1
|
Nkune NW, Abrahamse H. The phototoxic effect of a gold-antibody-based nanocarrier of phthalocyanine on melanoma monolayers and tumour spheroids. RSC Adv 2024; 14:19490-19504. [PMID: 38895533 PMCID: PMC11184583 DOI: 10.1039/d4ra03858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, photodynamic therapy (PDT) has garnered significant attention in cancer treatment due to its increased potency and non-invasiveness compared to conventional therapies. Active-targeted delivery of photosensitizers (PSs) is a mainstay strategy to significantly reduce its off-target toxicity and enhance its phototoxic efficacy. The anti-melanoma inhibitory activity (MIA) antibody is a targeting biomolecule that can be integrated into a nanocarrier system to actively target melanoma cells due to its specific binding to MIA antigens that are highly expressed on the surface of melanoma cells. Gold nanoparticles (AuNPs) are excellent nanocarriers due to their ability to encapsulate a variety of therapeutics, such as PSs, and their ability to bind with targeting moieties for improved bioavailability in cancer cells. Hence, we designed a nanobioconjugate (NBC) composed of zinc phthalocyanine tetrasulfonic acid (ZnPcS4), AuNPs and anti-MIA Ab to improve ZnPcS4 bioavailability and phototoxicity in two and three-dimensional tumour models. In summary, we demonstrated that this nanobioconjugate showed significant inhibitory effects on both melanoma models due to increased ROS yields and bioavailability of the melanoma cells compared to free ZnPcS4.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa +27-11-559-655
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg P.O. Box 17011 Doornfontein 2028 South Africa +27-11-559-655
| |
Collapse
|
2
|
Zhang L, Zhang X, Ran H, Chen Z, Ye Y, Jiang J, Hu Z, Azechi M, Peng F, Tian H, Xu Z, Tu Y. A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors. NANOSCALE 2024; 16:635-644. [PMID: 38087964 DOI: 10.1039/d3nr03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Photodynamic therapy (PDT) is a light-activated local treatment modality that has promising potential in cancer therapy. However, ineffective delivery of photosensitizers and hypoxia in the tumor microenvironment severely restrict the therapeutic efficacy of PDT. Herein, phototactic Chlorella (C) is utilized to carry photosensitizer-encapsulated nanoparticles to develop a near-infrared (NIR) driven green affording-oxygen microrobot system (CurNPs-C) for enhanced PDT. Photosensitizer (curcumin, Cur) loaded nanoparticles are first synthesized and then covalently attached to C through amide bonds. An in vitro study demonstrates that the developed CurNPs-C exhibits continuous oxygen generation and desirable phototaxis under NIR treatment. After intravenous injection, the initial 660 nm laser irradiation successfully induces the active migration of CurNPs-C to tumor sites for higher accumulation. Upon the second 660 nm laser treatment, CurNPs-C produces abundant oxygen, which in turn induces the natural product Cur to generate more reactive oxygen species (ROS) that significantly inhibit the growth of tumors in 4T1 tumor-bearing mice. This contribution showcases the ability of a light-driven green affording-oxygen microrobot to exhibit targeting capacity and O2 generation for enhancing photodynamic therapy.
Collapse
Affiliation(s)
- Lishan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hui Ran
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jiamiao Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ziwei Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Miral Azechi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhili Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Bi X, Watts DB, Dorman I, Kirk CM, Thomas M, Singleton I, Malcom C, Barnes T, Carter C, Liang A. Polyamidoamine dendrimer-mediated hydrogel for solubility enhancement and anti-cancer drug delivery. J Biomater Appl 2024; 38:733-742. [PMID: 37933579 DOI: 10.1177/08853282231213712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The application of hydrogels for anti-cancer drug delivery has garnered considerable interest in the medical field. Current cancer treatment approaches, such as chemotherapy and radiation therapy, often induce severe side effects, causing significant distress and substantial health complications to patients. Hydrogels present an appealing solution as they can be precisely injected into specific sites within the body, facilitating the sustainable release of encapsulated drugs. This localized treatment approach holds great potential for reducing toxicity levels and improving drug delivery efficacy. In this study we developed a hydrogel delivery system containing polyamidoamine (PAMAM) dendrimer and polyethylene glycol (PEG) for solubility enhancement and sustained delivery of hydrophobic anti-cancer drugs. The three selected model drugs, e.g. silibinin, camptothecin, and methotrexate, possess limited aqueous solubility and thus face restricted application. In the presence of vinyl sulfone functionalized PAMAM dendrimer at 45 mg/mL concentration, drug solubility is increased by 37-fold, 4-fold, and 10-fold for silibinin, camptothecin, and methotrexate, respectively. By further crosslinking of the functionalized PAMAM dendrimer and thiolated PEG, we successfully developed a fast-crosslinking hydrogel capable of encapsulating a significant payload of solubilized cancer drugs for sustained release. In water, the drug encapsulated hydrogels release 30%-80% of their loads in 1-4 days. MTT assays of J82 and MCF7 cells with various doses of drug encapsulated hydrogels reveal that cytotoxicity is observed for all three drugs on both J82 and MCF7 cell lines after 48 h. Notably, camptothecin exhibits higher cytotoxicity to both cell lines than silibinin and methotrexate, achieving up to 95% cell death at experimental conditions, despite its lower solubility. Our experiments provide evidence that the PAMAM dendrimer-mediated hydrogel system significantly improves the solubility of hydrophobic drugs and facilitates their sustained release. These findings position the system as a promising platform for controlled delivery of hydrophobic drugs for intratumoral cancer treatment.
Collapse
Affiliation(s)
- Xiangdong Bi
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Darra B Watts
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Ian Dorman
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Casianna M Kirk
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Marisa Thomas
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Isaiah Singleton
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Colleen Malcom
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Taylor Barnes
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Colby Carter
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| | - Aiye Liang
- Department of Chemistry, Charleston Southern University, Charleston, SC, USA
| |
Collapse
|
4
|
Krivosheeva OP, Doctor MA, Larkina EA, Vedenkin AS, Nikolskaya TA. Effect of substituents in chlorin e 6 derivatives on the loading efficiency of the photosensitizer into the liposome membrane and their biological activity. Photodiagnosis Photodyn Ther 2023; 42:103328. [PMID: 36775229 DOI: 10.1016/j.pdpdt.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
In this work, we incorporated the hydrophobic alkylamide and hydroxyalkylamide derivatives of chlorin e6 into the lipid bilayer of liposomes. We obtained the data on the effectiveness of incorporation of studied compounds and have determined the size of liposomes and their stability when stored in liquid form. We also investigated the bioactivity of chlorin photosensitizers and compared the photodynamic activity of studied compounds in free and liposomal forms.
Collapse
Affiliation(s)
- Olga P Krivosheeva
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Maxim A Doctor
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Ekaterina A Larkina
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Alexander S Vedenkin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119991, Russia.
| | - Tatiana A Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow, 119991, Russia
| |
Collapse
|
5
|
Qian L, Li Q, Ding Z, Luo K, Su J, Chen J, Zhu G, Gan Z, Yu Q. Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56454-56470. [PMID: 36525559 DOI: 10.1021/acsami.2c14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Clinical radiation therapy (RT) is often hindered by the low radiation energy absorption coefficient and the hypoxic features of tumor tissues. Among the tremendous efforts devoted to overcoming the barriers to efficient RT, the application of hypoxic radiosensitizers and cell-cycle-specific chemotherapeutics has shown great potential. However, their effectiveness is often compromised by their limited bioavailability, especially in the hypoxic region, which plays a major role in radioresistance. Herein, to simultaneously improve the delivery efficacy of both hypoxic radiosensitizer and cell-cycle-specific drug, a gambogic acid (GA) metronidazole (MN) prodrug (GM) was designed and synthesized based on GA, a naturally occurring chemotherapeutic and multiple pathway inhibitor, and MN, a typical hypoxic radiosensitizer. In combination with MN-containing block copolymers, the prodrug nanosensitizer (NS) of GM was obtained. Owing to the bioreduction of MN, the as-designed prodrug could be efficiently delivered to hypoxic cells and act on mitochondria to cause the accumulation of reactive oxygen species. The strong G2/M phase arrest caused by the prodrug NS could further sensitize treated cells to external radiation under hypoxic conditions by increasing DNA damage and delaying DNA repair. After coadministration of the NS with a well-established tissue-penetrating peptide, efficient tumor accumulation, deep tumor penetration, and highly potent chemoradiotherapy could be achieved.
Collapse
Affiliation(s)
- Lili Qian
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qian Li
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing100029, China
| | - Kejun Luo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiamin Su
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiawei Chen
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Guangying Zhu
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qingsong Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
6
|
Sarfraz M, Qamar S, Rehman MU, Tahir MA, Ijaz M, Ahsan A, Asim MH, Nazir I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022; 14:pharmaceutics14091909. [PMID: 36145657 PMCID: PMC9501312 DOI: 10.3390/pharmaceutics14091909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Intravesical drug delivery is a direct drug delivery approach for the treatment of various bladder diseases. The human urinary bladder has distinctive anatomy, making it an effective barrier against any toxic agent seeking entry into the bloodstream. This screening function of the bladder derives from the structure of the urothelium, which acts as a semi-permeable barrier. However, various diseases related to the urinary bladder, such as hyperactive bladder syndrome, interstitial cystitis, cancer, urinary obstructions, or urinary tract infections, can alter the bladder’s natural function. Consequently, the intravesical route of drug delivery can effectively treat such diseases as it offers site-specific drug action with minimum side effects. Intravesical drug delivery is the direct instillation of medicinal drugs into the urinary bladder via a urethral catheter. However, there are some limitations to this method of drug delivery, including the risk of washout of the therapeutic agents with frequent urination. Moreover, due to the limited permeability of the urinary bladder walls, the therapeutic agents are diluted before the process of permeation, and consequently, their efficiency is compromised. Therefore, various types of nanomaterial-based delivery systems are being employed in intravesical drug delivery to enhance the drug penetration and retention at the targeted site. This review article covers the various nanomaterials used for intravesical drug delivery and future aspects of these nanomaterials for intravesical drug delivery.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain 64141, United Arab Emirates
| | - Shaista Qamar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| |
Collapse
|
7
|
Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int J Mol Sci 2021; 22:12549. [PMID: 34830431 PMCID: PMC8620728 DOI: 10.3390/ijms222212549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma (MM) is a skin malignancy arising from melanocytes, the incidence of which has been rising in recent years. It poses therapeutic challenges due to its resistance to chemotherapeutic drugs and radiation therapy. Photodynamic therapy (PDT) is an alternative non-invasive modality that requires a photosensitizer (PS), specific wavelength of light, and molecular oxygen. Several studies using conventional PSs have highlighted the need for improved PSs for PDT applications to achieve desired therapeutic outcomes. The incorporation of nanoparticles (NPs) and targeting moieties in PDT have appeared as a promising strategy to circumvent various drawbacks associated with non-specific toxicity, poor water solubility, and low bioavailability of the PSs at targeted tissues. Currently, most studies investigating new developments rely on two-dimensional (2-D) monocultures, which fail to accurately mimic tissue complexity. Therefore, three-dimensional (3-D) cell cultures are ideal models to resemble tumor tissue in terms of architectural and functional properties. This review examines various PS drugs, as well as passive and active targeted PS nanoparticle-mediated platforms for PDT treatment of MM on 2-D and 3-D models. The overall findings of this review concluded that very few PDT studies have been conducted within 3-D models using active PS nanoparticle-mediated platforms, and so require further investigation.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| |
Collapse
|
8
|
de Melo MT, Piva HL, Tedesco AC. Design of new protein drug delivery system (PDDS) with photoactive compounds as a potential application in the treatment of glioblastoma brain cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110638. [PMID: 32204072 DOI: 10.1016/j.msec.2020.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive malignant brain tumor. Despite advances in treatment modalities, it remains largely incurable. This unfavorable prognosis for GBM is at least partly due to the lack of a successful drug delivery system across the blood-brain barrier (BBB). The delivery of drugs through nanomedicines combined with less invasive alternative therapies represents an important hope for the future of these incurable brain tumors. Whey protein nanocarriers represent promising strategy for targeted drug delivery to tumor cells by enhancing the drug's bioavailability and distribution, and reducing the body's response towards drug resistance. They have been extensively studied to find new alternatives for capacity to encapsulate different drugs and no need for cross-linkers. In this study, we report for the first time the incorporation and administration of Aluminum phthalocyanine chloride (AlClPc)-loaded whey protein drug delivery system (AlClPc-PDDS) for the treatment of glioblastoma brain cancer. This system was designed and optimized (with the use of the spray drying technique) to obtain the required particle size (in the range of 100 to 300 nm), zeta potential and drug loading. Our results suggest that we have developed a drug delivery system from a low-cost raw material and preparation method that is capable of incorporating hydrophobic drugs which, in combination with irradiation, cause photodamage to neoplasic cells, working as an effective adjuvant treatment for malignant glioma.
Collapse
Affiliation(s)
- Maryanne Trafani de Melo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Henrique Luis Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Fan HY, Yu XH, Wang K, Yin YJ, Tang YJ, Tang YL, Liang XH. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem 2019; 182:111620. [PMID: 31470307 DOI: 10.1016/j.ejmech.2019.111620] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 02/05/2023]
Abstract
Graphene quantum dots (GQDs) as novel nanomaterials, have received significant interest in the field of biomedical applications. It is worth noting that a large amount of research is devoted to GQDs-based nanocomposites for cancer treatment, especially for photodynamic therapy (PDT), in that they can act not only as more favorable photosensitizers (PSs) but also nanoplatforms for delivering PSs. In this review, the biological behavior and physicochemical properties of GQDs for PDT are described in detail, and the application of GQDs-based nanocomposites in improved PDT and PDT-based combination therapies is analyzed, which may provide a new strategy for designing efficient PDT systems for cancer treatment.
Collapse
Affiliation(s)
- Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Yi-Jia Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
10
|
Mao C, Qu P, Miley MJ, Zhao Y, Li Z, Ming X. P-glycoprotein targeted photodynamic therapy of chemoresistant tumors using recombinant Fab fragment conjugates. Biomater Sci 2019; 6:3063-3074. [PMID: 30298866 DOI: 10.1039/c8bm00844b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
P-glycoprotein (Pgp) has been considered as a major cause of cancer multidrug resistance; however, clinical solutions to overcome this drug resistance do not exist despite the tremendous endeavors. The lack of cancer specificity is a main reason for clinical failure of conventional approaches. Targeted photodynamic therapy (PDT) is highly cancer specific by combining antibody targeting and locoregional light irradiation. We aimed to develop Pgp-targeted PDT using antibody-photosensitizer conjugates made of a recombinant Fab fragment. We prepared the photosensitizer conjugates by expressing a recombinant Fab fragment and specifically linking IR700-maleimide at the C-terminal of the Fab heavy chain. In vitro studies showed that the Fab conjugates specifically bind to Pgp. Their phototoxicity was comparable to full antibody conjugates when assayed with conventional 2-D cell culture, but they outperformed the full antibody conjugates in a 3-D tumor spheroid model. In a mouse xenograft model of chemoresistant tumors, Fab conjugates showed Pgp specific delivery to chemoresistant tumors. Upon irradiation with near-infrared light, they caused rapid tumor shrinkage and significantly prolonged the survival of tumor-bearing mice. Compared to the full antibody conjugates, Fab conjugates took a shorter time to reach peak tumor levels and achieved a more homogeneous tumor distribution. This allows light irradiation to be initiated at a shorter time interval after the conjugate injection, and thus may facilitate clinical translation. We conclude that our targeted PDT approach provides a highly cancer-specific approach to combat chemoresistant tumors, and that the conjugates made of recombinant antibody fragments are superior to full antibody conjugates for targeted PDT.
Collapse
Affiliation(s)
- Chengqiong Mao
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Poiroux G, Barre A, Rougé P, Benoist H. Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy. Curr Cancer Drug Targets 2019; 19:349-359. [DOI: 10.2174/1568009618666180628101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
The use of photodynamic therapy in cancer still remains limited, partly because of the lack of photosensitizer (PS) specificity for the cancerous tissues. Various molecular tools are available to increase PS efficiency by targeting the cancer cell molecular alterations. Most strategies use the protein-protein interactions, e.g. monoclonal antibodies directed toward tumor antigens, such as HER2 or EGFR. An alternative could be the targeting of the tumor glycosylation aberrations, e.g. T/Tn antigens that are truncated O-glycans over-expressed in numerous tumors. Thus, to achieve an effective targeting, PS can be conjugated to molecules that specifically recognize the Oglycosylation aberrations at the cancer cell surface.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Universite de Toulouse, CRCT, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France
| | - Annick Barre
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Pierre Rougé
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Hervé Benoist
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| |
Collapse
|
12
|
Mao C, Li F, Zhao Y, Debinski W, Ming X. P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment. Am J Cancer Res 2018; 8:6274-6290. [PMID: 30613297 PMCID: PMC6299702 DOI: 10.7150/thno.29580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer nanomedicines only modestly improve the overall survival of patients because their anticancer activity is limited by biological barriers posed by the tumor microenvironment. Currently, all the drugs in FDA-approved cancer nanomedicines are substrates for P-glycoprotein (Pgp), and thus, Pgp-mediated multidrug resistance (MDR) remains a hurdle for cancer nanomedicines. Methods: In this study, Pgp-targeted photodynamic therapy (PDT) was developed to enhance the anticancer efficacy of nanomedicines by depleting MDR cancer cells as well as enhancing tumor penetration of nanomedicines. We first examined the Pgp specificity of our targeted PDT approach, and then tested combination therapy of PDT with Doxil in mixed tumor models of MDR cancer cells and stromal cells, mimicking human heterogeneous tumors. Results: In vitro studies showed that the antibody-photosensitizer conjugates produced Pgp-specific cytotoxicity towards MDR cancer cells upon irradiation with a near-infrared light. The studies with a co-culture model of MDR cancer cells and stromal cells revealed synergistic effects in the combination therapy of PDT with Doxil. Using a mouse model of mixed tumors containing MDR cancer cells and stroma cells, we observed markedly enhanced tumor delivery of Doxil after PDT in vivo. We further examined the effects of the two modalities on individual cell populations and their synergism using an in vivo dual substrate bioluminescence assay. The results indicated that Pgp-targeted PDT specifically depleted MDR cancer cells and further enhanced Doxil's actions on both MDR cancer cells and stromal cells. Conclusion: We conclude that our targeted PDT approach markedly enhances anticancer actions of nanomedicines by depleting MDR cancer cells and increasing their tumor penetration, and thereby, may provide an effective approach to facilitate translation of cancer nanomedicines.
Collapse
|
13
|
Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci 2018; 128:8-17. [PMID: 30471410 DOI: 10.1016/j.ejps.2018.11.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Over the past few decades, as the demand for cancer treatment has increased, more rational treatment options (considering size, mode of administration, biocompatibility, efficacy, etc.) and plenty of specifically active targeted nanovehicles have been developed. Integrin receptors targeting are one of the most frequently used approaches because of its highly expressed in cancer cells. In particular, the arginine-glycine-aspartic acid (RGD) peptide and its derivatives have been widely used as ligands for integrin to increase direct targeting capabilies. Polymers as well as liposomes are commonly used as nanovehicles for drug delivery. A variety of work is focused on the RGD-modified polymer and liposome nanovehicles for cancer therapeutics. The goal of this article is to review the published literature in recent years concerning the RGD-modified liposome and polymer nanovehicles to highlight its successful designs for improving cancer therapy and discuss the current challenges as well as the possible development prospects.
Collapse
Affiliation(s)
- Yu Cheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
14
|
Suo X, Eldridge BN, Zhang H, Mao C, Min Y, Sun Y, Singh R, Ming X. P-Glycoprotein-Targeted Photothermal Therapy of Drug-Resistant Cancer Cells Using Antibody-Conjugated Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33464-33473. [PMID: 30188117 PMCID: PMC6200400 DOI: 10.1021/acsami.8b11974] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
P-Glycoprotein (Pgp)-medicated multidrug resistance (MDR) remains a formidable challenge to cancer therapy. As conventional approaches using small-molecule inhibitors failed in clinical development because of the lack of cancer specificity, we develop Pgp-targeted carbon nanotubes to achieve highly cancer-specific therapy through combining antibody-based cancer targeting and locoregional tumor ablation with photothermal therapy. Through a dense coating with phospholipid-poly(ethylene glycol), we have engineered multiwalled carbon nanotubes (MWCNTs) which show minimum nonspecific cell interactions and maximum intercellular diffusion. After chemically modifying with an anti-Pgp antibody, these MWCNTs showed highly Pgp-specific cellular uptake. Treatment of the targeted MWCNTs caused dramatic cytotoxicity in MDR cancer cells upon photoirradiation, whereas they did not cause any toxicity in the dark or phototoxicity toward normal cells that do not express Pgp. Because of excellent intratumor diffusion and Pgp-specific cellular uptake, the targeted MWCNTs produced strong phototoxicity in tumor spheroids of MDR cancer cells, a 3-D tumor model for studying tumor penetration and therapy. In conclusion, we have developed highly Pgp-specific MWCNTs that may provide an effective therapy for MDR cancers where other approaches have failed.
Collapse
Affiliation(s)
- Xubin Suo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Brittany N. Eldridge
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
| | - Han Zhang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengqiong Mao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Sun
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- Corresponding authors: Xin Ming () and Ravi Singh ()
| | - Xin Ming
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States
- Corresponding authors: Xin Ming () and Ravi Singh ()
| |
Collapse
|
15
|
Zhu H, Cheng P, Chen P, Pu K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci 2018; 6:746-765. [PMID: 29485662 DOI: 10.1039/c7bm01210a] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have gained considerable attention due to their high tumor ablation efficiency, excellent spatial resolution and minimal side effects on normal tissue. In contrast to inorganic nanoparticles, near-infrared (NIR) absorbing organic nanoparticles bypass the issue of metal-ion induced toxicity and thus are generally considered to be more biocompatible. Moreover, with the guidance of different kinds of imaging methods, the efficacy of cancer phototherapy based on organic nanoparticles has shown to be optimizable. In this review, we summarize the synthesis and application of NIR-absorbing organic nanoparticles as phototherapeutic nanoagents for cancer phototherapy. The chemistry, optical properties and therapeutic efficacies of organic nanoparticles are firstly described. Their phototherapy applications are then surveyed in terms of therapeutic modalities, which include PTT, PDT and PTT/PDT combined therapy. Finally, the present challenges and potential of imaging guided PTT/PDT are discussed.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| | | | | | | |
Collapse
|
16
|
Mao C, Zhao Y, Li F, Li Z, Tian S, Debinski W, Ming X. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J Control Release 2018; 286:289-300. [PMID: 30081143 DOI: 10.1016/j.jconrel.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
Abstract
Drug resistance remains a formidable challenge to cancer therapy. P-glycoprotein (Pgp) contributes to multidrug resistance in numerous cancers by preventing accumulation of anticancer drugs in cancer cells. Strategies to overcome this resistance have been vigorously sought for over 3 decades, yet clinical solutions do not exist. The main reason for the failure is lack of cancer specificity of small-molecule Pgp inhibitors, thus causing severe toxicity in normal tissues. In this study, Pgp-targeted photodynamic therapy (PDT) was developed to achieve superior cancer specificity through antibody targeting plus locoregional light activation. Thus, a Pgp monoclonal antibody was chemically modified with IR700, a porphyrin photosensitizer. In vitro studies showed that the antibody-photosensitizer conjugates specifically bind to Pgp-expressing drug resistant cancer cells, and caused dramatic cytotoxicity upon irradiation with a near infrared light. We then tested our Pgp-targeted approach in mouse xenograft models of chemoresistant ovarian cancer and head and neck cancer. In both models, targeted PDT produced rapid tumor shrinkage, and significantly prolonged survival of tumor-bearing mice. We conclude that our targeted PDT approach produces molecularly targeted and spatially selective ablation of chemoresistant tumors, and thereby provides an effective approach to overcome Pgp-mediated multidrug resistance in cancer, where conventional approaches have failed.
Collapse
Affiliation(s)
- Chengqiong Mao
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yan Zhao
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Fang Li
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shaomin Tian
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Waldemar Debinski
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Brain Tumor Center of Excellence, Thomas K Hearn Brain Tumor Research Center, Winston-Salem, NC 27157, USA
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
17
|
Xia F, Hou W, Liu Y, Wang W, Han Y, Yang M, Zhi X, Li C, Qi D, Li T, Martinez de la Fuente J, Zhang C, Song J, Cui D. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials 2018; 170:1-11. [DOI: 10.1016/j.biomaterials.2018.03.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/02/2023]
|
18
|
Zhao Y, Li F, Mao C, Ming X. Multiarm Nanoconjugates for Cancer Cell-Targeted Delivery of Photosensitizers. Mol Pharm 2018; 15:2559-2569. [PMID: 29764120 DOI: 10.1021/acs.molpharmaceut.8b00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy, a procedure that uses a photosensitizer to enable light therapy selectively at diseased sites, remains underutilized in oncological clinic. To further improve its cancer selectivity, we developed a polymeric nanosystem by conjugating a photosensitizer IRDye 700DX (IR700) and cancer targeting RGD peptide to 8-arm polyethylene glycol (PEG). The resulting nanoconjugates (RGD-8PEG-IR700) exhibited a hydrodynamic size of 6.6 nm with narrow distribution of size. The targeted nanoconjugates showed significantly higher intracellular uptake of IR700 in integrin αvβ3-expressing A375 and SKOV3 cells when compared with nontargeted control 8PEG-IR700, and an excess amount of RGD peptides could abolish this enhancement, indicating a receptor-mediated uptake mechanism for the targeted polymer conjugates. Phototoxicity studies indicated that RGD-8PEG-IR700 produced massive cell killing in A375 cells after photoirradiation with an IC50 value of 57.8 nM for IR700. In contrast, free IR700 and the control 8PEG-IR700 conjugates did not produce any phototoxicity at the concentrations up to 1 μM IR700. Upon photoirradiation, the RGD-8PEG-IR700 could produce sufficient singlet oxygen in the cells and induced cell apoptosis. The studies with three-dimensional tumor spheroids showed that they penetrated tumor spheroids deeply and produced strong phototoxicity. Thus, we conclude that the polymer nanoconjugates may provide a promising delivery system for targeted photodynamic therapy of cancers due to their small size, cancer cell specificity, and minimal side effects.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States.,National Pharmaceutical Engineering Research Center , China State Institute of Pharmaceutical Industry , Shanghai 201203 , China
| | - Fang Li
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States.,School of Pharmacy , Jiangsu Vocational College of Medicine , Yancheng 224005 , China
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center , Wake Forest University School of Medicine , Winston-Salem , North Carolina 27157 , United States
| |
Collapse
|
19
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
20
|
Xin J, Wang S, Wang B, Wang J, Wang J, Zhang L, Xin B, Shen L, Zhang Z, Yao C. AlPcS 4-PDT for gastric cancer therapy using gold nanorod, cationic liposome, and Pluronic ® F127 nanomicellar drug carriers. Int J Nanomedicine 2018; 13:2017-2036. [PMID: 29670347 PMCID: PMC5894760 DOI: 10.2147/ijn.s154054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose As a promising photodynamic therapy (PDT) agent, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) provides deep penetration into tissue, high quantum yields, good photostability, and low photobleaching. However, its low delivery efficiency and high binding affinity to serum albumin cause its low penetration into cancer cells, further limiting its PDT effect on gastric cancer. In order to improve AlPcS4/PDT effect, the AlPcS4 delivery sys tems with different drug carriers were synthesized and investigated. Materials and methods Gold nanorods, cationic liposomes, and Pluronic® F127 nanomicellars were used to formulate the AlPcS4 delivery systems. The anticancer effect was evaluated by CCK-8 assay and colony formation assay. The delivery efficiency of AlPcS4 and the binding affinity to serum proteins were determined by fluorescence intensity assay. The apoptosis and necrosis ability, reactive oxygen species and singlet oxygen generation, mitochondrial transmembrane potential and ([Ca2+]i) concentration were further measured to evaluate the mechanism of cell death. Results The series of synthesized AlPcS4 delivery systems with different drug carriers improve the limited PDT effect in varying degrees. In contrast, AlPcS4 complex with gold nanorods has significant anticancer effects because gold nanorods are not only suitable for AlPcS4 delivery, but also exhibit enhanced singlet oxygen generation effect and photothermal effect to induce cell death directly. Moreover, AlPcS4 complex with cationic liposomes shows the potent inhibition effect because of its optimal AlPcS4 delivery efficiency and ability to block serum albumin. In addition, AlPcS4 complex with Pluronic F127 exhibits inferior PDT effect but presents lower cytotoxicity, slower dissociation rate, and longer retention time of incorporated drugs; thus, F127–AlPcS4 is used for prolonged gastric cancer therapy. Conclusion The described AlPcS4 drug delivery systems provide promising agents for gastric cancer therapy.
Collapse
Affiliation(s)
- Jing Xin
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiazhuang Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Xin
- School of Innovation and Entrepreneurship, Xi'an Fan Yi University, Xi'an, Shaanxi, China
| | - Lijian Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702858. [PMID: 29450963 DOI: 10.1002/smll.201702858] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/13/2017] [Indexed: 05/23/2023]
Abstract
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano-biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles-from self-assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
22
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
23
|
Prozorovskiy V, Kostryukova L, Korotkevich E, Torkhovskaya T, Morozevich G, Tikhonova E, Ipatova O. Photosensitizer Chlorin e6 Internalization into Tumor Cells in Phospholipid Nanoparticles Conjugated with Peptide Containing the NGR Sequence. ACTA ACUST UNITED AC 2018. [DOI: 10.18097/bmcrm00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The possibility of increased internalization of the photosensitizer chlorin e6 in tumor cells was investigatedusing soy phosphatidylcholine nanoparticles 20-30 nm with or without attached peptide containing Asn-Gly-Arg (NGR) motif was studied. This amino acid sequence exhibits affinity to aminopeptidase N (CD13), wich is overexpressed in a number of tumor cells and vessels. Nanoparticles with chlorin e6 were prepared with added of distearoylphosphatidylcholine (DSPE) conjugated through PEG with a hexapeptide containing the NGR sequence, and then were incubated with tumor cells НерG2 and MCF-7. Chlorin e6 accumulation in СD13-negative cells (MCF-7) did not depend on the presence of peptide NGR in nanoparticles. However, for НерG2 cells a twofold increase of chlorine e6 internalization was observed as compared with the same particles without NGR. Differences in the response of these two cell lines, differed in expression of aminopeptidase N (APN), suggest the possibility of this protein using for targeted delivery. The prospectivity of usage of phospholipids nanoparticles conjugated with targeting peptide for photodynamic therapy is discussed, taking into account possible variation of APN expression, inherent for many solid tumors.
Collapse
Affiliation(s)
| | | | | | - T.I. Torkhovskaya
- Institute of Biomedical Chemistry, Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - O.M. Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
24
|
Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and in vivo evaluation. Int J Pharm 2017; 532:677-685. [DOI: 10.1016/j.ijpharm.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 11/17/2022]
|
25
|
Qiu X, Cao K, Lin T, Chen W, Yuan A, Wu J, Hu Y, Guo H. Drug delivery system based on dendritic nanoparticles for enhancement of intravesical instillation. Int J Nanomedicine 2017; 12:7365-7374. [PMID: 29066888 PMCID: PMC5644558 DOI: 10.2147/ijn.s140111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intravesical instillation of antitumor agents following transurethral resection of bladder tumors is the standard strategy for the treatment of superficial bladder cancers. However, the efficacy of current intravesical instillation is limited partly due to the poor permeability of the urothelium. We therefore aimed to develop a high-penetrating, target-releasing drug delivery system to improve the efficacy of intravesical instillation. PAMAM, a dendrimer, were conjugated with polyethylene glycol (PEG) to form PEG-PAMAM complex as a nanocarrier. Doxorubicin (DOX) was then encapsulated into PEG-PAMAM to generate DOX-loaded PEG-PAMAM nanoparticles (PEG-PAMAM-DOX). Our results indicated that the PEG-PAMAM was a stable nanocarrier with small size and great biosafety. The release of DOX from PEG-PAMAM-DOX was sluggish but could be effectively triggered in an acid microenvironment (pH =5.0). As a drug carrier, PEG-PAMAM could penetrate mice bladder urothelium effectively and increase the amount of DOX within the bladder wall after intravesical instillation. The antitumor effect of PEG-PAMAM-DOX was evaluated using an orthotopic bladder cancer model in mice. Compared to free DOX, PEG-PAMAM-DOX showed significantly improved efficacy of DOX for intravesical instillation with limited side effects. In conclusion, we successfully developed a PEG-PAMAM-based drug delivery system to enhance the antitumor effect of intravesical instillation.
Collapse
Affiliation(s)
- Xuefeng Qiu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Kai Cao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Tingsheng Lin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Tang JQ, Hou XY, Yang CS, Li YX, Xin Y, Guo WW, Wei ZP, Liu YQ, Jiang G. Recent developments in nanomedicine for melanoma treatment. Int J Cancer 2017; 141:646-653. [PMID: 28340496 DOI: 10.1002/ijc.30708] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a most aggressive skin cancer with limited therapeutic options and its incidence is increasing rapidly in recent years. The discovery and application of new targeted therapy agents have shown significant benefits. However, adverse side-effects and resistance to chemotherapy remain formidable challenges in the clinical treatment of malignant melanoma. Nanotherapeutics offers an important prospect of overcoming these drawbacks. The anti-tumoral applications of nanomedicine are varied, including those in chemotherapy, RNA interference, photothermal therapy, and photodynamic therapy. Furthermore, nanomedicine allows delivery of the effector structures into the tumor site via passive or active targeting, thereby allowing increased therapeutic specificity and reduced side effects. In this review, we summarize the latest developments in the application of nanocarrier-mediated targeted drug delivery to melanoma and nanomedicine-related clinical trials in melanoma treatment. We also discuss existing problems and opportunities for future developments, providing direction and new thoughts for further studies.
Collapse
Affiliation(s)
- Jian-Qin Tang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiao-Yang Hou
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chun-Sheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Ya-Xi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yong Xin
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Wen-Wen Guo
- Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhi-Ping Wei
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yan-Qun Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
27
|
Li F, Zhao Y, Mao C, Kong Y, Ming X. RGD-Modified Albumin Nanoconjugates for Targeted Delivery of a Porphyrin Photosensitizer. Mol Pharm 2017; 14:2793-2804. [PMID: 28700237 DOI: 10.1021/acs.molpharmaceut.7b00321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in photodynamic therapy of cancer have been restrained by lack of cancer specificity and side effects to normal tissues. Molecularly targeted photodynamic therapy can achieve higher cancer specificity by combination of active cancer targeting and localized laser activation. We aimed to use albumin as a carrier to prepare targeted nanoconjugates that are selective to cancer cells and smaller than conventional nanoparticles for superior tumor penetration. IRDye 700DX (IR700), a porphyrin photosensitizer, was covalently conjugated to human serum albumin that was also linked with tumor-targeting RGD peptides. With multiple IR700 and RGD molecules in a single albumin molecule, the resultant nanoconjugates demonstrated monodispersed and uniform size distribution with a diameter of 10.9 nm. These targeted nanoconjugates showed 121-fold increase in cellular delivery of IR700 into TOV21G ovarian cancer cells compared to control nanoconjugates. Mechanistic studies revealed that the integrin specific cellular delivery was achieved through dynamin-mediated caveolae-dependent endocytosis pathways. They produced massive cell killing in TOV21G cells at low nanomolar concentrations upon light irradiation, while NIH/3T3 cells that do not express integrin αvβ3 were not affected. Because of their small size, targeted albumin nanoconjugates could penetrate tumor spheroids of SKOV-3 ovarian cancer cells and produced strong phototoxicity in this 3-D model. Owing to their cancer-specific delivery and small size, these targeted nanoconjugates may become an effective drug delivery system for enabling molecularly targeted photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Fang Li
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States.,School of Pharmacy, Jiangsu Vocational College of Medicine , Yancheng 224005, China
| | - Yan Zhao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
28
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
29
|
Pereira PMR, Berisha N, Bhupathiraju NVSDK, Fernandes R, Tomé JPC, Drain CM. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS One 2017; 12:e0177737. [PMID: 28545086 PMCID: PMC5435229 DOI: 10.1371/journal.pone.0177737] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Photodynamic Therapy (PDT) relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa) with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4) in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Naxhije Berisha
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - N V S Dinesh K Bhupathiraju
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Rosa Fernandes
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João P C Tomé
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
- Graduate Center of the City University of New York, New York, New York, United States of America
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
30
|
Zhang P, Ma J, Yan Y, Chen B, Liu B, Jian C, Zhu B, Liang S, Zeng Y, Liu Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org Biomol Chem 2017; 15:9379-9388. [DOI: 10.1039/c7ob02233f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, arginine modification rendered Lycosin-I with higher anticancer activity, penetrability, and dissemination ability against solid tumor cells due to the optimized physicochemical properties and high serum stability.
Collapse
|
31
|
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017. [DOI: 10.1039/c7py00559h] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Application of 3D multicellular tumor spheroids to the investigation of polymer nanomedicines.
Collapse
Affiliation(s)
- Gianpiero Lazzari
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
32
|
Tong H, Chen Y, Li Z, Li H, Chen T, Jin Q, Ji J. Glutathione Activatable Photosensitizer-Conjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6223-6232. [PMID: 27622556 DOI: 10.1002/smll.201601966] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Photodynamic theranostics has recently been extensively explored as a promising approach for precise localization and therapy. Herein, glutathione (GSH) activatable photosensitizer (PS)-conjugated pseudopolyrotaxane nanocarriers (α-CD-ss-Ce6 NPs) are reported for enhanced photodynamic theranostics by taking advantage of the noncovalent interactions between α-cyclodextrin (α-CD) and poly(ethylene glycol). The designed α-CD-ss-Ce6 NPs are nonactivated and stable during circulation but exhibited strong photodynamic theranostics through GSH activating after arriving at tumor site. More importantly, compared to free chlorin e6 (Ce6), such kind of pseudopolyrotaxane nanocarrier can dramatically enhance Ce6 accumulation in tumor and prolong its tumor retention time, demonstrating excellent therapeutic effects after light irradiation. Overall, the designed GSH activatable PS-conjugated pseudopolyrotaxane nanocarrier possessing high-performance photodynamic therapeutic efficacy together with reduced side effects offers a promising alternative for photodynamic theranostics.
Collapse
Affiliation(s)
- Hongxin Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yangjun Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zuhong Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tingting Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
33
|
Mohammadpour R, Safarian S, Buckway B, Ghandehari H. Comparative Endocytosis Mechanisms and Anticancer Effect of HPMA Copolymer- and PAMAM Dendrimer-MTCP Conjugates for Photodynamic Therapy. Macromol Biosci 2016; 17. [PMID: 27779358 DOI: 10.1002/mabi.201600333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/03/2016] [Indexed: 12/14/2022]
Abstract
Polymer architecture can influence biodistribution and the mode of presentation of bioactive agents to cells. Herein delivery, loading efficiency, and mode of cellular entry of polymer conjugates of the photosensitizer Meso-Tetra (4-Carboxyphenyl) Porphyrine (MTCP) are examined when attached to hyperbranched amine terminated poly(amido amine) (PAMAM) dendrimer or random coil linear N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer containing free amines in the side chains. The in vitro dark cytotoxicity and phototoxicity of MTCP and related conjugates are assessed on mouth epidermal carcinoma (KB) and human adenocarcinoma alveolar basal epithelial (A549) cells. Phototoxicity of polymeric conjugates increases by ≈100 and 4000 fold in KB and A549 cells compared with nonconjugated MTCP. The increase in phototoxicity activity is shown to result from increased rate of cellular uptake, whereas, cellular internalization of MTCP is negligible in comparison with the conjugated forms. The results of this study suggest the superiority of amine-terminated HPMA copolymer versus PAMAM dendrimer under study for delivery of MTCP. Treatment with various pharmacological inhibitors of endocytosis shows that polymer architecture influences the mechanism of cellular uptake of the conjugated photosensitizer. Results show that polymeric conjugates of MTCP improve solubility, influence the route and the rate of cellular internalization, and drastically enhance the uptake of the photosensitizer.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Shahrokh Safarian
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Brandon Buckway
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA.,The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA.,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112-5820, USA.,The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5820, USA.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5820, USA
| |
Collapse
|
34
|
Bastien E, Schneider R, Hackbarth S, Dumas D, Jasniewski J, Röder B, Bezdetnaya L, Lassalle HP. PAMAM G4.5-chlorin e6 dendrimeric nanoparticles for enhanced photodynamic effects. Photochem Photobiol Sci 2016; 14:2203-12. [PMID: 26496965 DOI: 10.1039/c5pp00274e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic photodynamic therapy. Therefore, we aimed to develop covalent conjugates between the photosensitizer chlorin e6 (Ce6) and PAMAM G4.5 dendrimers. Singlet oxygen generation (SOG) efficiency and fluorescence emission were moderately affected by the covalent binding of the Ce6 to the dendrimer. Compared to free Ce6, PAMAM anchored Ce6 displays a much higher photodynamic effect, which is ascribable to better internalization in a tumor cell model. Intracellular fate and internalization pathway of our different compounds were investigated using specific inhibition conditions and confocal fluorescence microscopy. Free Ce6 was shown to enter the cells by a simple diffusion mechanism, while G4.5-Ce6-PEG internalization was dependent on the caveolae pathway, whereas G4.5-Ce6 was subjected to the clathrin-mediated endocytosis pathway. Subcellular localization of PAMAM anchored Ce6, PEGylated or not, was very similar suggesting that the nanoparticles behave similarly in the cells. As a conclusion, we have demonstrated that PEGylated G4.5 PAMAM-Ce6 dendrimers may offer effective biocompatible nanoparticles for improved photodynamic treatment in a preclinical tumor model.
Collapse
Affiliation(s)
- Estelle Bastien
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, Campus Sciences, Vandœuvre-lès-Nancy, France. and Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, France
| | - Raphaël Schneider
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Steffen Hackbarth
- Institut für Physik, Humboldt, Universität zu Berlin, Newtonstrasse, Berlin, Germany
| | - Dominique Dumas
- Université de Lorraine, Plateforme IBISA d'Imagerie et de Biophysique Cellulaire de Nancy, IMOPA7365, FR3209 BMCT, Centre National de la Recherche Scientifique, Vandœuvre-lès-Nancy, France
| | - Jordane Jasniewski
- Université de Lorraine, Laboratoire d'ingénierie des biomolécues (LIBio), 2 avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, France
| | - Beate Röder
- Institut für Physik, Humboldt, Universität zu Berlin, Newtonstrasse, Berlin, Germany
| | - Lina Bezdetnaya
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, Campus Sciences, Vandœuvre-lès-Nancy, France. and Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, Campus Sciences, Vandœuvre-lès-Nancy, France. and Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, France
| |
Collapse
|
35
|
Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D. MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1447-57. [PMID: 26638778 DOI: 10.1021/acsami.5b10772] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A unique matrix metalloproteinase 2-targeted photosensitizer delivery platform was developed in this study for tumor-targeting imaging and photodynamic therapy. The model photosensitizer therapeutic agent chlorin e6 (Ce6) was first covalently conjugated with matrix metalloproteinase 2-cleavable polypeptide and then modified with polyethylene glycol via a redox-responsive cleavable disulfide linker. The resultant matrix metalloproteinase 2-cleavable polypeptide modified PEGylated Ce6 (PEG-SS-Ce6-MMP2) nanoparticles, which formed via self-assembly, were observed to be monodisperse and significantly stable in aqueous solution. In addition, owing to their cellular redox-responsiveness at the cleavable disulfide linker, the PEG-SS-Ce6-MMP2 nanoparticles were able to release Ce6 rapidly. Despite displaying enhanced intracellular internalization, the synthesized PEG-SS-Ce6-MMP2 nanoparticles did not compromise their phototoxic effects toward A549 cancer cells when compared with free Ce6 and PEGylated Ce6 nanoparticles. In vivo experiments further revealed that, in contrast with the free Ce6 or with the PEGylated Ce6 nanoparticles, the PEG-SS-Ce6-MMP2 nanoparticles showed a remarkable increase in tumor-targeting ability and a significantly improved photodynamic therapeutic efficiency in A549 tumor-bearing mice. These results suggest that the PEG-SS-Ce6-MMP2 nanoparticles hold great potential for tumor-targeting imaging and photodynamic therapy.
Collapse
Affiliation(s)
- Wenxiu Hou
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- School of Biomedical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Fangfang Xia
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Carla S Alves
- CQM-Centro de Química da Madeira, Universidade da Madeira , Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiaoqing Qian
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- School of Biomedical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuming Yang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
36
|
Shi C, He Y, Feng X, Fu D. ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1343-56. [DOI: 10.1080/09205063.2015.1095023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Mehraban N, Freeman HS. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production. MATERIALS (BASEL, SWITZERLAND) 2015; 8:4421-4456. [PMID: 28793448 PMCID: PMC5455656 DOI: 10.3390/ma8074421] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) is a minimally-invasive procedure that has been clinically approved for treating certain types of cancers. This procedure takes advantage of the cytotoxic activity of singlet oxygen (¹O₂) and other reactive oxygen species (ROS) produced by visible and NIR light irradiation of dye sensitizers following their accumulation in malignant cells. The main two concerns associated with certain clinically-used PDT sensitizers that have been influencing research in this arena are low selectivity toward malignant cells and low levels of ¹O₂ production in aqueous media. Solving the selectivity issue would compensate for photosensitizer concerns such as dark toxicity and aggregation in aqueous media. One main approach to enhancing dye selectivity involves taking advantage of key methods used in pharmaceutical drug delivery. This approach lies at the heart of the recent developments in PDT research and is a point of emphasis in the present review. Of particular interest has been the development of polymeric micelles as nanoparticles for delivering hydrophobic (lipophilic) and amphiphilic photosensitizers to the target cells. This review also covers methods employed to increase ¹O₂ production efficiency, including the design of two-photon absorbing sensitizers and triplet forming cyclometalated Ir(III) complexes.
Collapse
Affiliation(s)
- Nahid Mehraban
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Harold S Freeman
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695-8301, USA.
| |
Collapse
|