1
|
Xi Y, Deng X, Shu Z, Yang C. Probing nanoscale structural response of collagen fibril in human Achilles tendon during loading using in situ SAXS. J Mech Behav Biomed Mater 2024; 156:106599. [PMID: 38820710 DOI: 10.1016/j.jmbbm.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
The specific viscoelastic mechanical properties of the human Achilles tendon are strongly dependent on the structural characteristics of collagen. Although research on the deformation mechanisms of the Achilles tendon in various animals is extensive, understanding of these mechanisms in the human Achilles tendon remains largely empirical and macroscopic. In this work, the evolution of D-space, orientation, and average length of voids between fibers are investigated during the stretching using SAXS techniques. Initially, the void length increases marginally, while the misorientation breadth decreased rapidly as the D-space steadily increased. In the second region, D-space and the void length increase sharply under rising stress, even though misorientation width decreased. During the third region, the increases in void length and D-space decelerate, but the misorientation width widens, suggesting the onset of irreversible microscopic fibril failure in the Achilles tendon. In the final region, the fibers undergo macroscopic failure, with D-space and void length returning to their initial states. The macroscopic alterations are elucidated by the nanoscale structural responses, providing a fundamental understanding of the mechanisms driving the complex biomechanics, tissue structural organization, and Achilles tendon regeneration.
Collapse
Affiliation(s)
- Yan Xi
- Department of Radiology, Shanghai TCM-Integrated Hospital, Shanghai University of TCM, 200082, China
| | - Xiaofei Deng
- Department of Radiology, Shanghai TCM-Integrated Hospital, Shanghai University of TCM, 200082, China.
| | - Zheng Shu
- Department of Radiology, Shanghai TCM-Integrated Hospital, Shanghai University of TCM, 200082, China.
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| |
Collapse
|
2
|
Sun Z, Mi C. On the identification of the ultra-structural organization of elastic fibers and their effects on the integrity of annulus fibrosus. J Biomech 2023; 157:111728. [PMID: 37499432 DOI: 10.1016/j.jbiomech.2023.111728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Due to the complicated structure of the elastic fiber network in annulus fibrosus, existing in-silico studies either simplified or just overlooked its distribution pattern. Nonetheless, experimental and simulation results have proven that elastic fibers are of great importance to maintaining the structural integrity of annulus fibrosus and therefore to ensuring the load-bearing ability of intervertebral discs. Such needs call for a fine model. This work aims at developing a biphasic annulus fibrosus model by incorporating the accurate distribution pattern of collagen and elastic fibers. Both the structural parameters and intrinsic mechanical parameters were successfully identified using single lamella and inter-lamella microscopy anatomy and micromechanical testing data. The proposed model was then used to implement finite element simulations on various anterior and posterolateral multi-lamellae annulus fibrosus specimens. In general, simulation results agree well with available experimental and simulation data. On this basis, the effects of elastic fibers on the integrity of annulus fibrosus were further investigated. It was found that elastic fibers significantly influence the free swelling, radial stretching and circumferential shear performances of annulus fibrosus. Nonetheless, no significant effects were found for the circumferential stretching capability. The proposed biphasic model considers for the first time the distribution characteristics of elastic fibers at two scales, including both the principal orientations of all fiber families and the detailed distribution pattern within each family. Better understandings on the functions of collagen and elastic fibers can therefore be realized. To further enhance its prediction capability, the current model can be extended in the future by taking the fiber-matrix interaction as well as progressive damages into consideration.
Collapse
Affiliation(s)
- Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Changwen Mi
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
3
|
Silva Barreto I, Pierantoni M, Hammerman M, Törnquist E, Le Cann S, Diaz A, Engqvist J, Liebi M, Eliasson P, Isaksson H. Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons. Matrix Biol 2023; 115:32-47. [PMID: 36435426 DOI: 10.1016/j.matbio.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The specific viscoelastic mechanical properties of Achilles tendons are highly dependent on the structural characteristics of collagen at and between all hierarchical levels. Research has been conducted on the deformation mechanisms of positional tendons and single fibrils, but knowledge about the coupling between the whole tendon and nanoscale deformation mechanisms of more commonly injured energy-storing tendons, such as Achilles tendons, remains sparse. By exploiting the highly periodic arrangement of tendons at the nanoscale, in situ loading of rat Achilles tendons during small-angle X-ray scattering acquisition was used to investigate the collagen structural response during load to rupture, cyclic loading and stress relaxation. The fibril strain was substantially lower than the applied tissue strain. The fibrils strained linearly in the elastic region of the tissue, but also exhibited viscoelastic properties, such as an increased stretchability and recovery during cyclic loading and fibril strain relaxation during tissue stress relaxation. We demonstrate that the changes in the width of the collagen reflections could be attributed to strain heterogeneity and not changes in size of the coherently diffracting domains. Fibril strain heterogeneity increased with applied loads and after the toe region, fibrils also became increasingly disordered. Additionally, a thorough evaluation of radiation damage was performed. In conclusion, this study clearly displays the simultaneous structural response and adaption of the collagen fibrils to the applied tissue loads and provide novel information about the transition of loads between length scales in the Achilles tendon.
Collapse
Affiliation(s)
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sophie Le Cann
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, Créteil F-94010, France
| | - Ana Diaz
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Jonas Engqvist
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - Marianne Liebi
- Paul Scherrer Institut, Villigen PSI, Switzerland; Department of Physics, Chalmers University, Gothenburg, Sweden; Center of X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St.Gallen, Switzerland
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Kim D, Lee B, Marshall B, Thomopoulos S, Jun YS. Cyclic strain enhances the early stage mineral nucleation and the modulus of demineralized bone matrix. Biomater Sci 2021; 9:5907-5916. [PMID: 34286730 DOI: 10.1039/d1bm00884f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adaptive response of bones to mechanical loading is essential for musculoskeletal development. Despite the importance of collagen in bone mineralization, little is known about how cyclic strain influences physicochemical responses of collagen, especially at the early stage of mineralization when the levels of strain are higher than those in mature bones. The findings in this study show that, without any cell-mediated activity, cyclic strain increases nucleation rates of calcium phosphate (CaP) nanocrystals in highly-organized collagen matrices. The cyclic strain enhances the transport of mineralization fluids with nucleation precursors into the matrix, thus forming more CaP nanocrystals and increasing the elastic modulus of the collagen matrix. The results also suggest that the multiscale spatial distribution of nanocrystals in the fibrous collagen network determines tissue-level mechanical properties more critically than the total mineral content. By linking nano- and micro-scale observations with tissue-level mechanical properties, we provide new insights into designing better biomaterials.
Collapse
Affiliation(s)
- Doyoon Kim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA.
| | | | | | | | | |
Collapse
|
5
|
Ekiert M, Karbowniczek J, Stachewicz U, Mlyniec A. The effect of multiple freeze-thaw cycles on the viscoelastic properties and microstructure of bovine superficial digital flexor tendon. J Mech Behav Biomed Mater 2021; 120:104582. [PMID: 34090220 DOI: 10.1016/j.jmbbm.2021.104582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 11/19/2022]
Abstract
The most common injuries of the human musculoskeletal system are related to soft tissue structures such as tendons or ligaments. To repair torn structures, surgical intervention and application of a biological or synthetic graft may be required. A typical procedure for the processing, storage, and distribution of soft tissue grafts involves at least two freezing/thawing (F/T) cycles. Even though repeated F/T cycles decrease the mechanical performance and change the structure of tendons, it is unclear whether there exists a maximum number of F/T cycles above which tendons should not be approved for use as a tissue allograft. To fill this research gap, we present an ex vivo study on the effects of repetitive F/T cycles on the biomechanical stability of bovine superficial digital flexor tendon tissue. Using mechanical testing supported with scanning electron microscopy imaging, we show that multiple F/T cycles affect the viscoelastic and structural properties of tissue by significantly reducing its tensile modulus after the 3rd or 4th F/T cycle (depending on the strain range), stress drop during relaxation after the 8th F/T cycle (regardless the strain values), mechanical hysteresis after the 10th F/T cycle, and by causing a significant decrease in collagen fibril diameter. Our results provide a deeper insight into understanding the mechanisms responsible for tissue damage during multiple F/T cycles, and thus, may be useful for the future optimization of tissue storage protocols.
Collapse
Affiliation(s)
- Martyna Ekiert
- AGH University of Science and Technology, Faculty of Mechanics and Robotics, Krakow, Poland.
| | - Joanna Karbowniczek
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanics and Robotics, Krakow, Poland
| |
Collapse
|
6
|
Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M. Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:644595. [PMID: 33987173 PMCID: PMC8112590 DOI: 10.3389/fbioe.2021.644595] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.
Collapse
Affiliation(s)
- Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
7
|
Ekiert M, Tomaszewski KA, Mlyniec A. The differences in viscoelastic properties of subtendons result from the anatomical tripartite structure of human Achilles tendon - ex vivo experimental study and modeling. Acta Biomater 2021; 125:138-153. [PMID: 33677161 DOI: 10.1016/j.actbio.2021.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/29/2023]
Abstract
The human Achilles tendon (AT) is a hierarchical structure macroscopically composed of three subtendons originating from the soleus (SOL) and gastrocnemius (GL, GM) muscles. According to recent reports, the divisible structure of the AT together with diverse material properties of its subtendons are suspected as a probable cause of non-homogeneous stress and strain distribution occurring in loaded AT. Despite numerous investigations on human AT, there is still relatively little knowledge regarding mechanical properties of subtendon-level hierarchy, which is crucial in fully understanding the multiscale relationship which governs tendon mechanics. In this paper we present the first ex vivo study conducted on SOL, GL, and GM subtendons of human AT. We investigate differences in viscoelastic properties of SOL, GM, and GL subtendons in terms of tensile modulus, mechanical hysteresis as well as stress relaxation observed at two different values of strain. Our results show that the most significant differences in mechanical properties exist between subtendon attached to the soleus muscle (SOL) and subtendons originating from the two heads of the gastrocnemius muscle (GM and GL). We used our experimental results to calibrate three different constitutive models: the hyperelastic Yeoh model with power-law flow, the microstructurally motivated Holzapfel-Gasser-Ogden model enhanced with strain-dependent Berström-Boyce flow and the phenomenological elasto-viscoplastic Arruda-Boyce-based model with strain-dependent Berström-Boyce flow supplemented with component representing matrix response. All calibrated models may be applied to commercial FEA software as a sufficient solution for rapid mechanical response modeling of human AT subtendons or for the purpose of future development of comprehensive patient-specific models of human lower limbs. STATEMENT OF SIGNIFICANCE: The divisible structure of the Achilles tendon together with diverse material properties of its subtendons are suspected as a probable cause of non-homogeneous stress and strain distribution occurring in loaded Achilles tendon. Despite numerous investigations on mechanical properties of Achilles tendon, there is still relatively little knowledge regarding mechanical properties of subtendon-level hierarchy, which is crucial in fully understanding the multiscale relationship which governs tendon mechanics. This study is the first reported ex vivo investigation conducted on SOL, GL, and GM human Achilles subtendons. We investigate differences in the viscoelastic properties of individual subtendons and demonstrate that the observed differences should be considered as muscle-dependent. Our experimental research is supported with a modeling study in which we calibrate three different constitutive models.
Collapse
Affiliation(s)
- Martyna Ekiert
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Av., Krakow 30-059, Poland.
| | - Krzysztof A Tomaszewski
- Andrzej Frycz Modrzewski Krakow University, Faculty of Medicine and Health Sciences, Gustawa Herlinga-Grudzinskiego 1, Krakow 30-705, Poland
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Av., Krakow 30-059, Poland
| |
Collapse
|
8
|
Lin AH, Allan AN, Zitnay JL, Kessler JL, Yu SM, Weiss JA. Collagen denaturation is initiated upon tissue yield in both positional and energy-storing tendons. Acta Biomater 2020; 118:153-160. [PMID: 33035697 DOI: 10.1016/j.actbio.2020.09.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Tendons are collagenous soft tissues that transmit loads between muscles and bones. Depending on their anatomical function, tendons are classified as positional or energy-storing with differing biomechanical and biochemical properties. We recently demonstrated that during monotonic stretch of positional tendons, permanent denatured collagen begins accumulating upon departing the linear region of the stress-strain curve. However, it is unknown if this observation is true during mechanical overload of other types of tendons. Therefore, the purpose of this study was to investigate the onset of collagen denaturation relative to applied strain, and whether it differs between the two tendon types. Rat tail tendon (RTT) fascicles and rat flexor digitorum longus (FDL) tendons represented positional and energy-storing tendons, respectively. The samples were stretched to incremental levels of strain, then stained with fluorescently labeled collagen hybridizing peptides (CHPs); the CHP fluorescence was measured to quantify denatured collagen. Denatured collagen in both positional and energy-storing tendons began to increase at the yield strain, upon leaving the linear region of the stress-strain curve as the sample started to permanently deform. Despite significant differences between the two tendon types, it appears that collagen denaturation is initiated at tissue yield during monotonic stretch, and the fundamental mechanism of failure is the same for the two types of tendons. At tissue failure, positional tendons had double the percentage of denatured collagen compared to energy-storing tendons, with no difference between 0% control groups. These results help to elucidate the etiology of subfailure injury and rupture in functionally distinct tendons.
Collapse
Affiliation(s)
- Allen H Lin
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Alexandra N Allan
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Jared L Zitnay
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Julian L Kessler
- Department of Biomedical Engineering, University of Utah, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States; Department of Orthopaedics, University of Utah, United States.
| |
Collapse
|
9
|
Roy R, Warren E, Xu Y, Yow C, Madhurapantula RS, Orgel JPRO, Lister K. Functional Grading of a Transversely Isotropic Hyperelastic Model with Applications in Modeling Tricuspid and Mitral Valve Transition Regions. Int J Mol Sci 2020; 21:ijms21186503. [PMID: 32899559 PMCID: PMC7554844 DOI: 10.3390/ijms21186503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Surgical simulators and injury-prediction human models require a combination of representative tissue geometry and accurate tissue material properties to predict realistic tool-tissue interaction forces and injury mechanisms, respectively. While biological tissues have been individually characterized, the transition regions between tissues have received limited research attention, potentially resulting in inaccuracies within simulations. In this work, an approach to characterize the transition regions in transversely isotropic (TI) soft tissues using functionally graded material (FGM) modeling is presented. The effect of nonlinearities and multi-regime nature of the TI model on the functional grading process is discussed. The proposed approach has been implemented to characterize the transition regions in the leaflet (LL), chordae tendinae (CT) and the papillary muscle (PM) of porcine tricuspid valve (TV) and mitral valve (MV). The FGM model is informed using high resolution morphological measurements of the collagen fiber orientation and tissue composition in the transition regions, and deformation characteristics predicted by the FGM model are numerically validated to experimental data using X-ray diffraction imaging. The results indicate feasibility of using the FGM approach in modeling soft-tissue transitions and has implications in improving physical representation of tissue deformation throughout the body using a scalable version of the proposed approach.
Collapse
Affiliation(s)
- Rajarshi Roy
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
- Correspondence: ; Tel.: +1-704-799-6944
| | | | - Yaoyao Xu
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
| | - Caleb Yow
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
| | - Rama S. Madhurapantula
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (J.P.R.O.O.)
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Joseph P. R. O. Orgel
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA; (R.S.M.); (J.P.R.O.O.)
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Kevin Lister
- Corvid Technologies, Mooresville, NC 28117, USA; (Y.X.); (C.Y.); (K.L.)
| |
Collapse
|
10
|
Terzi A, Gallo N, Bettini S, Sibillano T, Altamura D, Madaghiele M, De Caro L, Valli L, Salvatore L, Sannino A, Giannini C. Sub‐ and Supramolecular X‐Ray Characterization of Engineered Tissues from Equine Tendon, Bovine Dermis, and Fish Skin Type‐I Collagen. Macromol Biosci 2020; 20:e2000017. [DOI: 10.1002/mabi.202000017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alberta Terzi
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Nunzia Gallo
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Simona Bettini
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Davide Altamura
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Marta Madaghiele
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Liberato De Caro
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce 73100 Italy
| | - Luca Salvatore
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Alessandro Sannino
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| |
Collapse
|
11
|
Ghezelbash F, Shirazi-Adl A, Baghani M, Eskandari AH. On the modeling of human intervertebral disc annulus fibrosus: Elastic, permanent deformation and failure responses. J Biomech 2020; 102:109463. [DOI: 10.1016/j.jbiomech.2019.109463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
|
12
|
Pijanka JK, Markov PP, Midgett D, Paterson NG, White N, Blain EJ, Nguyen TD, Quigley HA, Boote C. Quantification of collagen fiber structure using second harmonic generation imaging and two-dimensional discrete Fourier transform analysis: Application to the human optic nerve head. JOURNAL OF BIOPHOTONICS 2019; 12:e201800376. [PMID: 30578592 PMCID: PMC6506269 DOI: 10.1002/jbio.201800376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 05/17/2023]
Abstract
Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a two-dimensional discrete Fourier transform (DFT)-based method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid-stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide-angle X-ray scattering and application of the presented method to other fibrous tissues.
Collapse
Affiliation(s)
- Jacek K. Pijanka
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Petar P. Markov
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Dan Midgett
- Department of Mechanical Engineering, The Johns Hopkins
University, Baltimore, MD 21218, USA
- Department of Materials Science, The Johns Hopkins
University, Baltimore, MD 21218, USA
| | - Neil G. Paterson
- Diamond Light Source, Harwell Science and Innovation
Campus, Harwell, UK
| | - Nick White
- Vivat Scientia Bioimaging Labs, School of Optometry and
Visual Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| | - Emma J. Blain
- Arthritis Research UK Biomechanics and Bioengineering
Centre, Cardiff University, CF10 3AX, Cardiff, UK
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins
University, Baltimore, MD 21218, USA
- Department of Materials Science, The Johns Hopkins
University, Baltimore, MD 21218, USA
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The
Johns Hopkins University, Baltimore, MD 21287, USA
| | - Craig Boote
- Structural Biophysics Group, School of Optometry and
Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, UK
| |
Collapse
|
13
|
Huang L, Korhonen RK, Turunen MJ, Finnilä MAJ. Experimental mechanical strain measurement of tissues. PeerJ 2019; 7:e6545. [PMID: 30867989 PMCID: PMC6409087 DOI: 10.7717/peerj.6545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Strain, an important biomechanical factor, occurs at different scales from molecules and cells to tissues and organs in physiological conditions. Under mechanical strain, the strength of tissues and their micro- and nanocomponents, the structure, proliferation, differentiation and apoptosis of cells and even the cytokines expressed by cells probably shift. Thus, the measurement of mechanical strain (i.e., relative displacement or deformation) is critical to understand functional changes in tissues, and to elucidate basic relationships between mechanical loading and tissue response. In the last decades, a great number of methods have been developed and applied to measure the deformations and mechanical strains in tissues comprising bone, tendon, ligament, muscle and brain as well as blood vessels. In this article, we have reviewed the mechanical strain measurement from six aspects: electro-based, light-based, ultrasound-based, magnetic resonance-based and computed tomography-based techniques, and the texture correlation-based image processing method. The review may help solving the problems of experimental and mechanical strain measurement of tissues under different measurement environments.
Collapse
Affiliation(s)
- Lingwei Huang
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
14
|
Abstract
The hierarchical structure of tendon allows for attenuation of mechanical strain down decreasing length scales. While reorganization of collagen fibers accounts for microscale strain attenuation, cross-linking between collagen molecules contributes to deformation mechanisms at the fibrillar and molecular scales. Divalent and trivalent enzymatic cross-links form during the development of collagen fibrils through the enzymatic activity of lysyl oxidase (LOX). By establishing connections between telopeptidyl and triple-helical domains of adjacent molecules within collagen fibrils, these cross-links stiffen the fibrils by resisting intermolecular sliding. Ultimately, greater enzymatic cross-linking leads to less compliant and stronger tendon as a result of stiffer fibrils. In contrast, nonenzymatic cross-links such as glucosepane and pentosidine are not produced during development but slowly accumulate through glycation of collagen. Therefore, these cross-links are only expected to be present in significant quantities in advanced age, where there has been sufficient time for glycation to occur, and in diabetes, where the presence of more free sugar in the extracellular matrix increases the rate of glycation. Unlike enzymatic cross-links, current evidence suggests that nonenzymatic cross-links are at least partially isolated to the surface of collagen fibers. As a result, glycation has been proposed to primarily impact tendon mechanics by altering molecular interactions at the fiber interface, thereby diminishing sliding between fibers. Thus, increased nonenzymatic cross-linking decreases microscale strain attenuation and the viscous response of tendon. In conclusion, enzymatic and nonenzymatic collagen cross-links have demonstrable and distinct effects on the mechanical properties of tendon across different length scales.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- a Department of Biomedical Engineering , Washington University in St. Louis , St. Louis , USA
| | - Fei Fang
- b Department of Orthopedic Surgery , Columbia University , New York , USA
| | - Spencer P Lake
- a Department of Biomedical Engineering , Washington University in St. Louis , St. Louis , USA.,c Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , USA.,d Department of Orthopaedic Surgery , Washington University in St. Louis , St. Louis , USA
| |
Collapse
|
15
|
Bianchi F, Hofmann F, Smith AJ, Ye H, Thompson MS. Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction. J Mech Behav Biomed Mater 2018; 87:205-212. [PMID: 30077812 DOI: 10.1016/j.jmbbm.2018.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 01/23/2023]
Abstract
Peripheral nerves are continuously subjected to mechanical forces, both during everyday movement and as a result of traumatic events. Current mechanical models focus on explaining the macroscopic behaviour of the tissue, but do not investigate how tissue strain translates to deformations at the microstructural level. Predicting the effect of macro-scale loading can help explain changes in nerve function and suggest new strategies for prevention and therapy. The aim of this study was to determine the relationship between macroscopic tensile loading and micro scale deformation in structures thought to be mechanically active in peripheral nerves: the myelin sheath enveloping axons, and axially aligned epineurial collagen fibrils. The microstructure was probed using X-ray diffraction during in situ tensile loading, measuring the micro-scale deformation in collagen and myelin, combined with high definition macroscopic video extensiometry. At a tissue level, tensile loading elongates nerves axially, whilst simultaneously compressing circumferentially. The non-linear behaviour observed in both directions is evidence, circumferentially, that the nerve core components have the ability to rearrange before bearing load and axially, of a recruitment process in epineurial collagen. At the molecular level, axially aligned epineurial collagen fibrils are strained, whilst the myelin sheath enveloping axons is compressed circumferentially. During induced compression, the myelin sheath shows high circumferential stiffness, indicating a possible role in mechanical protection of axons. The myelin sheath is deformed from low loads, despite the non-linearity of whole tissue compression, indicating more than one mechanism contributing to myelin compression. Epineurial collagen shows similar load-bearing characteristics to those of other collagenous connective tissues. This new microstructural knowledge is key to understand peripheral nerve mechanical behaviour, and will support new regenerative strategies for traumatic and repetitive injury.
Collapse
Affiliation(s)
- Fabio Bianchi
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, OX1 3PJ, UK
| | | | - Hua Ye
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Mark S Thompson
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, OX3 7DQ, UK.
| |
Collapse
|
16
|
Achilles tendon compositional and structural properties are altered after unloading by botox. Sci Rep 2017; 7:13067. [PMID: 29026107 PMCID: PMC5638919 DOI: 10.1038/s41598-017-13107-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Tendon function and homeostasis rely on external loading. This study investigates the biological mechanisms behind tendon biomechanical function and how the mechanical performance is affected by reduced daily loading. The Achilles tendons of 16 weeks old female Sprague Dawley rats (n = 40) were unloaded for 5 weeks by inducing muscle paralysis with botulinum toxin injections in the right gastrocnemius and soleus muscles. The contralateral side was used as control. After harvest, the tendons underwent biomechanical testing to assess viscoelasticity (n = 30 rats) and small angle X-ray scattering to determine the structural properties of the collagen fibrils (n = 10 rats). Fourier transform infrared spectroscopy and histological staining (n = 10 rats) were performed to investigate the collagen and proteoglycan content. The results show that the stiffness increased in unloaded tendons, together with an increased collagen content. Creep and axial alignment of the collagen fibers were reduced. Stress-relaxation increased whereas hysteresis was reduced in response to unloading with botox treatment. Our findings indicate that altered matrix deposition relies on mechanical loading to reorganize the newly formed tissue, without which the viscoelastic behavior is impaired. The results demonstrate that reduced daily loading deprives tendons of their viscoelastic properties, which could increase the risk of injury.
Collapse
|
17
|
Effects of tissue fixation and dehydration on tendon collagen nanostructure. J Struct Biol 2017; 199:209-215. [DOI: 10.1016/j.jsb.2017.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/18/2023]
|
18
|
Lee AH, Szczesny SE, Santare MH, Elliott DM. Investigating mechanisms of tendon damage by measuring multi-scale recovery following tensile loading. Acta Biomater 2017; 57:363-372. [PMID: 28435080 PMCID: PMC6688648 DOI: 10.1016/j.actbio.2017.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/28/2023]
Abstract
Tendon pathology is associated with damage. While tendon damage is likely initiated by mechanical loading, little is known about the specific etiology. Damage is defined as an irreversible change in the microstructure that alters the macroscopic mechanical parameters. In tendon, the link between mechanical loading and microstructural damage, resulting in macroscopic changes, is not fully elucidated. In addition, tendon damage at the macroscale has been proposed to initiate when tendon is loaded beyond a strain threshold, yet the metrics to define the damage threshold are not determined. We conducted multi-scale mechanical testing to investigate the mechanism of tendon damage by simultaneously quantifying macroscale mechanical and microstructural changes. At the microscale, we observe full recovery of the fibril strain and only partial recovery of the interfibrillar sliding, indicating that the damage initiates at the interfibrillar structures. We show that non-recoverable sliding is a mechanism for tendon damage and is responsible for the macroscale decreased linear modulus and elongated toe-region observed at the fascicle-level, and these macroscale properties are appropriate metrics that reflect tendon damage. We concluded that the inflection point of the stress-strain curve represents the damage threshold and, therefore, may be a useful parameter for future studies. Establishing the mechanism of damage at multiple length scales can improve prevention and rehabilitation strategies for tendon pathology. STATEMENT OF SIGNIFICANCE Tendon pathology is associated with mechanically induced damage. Damage, as defined in engineering, is an irreversible change in microstructure that alters the macroscopic mechanical properties. Although microstructural damage and changes to macroscale mechanics are likely, this link to microstructural change was not yet established. We conducted multiscale mechanical testing to investigate the mechanism of tendon damage by simultaneously quantifying macroscale mechanical and microstructural changes. We showed that non-recoverable sliding between collagen fibrils is a mechanism for tendon damage. Establishing the mechanism of damage at multiple length scales can improve prevention and rehabilitation strategies for tendon pathology.
Collapse
Affiliation(s)
- Andrea H Lee
- Department of Biomedical Engineering, University of Delaware, United States
| | - Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, United States
| | - Michael H Santare
- Department of Mechanical Engineering, University of Delaware, United States
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, United States.
| |
Collapse
|