8:682581. [PMID: 34169095 PMCID: PMC8217814 DOI: 10.3389/fmolb.2021.682581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering provides new hope for the combination of cells, scaffolds, and bifactors for bone osteogenesis. This is achieved by mimicking the bone's natural behavior in recruiting the cell's molecular machinery for our use. Many researchers have focused on developing an ideal scaffold with specific features, such as good cellular adhesion, cell proliferation, differentiation, host integration, and load bearing. Various types of coating materials (organic and non-organic) have been used to enhance bone osteogenesis. In the last few years, RNA-mediated gene therapy has captured attention as a new tool for bone regeneration. In this review, we discuss the use of RNA molecules in coating and delivery, including messenger RNA (mRNA), RNA interference (RNAi), and long non-coding RNA (lncRNA) on different types of scaffolds (such as polymers, ceramics, and metals) in osteogenesis research. In addition, the effect of using gene-editing tools-particularly CRISPR systems-to guide RNA scaffolds in bone regeneration is also discussed. Given existing knowledge about various RNAs coating/expression may help to understand the process of bone formation on the scaffolds during osseointegration.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Li Z, Wang J, Shen R, Chen N, Qin X, Wang W, Yuan Q. Topological Radiated Dendrites Featuring Persistent Bactericidal Activity for Daily Personal Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100562. [PMID: 33969623 DOI: 10.1002/smll.202100562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Many substances in nature show radiated topological structure and possess excellent bio-adhesion ability. Herein, regulating the topological structure of Zn2 GeO4 :Mn persistent phosphors is achieved with a molecular coordination method. The morphology of the Zn2 GeO4 :Mn phosphors is well-tuned from nanorods to radiated dendrites by changing the coordination capability of the surface ligand. Due to the structural matching and multivalent interactions, Zn2 GeO4 :Mn radiated dendrites show strong adhesion affinity toward organisms. Moreover, the porous radiated structure offers Zn2 GeO4 :Mn with a large surface area for photocatalysis. Efficient bacterial adhesion and good long persistent photocatalysis activity are observed in the Zn2 GeO4 :Mn radiated dendrites, which endows Zn2 GeO4 :Mn with persistent antibacterial activity even in the dark. Further, the Zn2 GeO4 :Mn spike flowers loaded fabrics exhibit potent persistent antibacterial properties. Mask and towel fabricated with the antibacterial fabrics can inhibit bacterial growth effectively and no bacteria are observed to pass through the antibacterial mask, suggesting that antibacterial mask can guarantee our health and can be utilized repeatedly. The developed Zn2 GeO4 :Mn dendrites possess ideal ability in long-term bacterial inhibition, making them valuable in the fields of medical protection and food packaging.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Jie Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Na Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Xinyuan Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Wenjie Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
31
|
Kadakia RJ, Wixted CM, Kelly CN, Hanselman AE, Adams SB. From Patient to Procedure: The Process of Creating a Custom 3D-Printed Medical Device for Foot and Ankle Pathology. Foot Ankle Spec 2021; 14:271-280. [PMID: 33269644 DOI: 10.1177/1938640020971415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three-dimensional (3D) printing technology has advanced greatly over the past decade and is being used extensively throughout the field of medicine. Several orthopaedic surgery specialties have demonstrated that 3D printing technology can improve patient care and physician education. Foot and ankle pathology can be complex as the 3D anatomy can be challenging to appreciate. Deformity can occur in several planes simultaneously and bone defects either from previous surgery or trauma can further complicate surgical correction. Three-dimensional printing technology provides an avenue to tackle the challenges associated with complex foot and ankle pathology. A basic understanding of how these implants are designed and made is important for surgeons as this technology is becoming more widespread and the clinical applications continue to grow within foot and ankle surgery.Levels of Evidence: Level V.
Collapse
Affiliation(s)
- Rishin J Kadakia
- Department of Orthopaedic Surgery, Duke University Durham, North Carolina
| | - Colleen M Wixted
- Department of Orthopaedic Surgery, Duke University Durham, North Carolina
| | - Cambre N Kelly
- Department of Orthopaedic Surgery, Duke University Durham, North Carolina
| | - Andrew E Hanselman
- Department of Orthopaedic Surgery, Duke University Durham, North Carolina
| | - Samuel B Adams
- Department of Orthopaedic Surgery, Duke University Durham, North Carolina
| |
Collapse
|
32
|
Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res B Appl Biomater 2021; 109:1986-1999. [PMID: 34028179 DOI: 10.1002/jbm.b.34881] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022]
Abstract
Collagen is an insoluble fibrous protein that composes the extracellular matrix in animals. Although collagen has been used as a biomaterial since 1881, the properties and the complex structure of collagen are still extensive study subjects worldwide. In this article, several topics of importance for understanding collagen research are reviewed starting from its historical milestones, followed by the description of the collagen superfamily and its complex structures, with a focus on type I collagen. Subsequently, some of the superior properties of collagen-based biomaterials, such as biocompatibility, biodegradability, mechanical properties, and cell activities, are pinpointed. These properties make collagen applicable in biomedicine, such as wound healing, tissue engineering, surface coating of medical devices, and skin supplementation. Moreover, some antimicrobial strategies and the general host tissue responses regarding collagen as a biomaterial are presented. Finally, the current status and clinical application of the three-dimensional (3D) printing techniques for the fabrication of collagen-based scaffolds and the reconstruction of the human heart's constituents, such as capillary structures or even the entire organ, are discussed. Besides, an overall outlook for the future of this unique biomaterial is provided.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Nooshin Nourbakhsh
- Yong Loo Lin School of Medicine, Department of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Grabska-Zielińska S, Sionkowska A. How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?-Blending and Cross-Linking of Silk Fibroin-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1510. [PMID: 33808809 PMCID: PMC8003607 DOI: 10.3390/ma14061510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
34
|
Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Sci Rep 2021; 11:3449. [PMID: 33568680 PMCID: PMC7876021 DOI: 10.1038/s41598-021-82589-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Instrumented implants are being developed with a radically innovative design to significantly reduce revision surgeries. Although bone replacements are among the most prevalent surgeries performed worldwide, implant failure rate usually surpasses 10%. High sophisticated multifunctional bioelectronic implants are being researched to incorporate cosurface capacitive architectures with ability to deliver personalized electric stimuli to peri-implant target tissues. However, the ability of these architectures to detect bone-implant interface states has never been explored. Moreover, although more than forty technologies were already proposed to detect implant loosening, none is able to ensure effective monitoring of the bone-implant debonding, mainly during the early stages of loosening. This work shows, for the first time, that cosurface capacitive sensors are a promising technology to provide an effective monitoring of bone-implant interfaces during the daily living of patients. Indeed, in vitro experimental tests and simulation with computational models highlight that both striped and circular capacitive architectures are able to detect micro-scale and macro-scale interface bonding, debonding or loosening, mainly when bonding is weakening or loosening is occurring. The proposed cosurface technologies hold potential to implement highly effective and personalized sensing systems such that the performance of multifunctional bioelectronic implants can be strongly improved. Findings were reported open a new research line on sensing technologies for bioelectronic implants, which may conduct to great impacts in the coming years.
Collapse
|
35
|
Toptan F. Corrosion and wear behaviour of highly porous Ti-TiB-TiN x in situ composites in simulated physiological solution. Turk J Chem 2021; 44:805-816. [PMID: 33488195 PMCID: PMC7671200 DOI: 10.3906/kim-2001-40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/10/2020] [Indexed: 11/04/2022] Open
Abstract
Highly porous Ti matrix composites can be a solution for some of the major clinical concerns for the load bearing implants such as low tribocorrosion resistance, stress shielding, and lack of biological anchorage. In order to respond to these needs, highly porous Ti-TiB-TiNx in-situ composites were synthesized by pressureless sintering using BN as reactant and urea as space holder. Corrosion behaviour was investigated at body temperature, in phosphate buffer saline solution (PBS), by measuring open circuit potential (OCP) and cyclic polarization. Wear behaviour was studied in PBS by reciprocating against a 10 mm diameter alumina ball under 3 N of normal load and 1 Hz of frequency. Results showed that the formation of the in-situ reinforcing phases led to an increase on the hardness and on the wear resistance, as well, neither macro porosity nor the reinforcing phases led to localized corrosion.
Collapse
Affiliation(s)
- Fatih Toptan
- CMEMS-UMinho - Center for Microelectromechanical Systems, University of Minho, Guimarães Portugal.,Department of Mechanical Engineering, University of Minho, Guimarães Portugal.,IBTN/Br -Brazilan Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Bauru, SP Brasil
| |
Collapse
|
36
|
Ward MP, Saadeh FA, O'Toole SA, O'Leary JJ, Gleeson N, Norris LA. Procoagulant activity in high grade serous ovarian cancer patients following neoadjuvant chemotherapy-The role of the activated protein C pathway. Thromb Res 2021; 200:91-98. [PMID: 33571724 DOI: 10.1016/j.thromres.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Ovarian cancer patients are at high risk of thrombosis particularly during chemotherapy treatment however the mechanism is not understood. The aim of this study is to investigate the role of the activated protein C (aPC) pathway in the procoagulant activity observed in ovarian cancer patients undergoing neoadjuvant chemotherapy. PATIENTS AND METHODS Thrombin generation was determined before and after addition of thrombomodulin (TM) in high grade serous ovarian cancer (HGSOC) patients treated with neoadjuvant chemotherapy (n = 29) compared with HGSOC patients who were chemo naïve (n = 23) and patients with benign tumours (n = 29). Plasma expression of proteins from the aPC pathway was analysed. mRNA expression was determined in endothelial (EA.hy926) and ovarian (OAW42) cell lines following addition of carboplatin and paclitaxel. RESULTS Lower levels of ETP (p < 0.007; p < 0.003) and peak thrombin (p < 0.0008; p < 0.0018) were found in the neoadjuvant group compared with both chemo naïve and benign groups. Following addition of TM, ETP (p < 0.0005) and peak thrombin (p < 0.0049) were higher in the neoadjuvant group compared with the benign controls indicating an increase in aPC resistance. Increased TM and lower levels of protein S were found in the neoadjuvant group compared with benign controls (p < 0.05; p < 0.003). Factor V levels were increased in the neoadjuvant group compared with the chemo naïve group (p < 0.05). Carboplatin and paclitaxel altered the expression of EPCR and thrombomodulin in OAW42 cells with a modest effect on EA.hy926 cells. CONCLUSION Chemotherapy induced procoagulant activity in HGSOC is associated with an alteration in expression of key members of the aPC pathway. This acquired aPC resistance may explain the procoagulant phenotype associated with ovarian cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Mark P Ward
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland.
| | - Feras Abu Saadeh
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Gynae-oncology, St. James's Hospital, Dublin 8, Ireland
| | - Sharon A O'Toole
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, Ireland
| | - John J O'Leary
- Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, Ireland; Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Noreen Gleeson
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Gynae-oncology, St. James's Hospital, Dublin 8, Ireland
| | - Lucy A Norris
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
37
|
Han X, Xu H, Che L, Sha D, Huang C, Meng T, Song D. Application of Inorganic Nanocomposite Hydrogels in Bone Tissue Engineering. iScience 2020; 23:101845. [PMID: 33305193 PMCID: PMC7711279 DOI: 10.1016/j.isci.2020.101845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects caused by trauma and surgery are common clinical problems encountered by orthopedic surgeons. Thus, a hard-textured, natural-like biomaterial that enables encapsulated cells to obtain the much-needed biophysical stimulation and produce functional bone tissue is needed. Incorporating nanomaterials into cell-laden hydrogels is a straightforward tactic for producing tissue engineering structures that integrate perfectly with the body and for tailoring the material characteristics of hydrogels without hindering nutrient exchange with the surroundings. In this review, recent developments in inorganic nanocomposite hydrogels for bone tissue engineering that are of vital importance but have not yet been comprehensively reviewed are summarized.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dongyong Sha
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Chaojun Huang
- Department of Orthopedics, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| |
Collapse
|
38
|
Huang Q, Xu S, Ouyang Z, Yang Y, Liu Y. Multi-scale nacre-inspired lamella-structured Ti-Ta composites with high strength and low modulus for load-bearing orthopedic and dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111458. [PMID: 33255043 DOI: 10.1016/j.msec.2020.111458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Mimicking the hierarchical structure of nacre in artificial materials is a promising approach to obtain high mechanical performance. In this work, nacre-inspired lamella-structured Ti-Ta composites were fabricated by successive spark plasma sintering, mechanical processing and annealing. The specimen sintered at 1200 °C and then hot rolled with 60% height reduction exhibited multi-scale lamellar microstructure. At micro-scale, the composite was composed of alternate Ti-enriched and Ta-enriched micro-bands. At nano-scale, highly-ordered lamellar structures consisted of Ti-enriched and Ta-enriched nano-lamellae were found near Ti/Ta micro-bands. The biomimetic-structured Ti-Ta composite possessed appropriate combination of strength (1030 MPa ultimate tensile strength) and ductility (10.2% elongation), which is much stronger than pure Ti and comparably strong as Ti-6Al-4 V. Moreover, the biomimetic-structured Ti-Ta composite possessed low modulus (80.6 GPa). In vitro cell culture experiment revealed that the biomimetic-structured Ti-Ta composite was cytocompatible, evidenced by the well-spread morphology and favorable growth of human bone mesenchymal stem cells (hBMSCs) on material surface. A rat femoral fracture model was employed to evaluate the therapeutic performance of biomimetic-structured Ti-Ta composite implant on fracture healing compared to that of pure Ti. In vivo results showed that the composite implant enhanced fracture healing in rats. Together, the findings obtained in the current work suggest that mimicking the hierarchical structure of nacre in Ti-Ta composite is an effective way for material strengthening. Moreover, the biomimetic-structured Ti-Ta composite with high strength, good ductility, low modulus and favorable biocompatibility is promising for load-bearing applications in orthopedic and dental area.
Collapse
Affiliation(s)
- Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Shenghang Xu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410083, PR China
| | - Yan Yang
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410083, PR China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
39
|
Cheng J, Li J, Yu S, Du Z, Zhang X, Zhang W, Gai J, Wang H, Song H, Yu Z. Cold Rolling Deformation Characteristic of a Biomedical Beta Type Ti-25Nb-3Zr-2Sn-3Mo Alloy Plate and Its Influence on α Precipitated Phases and Room Temperature Mechanical Properties During Aging Treatment. Front Bioeng Biotechnol 2020; 8:598529. [PMID: 33195170 PMCID: PMC7604361 DOI: 10.3389/fbioe.2020.598529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
The microstructure characteristics and texture evolution of a biomedical metastable beta Ti-25Nb-3Zr-2Sn-3Mo (TLM; wt%) titanium alloy plate cold rolled at various reductions were studied in this article. <110> texture was easily formed in the TLM alloy plates, and a large number of dislocation tangles were generated in the β matrix in the process of cold rolling deformation. The dislocation lines, dislocation cells, subgrain boundaries, and other crystal defects introduced during cold rolling had a great impact on the morphological characteristics and volume fraction of precipitated phases during aging. These typical crystal defects could be considered as the major triggers of the formation of second phases, and they could also shorten the time of β→α phase transformation. α precipitated phases, with a size range of 150-500 nm, were formed within the β matrix in the cold deformed 34% in conjunction with the aging specimen, resulting in the relatively high tensile strength of 931 MPa and the acceptable elongation of 6.9%. When the TLM alloy plate was cold rolled at a reduction of 60% in conjunction with aging, the maximum value of ultimate strength (1,005 MPa) was achieved, but the elongation value was relatively low owing to the formation of α precipitated phases with a large size around the subgrain boundaries. In this paper, the influence of crystal defects and subgrain boundaries on the morphology characteristics and volume fraction of α precipitated phases and mechanical properties will be discussed in detail.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, China.,Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, China
| | - Jinshan Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, China
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, China
| | - Zhaoxin Du
- School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Xiaoyong Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Wen Zhang
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, China
| | - Jinyang Gai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Hongchuan Wang
- School of Material Science and Engineering, Northeastern University, Shenyang, China
| | - Hongjie Song
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, China
| | - Zhentao Yu
- Institute of Advanced Wear and Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Yang H, Yu M, Wang R, Li B, Zhao X, Hao Y, Guo Z, Han Y. Hydrothermally grown TiO 2-nanorods on surface mechanical attrition treated Ti: Improved corrosion fatigue and osteogenesis. Acta Biomater 2020; 116:400-414. [PMID: 32920175 DOI: 10.1016/j.actbio.2020.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/23/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
Current bioactive modifications of Ti-based materials for promoting osteogenesis often decrease corrosion fatigue strength (σcf) of the resultant implants, thereby shortening their service lifespan. To solve this issue and accelerate the osteogenesis process, in the present study, a TiO2 nanorods (TNR)-arrayed coating was hydrothermally grown on optimal surface mechanical attrition treated (SMATed) titanium (S-Ti). The microstructure, bond integrity, residual stress distribution, and corrosion fatigue of TNR-coated S-Ti (TNR/S-Ti) and the response of macrophages and bone marrow-derived mesenchymal stem cells (BMSCs) to TNR/S-Ti were investigated and compared with those of mechanically polished Ti (P-Ti), S-Ti, and TNR-coated P-Ti (TNR/P-Ti). S-Ti showed a nanograined layer and an underlying grain-deformed region with residual compressive stress, which was sustained even when it was hydrothermally coated with TNR. TNR on S-Ti showed nanotopography, composition, and bond strength almost identical to those of P-Ti. While TNR/P-Ti showed a considerable decrease in σcf compared to P-Ti, TNR/S-Ti exhibited an improved σcf which was even higher than that of P-Ti. Biologically, TNR/S-Ti enhanced adhesion, differentiation, and mineralization of BMSCs, and it also promoted adhesion and M1-to-M2 transition of macrophages as compared to S-Ti and P-Ti. With rapid phenotype switch of macrophages, the level of proinflammatory cytokines decreased, while anti-inflammatory cytokines were upregulated. In co-culture conditions, the migration, differentiation, and mineralization of BMSCs were enhanced by increased level of secretion factors of macrophages on TNR/S-Ti. The modified structure accelerated bone apposition in rabbit femur and is expected to induce a favorable immune microenvironment to facilitate osseointegration earlier; it can also simultaneously improve corrosion fatigue resistance of Ti-based implants and thereby enhance their service life.
Collapse
|
41
|
Gomez Sanchez A, Katunar MR, Pastore JI, Tano de la Hoz MF, Ceré S. Evaluation of annealed titanium oxide nanotubes on titanium: From surface characterization to in vivo assays. J Biomed Mater Res A 2020; 109:1088-1100. [PMID: 32959510 DOI: 10.1002/jbm.a.37101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022]
Abstract
The entire route from anodic oxidation and surface characterization, including in vitro experiments and finally in vivo osseointegration assays were performed with the aim to evaluate nanotubular and crystalline annealed titanium oxides as a suitable surface for grade 2 titanium permanent implants. Polished titanium (T0) was compared with anodized surfaces obtained in acidic media with fluoride, leading to an ordered nanotubular structure of titanium oxide on the metal surface, characterized by tube diameter of 89 ± 24 nm (Tnts). Samples were thermally treated in air (TntsTT) to increase the anatase crystalline phase on nanotubes, with minor alteration of the structure. Corrosion tests were performed to evaluate the electrochemical response after 1, 14, and 28 days of immersion in simulated body fluid. Based on the in vitro results, heat-treated titanium nanotubes (TntsTT) were selected as a promissory candidate to continue with the osseointegration in vivo assays. The in vivo results showed no major improvement in the osseointegration process when compared with untreated Ti after 30 days of implantation and there also was a lower increase in the development of new osseous tissue.
Collapse
Affiliation(s)
- Andrea Gomez Sanchez
- CIT Villa María - CONICET, Villa María, Argentina.,National Technological University (UTN)-FRVM-Mechanical Eng.Department, UTN-FRVM, Villa María, Argentina
| | - María R Katunar
- División Electroquímica Aplicada, Material's Science and Technology Research Institute (INTEMA), UNMdP - CONICET, Mar del Plata, Argentina
| | - Juan Ignacio Pastore
- Laboratorio de Procesamiento de Imágenes ICYTE UNMDP, CONICET, Buenos Aires, Argentina
| | - María Florencia Tano de la Hoz
- División Electroquímica Aplicada, Material's Science and Technology Research Institute (INTEMA), UNMdP - CONICET, Mar del Plata, Argentina
| | - Silvia Ceré
- División Electroquímica Aplicada, Material's Science and Technology Research Institute (INTEMA), UNMdP - CONICET, Mar del Plata, Argentina
| |
Collapse
|
42
|
Casagrande RB, Baldin EK, Steffens D, Pavulack D, Pranke P, Brandalise RN, de Fraga Malfatti C. HA-hybrid matrix composite coating on Ti-Cp for biomedical application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:82. [PMID: 32959099 DOI: 10.1007/s10856-020-06423-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Calcium phosphate coatings have been applied to titanium metal substrates and their alloys as a synergistic alternative capable of combining the mechanical properties of metals and the excellent bioactive properties provided by ceramic materials. However, the unsatisfactory adhesion of hydroxyapatite coatings on metallic substrates, as well as their limitation when subjected to mechanical stresses have been reported as a limitation. Biofunctional coatings have been proposed as an alternative to single ceramic coatings, aiming at optimizing the long-term clinical success of biomaterials such as Ti. This work aims at evaluating the morphological properties and biological behavior of Ti-cp coated with matrix composite coating hydroxyapatite-containing hybrid. The hybrid matrix was obtained from TEOS and MTES silicon precursors, with dispersed hydroxyapatite suspended by dip coating. For the morphological characterization FTIR, SEM/FEG, AFM and contact angle measurement were used. Biological behavior was evaluated for toxicity, cell viability and the osteogenic differentiation capacity of mesenchymal stem cells. The composite coatings obtained showed regular dispersion of hydroxyapatite particles in the hybrid matrix, with uniform coating adhering to the Ti-Cp substrate. Nevertheless, although they provided similar viability behavior of mesenchymal stem cells to the Ti-Cp substrate, the evaluated coatings did not present osteoinductive properties. This result is probably due to the pronounced hydrophobic behavior caused by the incorporation of HA.
Collapse
Affiliation(s)
- Rosiana Boniatti Casagrande
- LAPEC-Corrosion Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., Porto Alegre, RS, Brazil.
| | - Estela Kerstner Baldin
- LAPEC-Corrosion Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., Porto Alegre, RS, Brazil
| | - Daniela Steffens
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), 2752 Ipiranga Av., Porto Alegre, RS, Brazil
- Stem Cell Research Institute-Instituto de Pesquisa com Células-tronco-(IPCT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90610-000, Brazil
| | - Daniela Pavulack
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), 2752 Ipiranga Av., Porto Alegre, RS, Brazil
- Stem Cell Research Institute-Instituto de Pesquisa com Células-tronco-(IPCT), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90610-000, Brazil
| | - Rosmary Nichele Brandalise
- PGPROTEC-Postgraduate Program in Process and Technology Engineering, Universidade de Caxias do Sul (UCS), Francisco Getúlio Vargas Street, 1130, Caxias do Sul, RS, Brazil
| | - Célia de Fraga Malfatti
- LAPEC-Corrosion Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), 9500 Bento Gonçalves Av., Porto Alegre, RS, Brazil
| |
Collapse
|
43
|
Overmann AL, Aparicio C, Richards JT, Mutreja I, Fischer NG, Wade SM, Potter BK, Davis TA, Bechtold JE, Forsberg JA, Dey D. Orthopaedic osseointegration: Implantology and future directions. J Orthop Res 2020; 38:1445-1454. [PMID: 31876306 DOI: 10.1002/jor.24576] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Osseointegration (OI) is the direct anchorage of a metal implant into bone, allowing for the connection of an external prosthesis to the skeleton. Osseointegration was first discovered in the 1960s based on the microscopic analysis of titanium implant placed into host bone. New bone was observed to attach directly to the metal surface. Following clinical investigations into dentistry applications, OI was adapted to treat extremity amputations. These bone anchored implants, which penetrate the skin and soft tissues, eliminate many of the challenges of conventional prosthetic sockets, such as poor fit and suspension, skin breakdown, and pain. Osseointegrated implants show promise to improve prosthesis use, pain, and function for amputees. The successful process of transcutaneous metal integration into host bone requires three synergistic systems: the host bone, the metal implant, and the skin-implant interface. All three systems must be optimized for successful incorporation and longevity of the implant. Osseointegration begins during surgical implantation of the metal components through a complex interplay of cellular mechanisms. While implants can vary in design-including the original screw, press fit implants, and compressive osseointegration-they face common challenges to successful integration and maintenance of fixation within the host bone. Overcoming these challenges requires the understanding of the complex interactions between each element of OI. This review outlines (a) the basic components of OI, (b) the science behind both the bone-implant and the skin-implant interfaces, (c) the current challenges of OI, and (d) future opportunities within the field.
Collapse
Affiliation(s)
- Archie L Overmann
- Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland.,USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics and Department of Restorative Sciences, University of Minnesota, Minneapolis, Minnesota
| | - John T Richards
- Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland.,USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Isha Mutreja
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics and Department of Restorative Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics and Department of Restorative Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Sean M Wade
- Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland.,USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Benjamin K Potter
- Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland.,USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Thomas A Davis
- USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan E Bechtold
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota
| | - Jonathan A Forsberg
- Orthopaedics, USU-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland.,USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Devaveena Dey
- USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland
| |
Collapse
|
44
|
Ko FC, Meagher MJ, Mashiatulla M, Ross RD, Virdi AS, Sumner DR. Implant surface alters compartmental-specific contributions to fixation strength in rats. J Orthop Res 2020; 38:1208-1215. [PMID: 31821588 PMCID: PMC7225079 DOI: 10.1002/jor.24561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/15/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
Mechanical fixation of the implant to host bone is an important contributor to orthopedic implant survivorship. The relative importance of bone-implant contact, trabecular bone architecture, and cortical bone geometry to implant fixation strength has never been directly tested, especially in the settings of differential implant surface properties. Thus, using a rat model where titanium rods were placed into the intramedullary canal of the distal femur, we determined the relative contribution of bone-implant contact and peri-implant bone architecture to the fixation strength in implants with different surface roughness: highly polished and smooth (as-received) and dual acid-etched (DAE) implants. Using a training set that maximized variance in implant fixation strength, we initially examined correlation between implant fixation strength and outcome parameters from microcomputed tomography and found that osseointegration volume per total volume (OV/TV), trabecular bone volume per total volume (BV/TV), and cortical thickness (Ct.Th) were the single best compartment-specific predictors of fixation strength. We defined separate regression models to predict implant fixation strength for as-received and DAE implants. When the training set models were applied to independent validation sets, we found strong correlations between predicted and experimentally measured implant fixation strength, with r2 = .843 in as received and r2 = .825 in DAE implants. Interestingly, for as-received implants, OV/TV explained more of the total variance in implant fixation strength than the other variables, whereas in DAE implants, Ct.Th had the most explanatory power, suggesting that surface topography of implants affects which bone compartment is most important in providing implant fixation strength.
Collapse
Affiliation(s)
- Frank C. Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Matthew J. Meagher
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Maleeha Mashiatulla
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - Amarjit S. Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| | - D. Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
45
|
Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:27. [PMID: 32124052 DOI: 10.1007/s10856-020-06364-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Bone tissue has an astonishing self-healing capacity yet only for non-critical size defects (<6 mm) and clinical intervention is needed for critical-size defects and beyond that along with non-union bone fractures and bone defects larger than critical size represent a major healthcare problem. Autografts are, still, being used as preferred to treat large bone defects. Mostly, due to the presence of living differentiated and progenitor cells, its osteogenic, osteoinductive and osteoconductive properties that allow osteogenesis, vascularization, and provide structural support. Bone tissue engineering strategies have been proposed to overcome the limited supply of grafts. Complete and successful bone regeneration can be influenced by several factors namely: the age of the patient, health, gender and is expected that the ideal scaffold for bone regeneration combines factors such as bioactivity and osteoinductivity. The commercially available products have as their main function the replacement of bone. Moreover, scaffolds still present limitations including poor osteointegration and limited vascularization. The introduction of pores in scaffolds are being used to promote the osteointegration as it allows cell and vessel infiltration. Moreover, combinations with growth factors or coatings have been explored as they can improve the osteoconductive and osteoinductive properties of the scaffold. This review focuses on the bone defects treatments and on the research of scaffolds for bone regeneration. Moreover, it summarizes the latest progress in the development of coatings used in bone tissue engineering. Despite the interesting advances which include the development of hybrid scaffolds, there are still important challenges that need to be addressed in order to fasten translation of scaffolds into the clinical scenario. Finally, we must reflect on the main challenges for bone tissue regeneration. There is a need to achieve a proper mechanical properties to bear the load of movements; have a scaffolds with a structure that fit the bone anatomy.
Collapse
Affiliation(s)
- Helena Filipa Pereira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Center for Micro-Electro Mechanical Systems, University of Minho, Azurém Campus, 4800-058, Guimarães, Portugal.
| | - Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| | - Filipe Samuel Silva
- Center for Micro-Electro Mechanical Systems, University of Minho, Azurém Campus, 4800-058, Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| |
Collapse
|
46
|
Grabska-Zielińska S, Sionkowska A, Reczyńska K, Pamuła E. Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch. Polymers (Basel) 2020; 12:polym12020372. [PMID: 32046018 PMCID: PMC7077405 DOI: 10.3390/polym12020372] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, three-dimensional (3D) biopolymeric scaffolds made from collagen, silk fibroin and chitosan were successfully prepared by the freeze drying method. Dialdehyde starch (DAS) was used as a cross-linking agent for the materials. The properties of the materials were studied using density and porosity measurements, scanning electron microscope (SEM) imaging, swelling and moisture content measurements. Additionally, cytocompatibility of the materials in contact with MG-63 osteoblast-like cells was tested by live/dead staining and resazurin reduction assay on days 1, 3 and 7. It was found that new 3D materials made from collagen/silk fibroin/chitosan binary or ternary mixtures are hydrophilic with a high swelling ability (swelling rate in the range of 1680–1900%). Cross-linking of such biopolymeric materials with DAS increased swelling rate up to about 2100%, reduced porosity from 96–97% to 91–93%, and also decreased density and moisture content of the materials. Interestingly, presence of DAS did not influence the microstructure of the scaffolds as compared to non-cross-linked samples as shown by SEM. All the tested samples were found to be cytocompatible and supported adhesion and growth of MG-63 cells as shown by live–dead staining and metabolic activity test.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Department of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: or
| | - Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland; (K.R.); (E.P.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland; (K.R.); (E.P.)
| |
Collapse
|
47
|
Overmann AL, Forsberg JA. The state of the art of osseointegration for limb prosthesis. Biomed Eng Lett 2020; 10:5-16. [PMID: 32175127 PMCID: PMC7046912 DOI: 10.1007/s13534-019-00133-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/28/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Osseointegration (OI) is the direct attachment of bone onto a titanium implant. Recently, the term is used to describe "transdermal" implants that allow an external prosthesis to be connected directly to the skeleton. This technology eliminates the challenges of conventional socket-based prostheses, such as skin breakdown and poor fit, which are common in patients with major extremity amputations. Osseointegration patients demonstrate encouraging improvements in quality of life and function. Patients report improvement in prosthetic use, prosthetic mobility, global health, and pain reduction on a variety of clinical assessment tools. Various implants have been developed for osseointegration for amputees. These implants use a variety of fixation strategies and surface augments to allow for successful integration into the host bone. Regardless of design, all OI implants face similar challenges, particularly infections. Other challenges include the inability to determine when integration has occurred and the inability to detect loss of integration. These challenges may be met by incorporating sensing systems into the implants. The percutaneous nature of the metal devices can be leveraged so that internal sensors need not be wireless, and can be interrogated by external monitoring systems, thus providing crucial, real-time information about the state of the implant. The purpose of this review is to (1) review the basic science behind osseointegration, (2) provide an overview of current implants, practice patterns, and clinical outcomes, and (3) preview sensor technologies which may prove useful in future generations of transdermal orthopaedic implants.
Collapse
Affiliation(s)
- A. L. Overmann
- Orthopaedics, USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - J. A. Forsberg
- Orthopaedics, USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
48
|
Cachão JH, Soares dos Santos MP, Bernardo R, Ramos A, Bader R, Ferreira JAF, Torres Marques A, Simões JAO. Altering the Course of Technologies to Monitor Loosening States of Endoprosthetic Implants. SENSORS 2019; 20:s20010104. [PMID: 31878028 PMCID: PMC6982938 DOI: 10.3390/s20010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/02/2023]
Abstract
Musculoskeletal disorders are becoming an ever-growing societal burden and, as a result, millions of bone replacements surgeries are performed per year worldwide. Despite total joint replacements being recognized among the most successful surgeries of the last century, implant failure rates exceeding 10% are still reported. These numbers highlight the necessity of technologies to provide an accurate monitoring of the bone–implant interface state. This study provides a detailed review of the most relevant methodologies and technologies already proposed to monitor the loosening states of endoprosthetic implants, as well as their performance and experimental validation. A total of forty-two papers describing both intracorporeal and extracorporeal technologies for cemented or cementless fixation were thoroughly analyzed. Thirty-eight technologies were identified, which are categorized into five methodologies: vibrometric, acoustic, bioelectric impedance, magnetic induction, and strain. Research efforts were mainly focused on vibrometric and acoustic technologies. Differently, approaches based on bioelectric impedance, magnetic induction and strain have been less explored. Although most technologies are noninvasive and are able to monitor different loosening stages of endoprosthetic implants, they are not able to provide effective monitoring during daily living of patients.
Collapse
Affiliation(s)
- João Henrique Cachão
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco P. Soares dos Santos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), 4150-179 Porto, Portugal
- Correspondence:
| | - Rodrigo Bernardo
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Ramos
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rainer Bader
- Department of Orthopedics, University Medicine Rostock, 18057 Rostock, Germany
| | - Jorge A. F. Ferreira
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Torres Marques
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), 4150-179 Porto, Portugal
- Mechanical Engineering Department, University of Porto, 4200-465 Porto, Portugal
| | - José A. O. Simões
- Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Center for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
49
|
Shen Z, Lin H, Chen G, Zhang Y, Li Z, Li D, Xie L, Li Y, Huang F, Jiang Z. Comparison between the induced membrane technique and distraction osteogenesis in treating segmental bone defects: An experimental study in a rat model. PLoS One 2019; 14:e0226839. [PMID: 31860680 PMCID: PMC6924672 DOI: 10.1371/journal.pone.0226839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that treatment plans for segmental bone defects (SBDs) are affected by the bone defect sizes. If the selected treatment was not the most appropriate, it would not contribute to bone healing, but increase complications. The induced membrane technique (IM) and distraction osteogenesis (DO) have been proved to be effective in treating SBDs. However, the differences between the two in therapeutic effects on SBDs with different sizes are still unclear. Thus, we aimed to observe the effects of IM and DO on different sizes of SBDs and to further determine what method is more appropriate for what defect size. Rat models of 4-, 6-and 8-mm mid-diaphyseal defects using IM and DO techniques were established. X-rays, micro-CT, histological and immunohistochemical examinations were performed to assess bone repair. Faster bone formation rate, shorter treatment duration, higher expressions of OPN and OCN and higher parameters of bone properties including bone mineral density (BMD), bone volume/total tissue volume (BV/TV), mineral apposition rate (MAR) and mineral surface/bone surface (MS/BS) were found in 4-mm SBDs treated with DO than in those with IM treatment. However, the results were reversed and IM outperformed DO in bone repair capacity for 8-mm SBDs, while no significant difference emerges in the case of 6-mm SBDs. This study suggests that the therapeutic effects of IM and DO may be subjected to sizes of bone defects and the best treatment size of defects is different between the two. For small-sized SBDs, DO may be more suitable and efficient than IM, but IM has advantages over DO for over-sized SBDs, while DO and IM show similar bone repair capability in moderate-sized SBDs, which would offer a new insight into how to choose DO and IM for SBDs in clinical practice and provide references for further clinical research.
Collapse
Affiliation(s)
- Zhen Shen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Haixiong Lin
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoqian Chen
- Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zige Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ding Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Xie
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yue Li
- Department of Orthopaedics, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Feng Huang
- Department of Orthopaedics, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ziwei Jiang
- Department of Orthopaedics, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
50
|
Wang X, Qi F, Xing H, Zhang X, Lu C, Zheng J, Ren X. Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Deliv 2019; 26:1178-1190. [PMID: 31738084 PMCID: PMC6882491 DOI: 10.1080/10717544.2019.1682719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022] Open
Abstract
Poor initial stability at the first four weeks after surgery is becoming the major causes for metal implant failure. Previous attempts neglected the control release of insulin for the bone regeneration among nondiabetic subjects. The major reason may lie in the adverse effects, such as attenuated bone formation, hypoglycemia or hyperinsulinemia, that caused by the excessive insulin. Thus, spatiotemporal release of insulin may serve as the promising strategy. To address this, through solvent extraction (EMS), solvent evaporation (SMS) and cosolvent methods (CMS), we prepared three types of PLGA microspheres with various internal structures, but similar size distribution. The effects of the preparation methods on the properties of the microspheres, such as their release behavior, degradation of molecular weight, and structural evolution, were investigated. Human bone marrow mesenchymal stromal cells (BMSCs) and rabbit implant models were used to test the bioactivity of the microspheres in vitro and in vivo, respectively. The result demonstrated that these three preparation methods did not influence the polymer degradation but instead affected the internal structural evolution, which plays a crucial role in the release behavior, osteogenesis and peri-implant bone regeneration. Compared with EMS and CMS microspheres, SMS microspheres exhibited a relatively steady release rate in the first four weeks, which evidently stimulated the osteogenic differentiation of the stem cells and peri-implant bone regeneration. Meanwhile, SMS microspheres significantly enhanced the stability of the implant at Week 4, which is promising to reduce early failure rate of the implant without inducing adverse effects on the serum biochemical indices.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Chunxiang Lu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jiajia Zheng
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|