1
|
Yadav S, Joshi R, Majumder A. Concave/Convex Curvature of Anisotropic Grooves Differentially Alters Cellular Morphology, Adhesion, and Proliferation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17590-17600. [PMID: 39132850 DOI: 10.1021/acs.langmuir.4c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Curvature is an integral part of the complex in vivo tissue architecture across various length scales. Therefore, several in vitro models with a patterned curvature in different length scales have been developed to understand the role of this in cellular behavior. At the subcellular scale, wavy patterns have been reported wherein concave and convex grooves are adjacently present. However, the independent effect of continuous subcellular concave and convex shapes has not been reported, mainly owing to the limitations in fabricating such patterns. In this study, we developed continuous concave and convex grooves on polydimethylsiloxane (PDMS) using a Dracaena sanderiana (bamboo) leaf as a template. The first (negative) replica from the abaxial side of the bamboo leaf, which imparted concave grooves on PDMS, was subsequently used as a template to fabricate a positive replica of the leaf, resulting in convex grooves of the same size and arrangement as the concave grooves. We examined the influence of the groove curvature on the morphology of bone marrow-derived human mesenchymal stem cells (BM-hMSCs) and skeletal muscle cells (C2C12). BM-hMSCs and C2C12 cells aligned on both concave and convex grooves as compared to the random orientation on a flat substrate. The significant difference was observed in the morphology of both cells, in terms of area, aspect ratio, number, and length of protrusions on concave and convex patterns. We found that the number of protrusions was also dependent on the ratio of cell to pattern length scale for convex-shaped grooves but independent of length scale for concave-shaped grooves. The proliferation of BM-hMSCs was also found to be different on concave and convex shapes. Therefore, this study shows the importance of (1) convex and concave curvatures of the subcellular length scale in cellular response, (2) dependence on the ratio of cell and curvature length scale, and (3) use of natural templates for overcoming fabrication challenges.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076,India
| | - Rohit Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076,India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076,India
| |
Collapse
|
2
|
Krasnyakov I, Bratsun D. Cell-Based Modeling of Tissue Developing in the Scaffold Pores of Varying Cross-Sections. Biomimetics (Basel) 2023; 8:562. [PMID: 38132501 PMCID: PMC10741956 DOI: 10.3390/biomimetics8080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
In this work, we present a mathematical model of cell growth in the pores of a perfusion bioreactor through which a nutrient solution is pumped. We have developed a 2-D vertex model that allows us to reproduce the microscopic dynamics of the microenvironment of cells and describe the occupation of the pore space with cells. In this model, each cell is represented by a polygon; the number of vertices and shapes may change over time. The model includes mitotic cell division and intercalation. We study the impact of two factors on cell growth. On the one hand, we consider a channel of variable cross-section, which models a scaffold with a porosity gradient. On the other hand, a cluster of cells grows under the influence of a nutrient solution flow, which establishes a non-uniform distribution of shear stresses in the pore space. We present the results of numerical simulation of the tissue growth in a wavy channel. The model allows us to obtain complete microscopic information that includes the dynamics of intracellular pressure, the local elastic energy, and the characteristics of cell populations. As we showed, in a functional-graded scaffold, the distribution of the shear stresses in the pore space has a complicated structure, which implies the possibility of controlling the growth zones by varying the pore geometry.
Collapse
Affiliation(s)
| | - Dmitry Bratsun
- Applied Physics Department, Perm National Research Polytechnic University, 614990 Perm, Russia;
| |
Collapse
|
3
|
Matsuzawa R, Matsuo A, Fukamachi S, Shimada S, Takeuchi M, Nishina T, Kollmannsberger P, Sudo R, Okuda S, Yamashita T. Multicellular dynamics on structured surfaces: Stress concentration is a key to controlling complex microtissue morphology on engineered scaffolds. Acta Biomater 2023; 166:301-316. [PMID: 37164300 DOI: 10.1016/j.actbio.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Tissue engineers have utilised a variety of three-dimensional (3D) scaffolds for controlling multicellular dynamics and the resulting tissue microstructures. In particular, cutting-edge microfabrication technologies, such as 3D bioprinting, provide increasingly complex structures. However, unpredictable microtissue detachment from scaffolds, which ruins desired tissue structures, is becoming an evident problem. To overcome this issue, we elucidated the mechanism underlying collective cellular detachment by combining a new computational simulation method with quantitative tissue-culture experiments. We first quantified the stochastic processes of cellular detachment shown by vascular smooth muscle cells on model curved scaffolds and found that microtissue morphologies vary drastically depending on cell contractility, substrate curvature, and cell-substrate adhesion strength. To explore this mechanism, we developed a new particle-based model that explicitly describes stochastic processes of multicellular dynamics, such as adhesion, rupture, and large deformation of microtissues on structured surfaces. Computational simulations using the developed model successfully reproduced characteristic detachment processes observed in experiments. Crucially, simulations revealed that cellular contractility-induced stress is locally concentrated at the cell-substrate interface, subsequently inducing a catastrophic process of collective cellular detachment, which can be suppressed by modulating cell contractility, substrate curvature, and cell-substrate adhesion. These results show that the developed computational method is useful for predicting engineered tissue dynamics as a platform for prediction-guided scaffold design. STATEMENT OF SIGNIFICANCE: Microfabrication technologies aiming to control multicellular dynamics by engineering 3D scaffolds are attracting increasing attention for modelling in cell biology and regenerative medicine. However, obtaining microtissues with the desired 3D structures is made considerably more difficult by microtissue detachments from scaffolds. This study reveals a key mechanism behind this detachment by developing a novel computational method for simulating multicellular dynamics on designed scaffolds. This method enabled us to predict microtissue dynamics on structured surfaces, based on cell mechanics, substrate geometry, and cell-substrate interaction. This study provides a platform for the physics-based design of micro-engineered scaffolds and thus contributes to prediction-guided biomaterials design in the future.
Collapse
Affiliation(s)
- Ryosuke Matsuzawa
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Akira Matsuo
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Shuya Fukamachi
- School of Mathematics and Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Sho Shimada
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Midori Takeuchi
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Takuya Nishina
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Philip Kollmannsberger
- Biomedical Physics, Heinrich-Heine-University Düsseldorf, Universitätstraße 1, D-40225 Düsseldorf, Germany
| | - Ryo Sudo
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Tadahiro Yamashita
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan.
| |
Collapse
|
4
|
Callens SJP, Fan D, van Hengel IAJ, Minneboo M, Díaz-Payno PJ, Stevens MM, Fratila-Apachitei LE, Zadpoor AA. Emergent collective organization of bone cells in complex curvature fields. Nat Commun 2023; 14:855. [PMID: 36869036 PMCID: PMC9984480 DOI: 10.1038/s41467-023-36436-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts. We quantify curvature-induced patterning and find that cells generally prefer regions with at least one negative principal curvature. However, we also show that the developing tissue can eventually cover unfavorably curved territories, can bridge large portions of the substrates, and is often characterized by collectively aligned stress fibers. We demonstrate that this is partly regulated by cellular contractility and extracellular matrix development, underscoring the mechanical nature of curvature guidance. Our findings offer a geometric perspective on cell-environment interactions that could be harnessed in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands. .,Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Daniel Fan
- Department of Precision and Microsystems Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Ingmar A J van Hengel
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Pedro J Díaz-Payno
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands.,Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| |
Collapse
|
5
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
6
|
Imashiro C, Morikura T, Hayama M, Ezura A, Komotori J, Miyata S, Sakaguchi K, Shimizu T. Metallic Vessel with Mesh Culture Surface Fabricated Using Three-dimensional Printing Engineers Tissue Culture Environment. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
8
|
Tomba C, Luchnikov V, Barberi L, Blanch-Mercader C, Roux A. Epithelial cells adapt to curvature induction via transient active osmotic swelling. Dev Cell 2022; 57:1257-1270.e5. [PMID: 35568030 PMCID: PMC9165930 DOI: 10.1016/j.devcel.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction. Rapid inward and outward epithelial rolling triggers cell volume increase Epithelial folding induces a mechano-osmotic feedback loop that involvs ion channels Cell volume regulation in curved tissues involves actin, membrane tension, and mTORC2
Collapse
Affiliation(s)
- Caterina Tomba
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| | - Valeriy Luchnikov
- Université de Haute Alsace, CNRS, IS2M UMR 7361, 15, rue Jean Starcky, Mulhouse 68100, France
| | - Luca Barberi
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland; National Center of Competence in Research Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| |
Collapse
|
9
|
A quantitative analysis of cell bridging kinetics on a scaffold using computer vision algorithms. Acta Biomater 2021; 136:429-440. [PMID: 34571272 DOI: 10.1016/j.actbio.2021.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
Tissue engineering involves the seeding of cells into a structural scaffolding to regenerate the architecture of damaged or diseased tissue. To effectively design a scaffold, an understanding of how cells collectively sense and react to the geometry of their local environment is needed. Advances in the development of melt electro-writing have allowed micron and submicron polymeric fibres to be accurately printed into porous, complex and three-dimensional structures. By using melt electrowriting, we created a geometrically relevant in vitro scaffold model to study cellular spatial-temporal kinetics. These scaffolds were paired with custom computer vision algorithms to investigate cell nuclei, cell membrane actin and scaffold fibres over different pore sizes (200-600 µm) and time points (28 days). We find that cells proliferated much faster in the smaller (200 µm) pores which halved the time until confluence versus larger (500 and 600 µm) pores. Our analysis of stained actin fibres revealed that cells were highly aligned to the fibres and the leading edge of the pore filling front, and we found that cells behind the leading edge were not aligned in any particular direction. This study provides a systematic understanding of cellular spatial temporal kinetics within a 3D in vitro model to inform the design of more effective synthetic tissue engineering scaffolds for tissue regeneration. STATEMENT OF SIGNIFICANCE: Advances in the development of melt electro-writing have allowed micron and submicron polymeric fibres to be accurately printed into porous, complex and three-dimensional structures. By using melt electrowriting, we created a geometrically relevant in vitro model to study cellular spatial-temporal kinetics to provide a systematic understanding of cellular spatial temporal kinetics within a 3D in vitro model. The insights presented in this work help to inform the design of more effective synthetic tissue engineering scaffolds by reducing cell culture time; which is valuable information for the implant or lab-grown-meat industries.
Collapse
|
10
|
Human iPS cell derived RPE strips for secure delivery of graft cells at a target place with minimal surgical invasion. Sci Rep 2021; 11:21421. [PMID: 34728664 PMCID: PMC8563929 DOI: 10.1038/s41598-021-00703-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
Abstract
Several clinical studies have been conducted into the practicality and safety of regenerative therapy using hESC/iPSC-retinal pigment epithelium (RPE) as a treatment for the diseases including age-related macular degeneration. These studies used either suspensions of RPE cells or an RPE cell sheet. The cells can be injected using a minimally invasive procedure but the delivery of an intended number of cells at an exact target location is difficult; cell sheets take a longer time to prepare, and the surgical procedure is invasive but can be placed at the target area. In the research reported here, we combined the advantages of the two approaches by producing a quickly formed hiPSC-RPE strip in as short as 2 days. The strip readily expanded into a monolayer sheet on the plate, and after transplantation in nude rats, it showed a potency to partly expand with the correct apical/basal polarity in vivo, although limited in expansion area in the presence of healthy host RPE. The strip could be injected into a target area in animal eyes using a 24G canula tip.
Collapse
|
11
|
King J, Swapnasrita S, Truckenmüller R, Giselbrecht S, Masereeuw R, Carlier A. Modeling indoxyl sulfate transport in a bioartificial kidney: Two-step binding kinetics or lumped parameters model for uremic toxin clearance? Comput Biol Med 2021; 138:104912. [PMID: 34628208 DOI: 10.1016/j.compbiomed.2021.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Toxin removal by the kidney is deficient in a patient suffering from end-stage kidney disease (ESKD), and current dialysis therapies are insufficient in subsidizing this loss. A bioartificial kidney (BAK) aspires to offer ESKD patients a more effective alternative to dialysis. Mathematical models are necessary to support further developments and improve designs for the BAK before clinical trials. The BAK differentiates itself from dialysis by incorporating a living proximal tubule cell monolayer to account for the active transport of protein-bound uremic toxins, namely indoxyl sulfate (IS) in this study. Optimizing such a device is far from trivial due to the non-intuitive spatiotemporal dynamics of the IS removal process. This study used mathematical models to compare two types of active transport kinetics. i.e., two-step binding and lumped parameter. The modeling results indicated that the transporter density is the most influential parameter for the IS clearance. Moreover, a uniform distribution of transporters increases the IS clearance, highlighting the need for a high-quality, functional proximal tubule monolayer in the BAK. In summary, this study contributed to an improved understanding of IS transport in the BAK, which can be used along with laboratory experiments to develop promising renal replacement therapies in the future.
Collapse
Affiliation(s)
- Jasia King
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Sangita Swapnasrita
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
12
|
Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:736489. [PMID: 34595161 PMCID: PMC8476750 DOI: 10.3389/fbioe.2021.736489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent - assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
13
|
Baptista D, Teixeira LM, Birgani ZT, van Riet S, Pasman T, Poot A, Stamatialis D, Rottier RJ, Hiemstra PS, Habibović P, van Blitterswijk C, Giselbrecht S, Truckenmüller R. 3D alveolar in vitro model based on epithelialized biomimetically curved culture membranes. Biomaterials 2020; 266:120436. [PMID: 33120199 DOI: 10.1016/j.biomaterials.2020.120436] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023]
Abstract
There is increasing evidence that surface curvature at a near-cell-scale influences cell behaviour. Epithelial or endothelial cells lining small acinar or tubular body lumens, as those of the alveoli or blood vessels, experience such highly curved surfaces. In contrast, the most commonly used culture substrates for in vitro modelling of these human tissue barriers, ion track-etched membranes, offer only flat surfaces. Here, we propose a more realistic culture environment for alveolar cells based on biomimetically curved track-etched membranes, preserving the mainly spherical geometry of the cells' native microenvironment. The curved membranes were created by a combination of three-dimensional (3D) micro film (thermo)forming and ion track technology. We could successfully demonstrate the formation, the growth and a first characterization of confluent layers of lung epithelial cell lines and primary alveolar epithelial cells on membranes shaped into an array of hemispherical microwells. Besides their application in submerged culture, we could also demonstrate the compatibility of the bioinspired membranes for air-exposed culture. We observed a distinct cellular response to membrane curvature. Cells (or cell layers) on the curved membranes reveal significant differences compared to cells on flat membranes concerning membrane epithelialization, areal cell density of the formed epithelial layers, their cross-sectional morphology, and proliferation and apoptosis rates, and the same tight barrier function as on the flat membranes. The presented 3D membrane technology might pave the way for more predictive barrier in vitro models in future.
Collapse
Affiliation(s)
- D Baptista
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - L Moreira Teixeira
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Z Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - S van Riet
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - T Pasman
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - A Poot
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - D Stamatialis
- Department of Biomaterials Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - R J Rottier
- Department of Pediatric Surgery/Cell Biology, Erasmus (University) Medical Center - Sophia Children's Hospital, Doctor Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - P Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - C van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - S Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - R Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
14
|
Yamashita T, Nishina T, Matsushita I, Sudo R. Air-pressure-driven Separable Microdevice to Control the Anisotropic Curvature of Cell Culture Surface. ANAL SCI 2020; 36:1015-1019. [PMID: 32201406 DOI: 10.2116/analsci.20a001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report on a novel microdevice to tune the curvature of a cell-adhering surface by controlling the air-pressure and micro-slit. Human aortic smooth muscle cells were cultured on demi-cylindrical concaves formed on a microdevice. Their shape-adapting behavior could be tracked when the groove direction was changed to the orthogonal direction. This microdevice demonstrated live observation of cells responding to dynamic changes of the anisotropic curvature of the adhering surface and could serve as a new platform to pursue mechanobiology on curved surfaces.
Collapse
Affiliation(s)
| | - Takuya Nishina
- Department of System Design Engineering, Keio University
| | | | - Ryo Sudo
- Department of System Design Engineering, Keio University
| |
Collapse
|
15
|
Callens SJP, Uyttendaele RJC, Fratila-Apachitei LE, Zadpoor AA. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 2019; 232:119739. [PMID: 31911284 DOI: 10.1016/j.biomaterials.2019.119739] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
Recent evidence clearly shows that cells respond to various physical cues in their environments, guiding many cellular processes and tissue morphogenesis, pathology, and repair. One aspect that is gaining significant traction is the role of local geometry as an extracellular cue. Elucidating how geometry affects cell and tissue behavior is, indeed, crucial to design artificial scaffolds and understand tissue growth and remodeling. Perhaps the most fundamental descriptor of local geometry is surface curvature, and a growing body of evidence confirms that surface curvature affects the spatiotemporal organization of cells and tissues. While well-defined in differential geometry, curvature remains somewhat ambiguously treated in biological studies. Here, we provide a more formal curvature framework, based on the notions of mean and Gaussian curvature, and summarize the available evidence on curvature guidance at the cell and tissue levels. We discuss the involved mechanisms, highlighting the interplay between tensile forces and substrate curvature that forms the foundation of curvature guidance. Moreover, we show that relatively simple computational models, based on some application of curvature flow, are able to capture experimental tissue growth remarkably well. Since curvature guidance principles could be leveraged for tissue regeneration, the implications for geometrical scaffold design are also discussed. Finally, perspectives on future research opportunities are provided.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands.
| | - Rafael J C Uyttendaele
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, the Netherlands
| |
Collapse
|
16
|
Taki M, Yamashita T, Yatabe K, Vogel V. Mechano-chromic protein-polymer hybrid hydrogel to visualize mechanical strain. SOFT MATTER 2019; 15:9388-9393. [PMID: 31609367 DOI: 10.1039/c9sm00380k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In a proof-of-concept study, a mechano-chromic hydrogel was synthesized here, via chemoenzymatic click conjugation of fluorophore-labeled fibronectin into a synthetic hydrogel co-polymers (i.e., poly-N-isopropylacrylamide/polyethylene glycol). The optical FRET response could be tuned by macroscopic stretch.
Collapse
Affiliation(s)
- Masumi Taki
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
17
|
Kurashina Y, Imashiro C, Hirano M, Kuribara T, Totani K, Ohnuma K, Friend J, Takemura K. Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves. Commun Biol 2019; 2:393. [PMID: 31701022 PMCID: PMC6820801 DOI: 10.1038/s42003-019-0638-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Cell detachment is essential in culturing adherent cells. Trypsinization is the most popular detachment technique, even though it reduces viability due to the damage to the membrane and extracellular matrix. Avoiding such damage would improve cell culture efficiency. Here we propose an enzyme-free cell detachment method that employs the acoustic pressure, sloshing in serum-free medium from intermittent traveling wave. This method detaches 96.2% of the cells, and increases its transfer yield to 130% of conventional methods for 48 h, compared to the number of cells detached by trypsinization. We show the elimination of trypsinization reduces cell damage, improving the survival of the detached cells. Acoustic pressure applied to the cells and media sloshing from the intermittent traveling wave were identified as the most important factors leading to cell detachment. This proposed method will improve biopharmaceutical production by expediting the amplification of tissue-cultured cells through a more efficient transfer process.
Collapse
Affiliation(s)
- Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8503 Japan
| | - Chikahiro Imashiro
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan
| | - Makoto Hirano
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 180-8633 Japan
- Department of Pharmacy, Yasuda Women’s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153 Japan
| | - Taiki Kuribara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 180-8633 Japan
| | - Kiichiro Totani
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 180-8633 Japan
| | - Kiyoshi Ohnuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188 Japan
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188 Japan
| | - James Friend
- Center for Medical Devices and Instrumentation, Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093 USA
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan
| |
Collapse
|
18
|
Werner M, Petersen A, Kurniawan NA, Bouten CVC. Cell-Perceived Substrate Curvature Dynamically Coordinates the Direction, Speed, and Persistence of Stromal Cell Migration. ACTA ACUST UNITED AC 2019; 3:e1900080. [PMID: 32648723 DOI: 10.1002/adbi.201900080] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/16/2019] [Indexed: 01/02/2023]
Abstract
Adherent cells residing within tissues or biomaterials are presented with 3D geometrical cues from their environment, often in the form of local surface curvatures. While there is growing evidence that cellular decision-making is influenced by substrate curvature, the effect of physiologically relevant, cell-scale anisotropic curvatures remains poorly understood. This study systematically explores the migration behavior of human bone marrow stromal cells (hBMSCs) on a library of anisotropic curved structures. Analysis of cell trajectories reveals that, on convex cylindrical structures, hBMSC migration speed and persistence are strongly governed by the cellular orientation on the curved structure, while migration on concave cylindrical structures is characterized by fast but non-aligned and non-persistent migration. Concurrent presentation of concave and convex substrates on toroidal structures induces migration in the direction where hBMSCs can most effectively avoid cell bending. These distinct migration behaviors are found to be universally explained by the cell-perceived substrate curvature, which on anisotropic curved structures is dependent on both the temporally varying cell orientation and the 3D cellular morphology. This work demonstrates that cell migration is dynamically guided by the perceived curvature of the underlying substrate, providing an important biomaterial design parameter for instructing cell migration in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Maike Werner
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ansgar Petersen
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 , Berlin, Germany
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
19
|
Pasman T, Grijpma D, Stamatialis D, Poot A. Flat and microstructured polymeric membranes in organs-on-chips. J R Soc Interface 2019; 15:rsif.2018.0351. [PMID: 30045892 DOI: 10.1098/rsif.2018.0351] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/03/2018] [Indexed: 01/30/2023] Open
Abstract
In recent years, organs-on-chips (OOCs) have been developed to meet the desire for more realistic in vitro cell culture models. These systems introduce microfluidics, mechanical stretch and other physiological stimuli to in vitro models, thereby significantly enhancing their descriptive power. In most OOCs, porous polymeric membranes are used as substrates for cell culture. The polymeric material, morphology and shape of these membranes are often suboptimal, despite their importance for achieving ideal cell functionality such as cell-cell interaction and differentiation. The currently used membranes are flat and thus do not account for the shape and surface morphology of a tissue. Moreover, the polymers used for fabrication of these membranes often lack relevant characteristics, such as mechanical properties matching the tissue to be developed and/or cytocompatibility. Recently, innovative techniques have been reported for fabrication of porous membranes with suitable porosity, shape and surface morphology matching the requirements of OOCs. In this paper, we review the state of the art for developing these membranes and discuss their application in OOCs.
Collapse
Affiliation(s)
- Thijs Pasman
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| | - Dirk Grijpma
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands.,Biomedical Engineering, Rijksuniversiteit Groningen Faculteit voor Wiskunde en Natuurwetenschappen, Groningen, The Netherlands
| | - Dimitrios Stamatialis
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| | - Andreas Poot
- Biomaterials Science and Technology, Universiteit Twente Faculteit Technische Natuurwetenschappen, Enschede, The Netherlands
| |
Collapse
|
20
|
Ehrig S, Schamberger B, Bidan CM, West A, Jacobi C, Lam K, Kollmannsberger P, Petersen A, Tomancak P, Kommareddy K, Fischer FD, Fratzl P, Dunlop JWC. Surface tension determines tissue shape and growth kinetics. SCIENCE ADVANCES 2019; 5:eaav9394. [PMID: 31535019 PMCID: PMC6739108 DOI: 10.1126/sciadv.aav9394] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/15/2019] [Indexed: 05/23/2023]
Abstract
The collective self-organization of cells into three-dimensional structures can give rise to emergent physical properties such as fluid behavior. Here, we demonstrate that tissues growing on curved surfaces develop shapes with outer boundaries of constant mean curvature, similar to the energy minimizing forms of liquids wetting a surface. The amount of tissue formed depends on the shape of the substrate, with more tissue being deposited on highly concave surfaces, indicating a mechano-biological feedback mechanism. Inhibiting cell-contractility further revealed that active cellular forces are essential for generating sufficient surface stresses for the liquid-like behavior and growth of the tissue. This suggests that the mechanical signaling between cells and their physical environment, along with the continuous reorganization of cells and matrix is a key principle for the emergence of tissue shape.
Collapse
Affiliation(s)
- S. Ehrig
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - B. Schamberger
- Paris-Lodron University of Salzburg, Department of the Chemistry and Physics of Materials, Salzburg, Austria
| | - C. M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Université Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique (LIPhy), Grenoble, France
| | - A. West
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - C. Jacobi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - K. Lam
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - P. Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, Germany
| | - A. Petersen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - P. Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - K. Kommareddy
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - F. D. Fischer
- Montanuniversität Leoben, Institute of Mechanics, Leoben, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Paris-Lodron University of Salzburg, Department of the Chemistry and Physics of Materials, Salzburg, Austria
| |
Collapse
|
21
|
Baptista D, Teixeira L, van Blitterswijk C, Giselbrecht S, Truckenmüller R. Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends Biotechnol 2019; 37:838-854. [PMID: 30885388 DOI: 10.1016/j.tibtech.2019.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
In biological systems, form and function are inherently correlated. Despite this strong interdependence, the biological effect of curvature has been largely overlooked or underestimated, and consequently it has rarely been considered in the design of new cell-material interfaces. This review summarizes current understanding of the interplay between the curvature of a cell substrate and the related morphological and functional cellular response. In this context, we also discuss what is currently known about how, in the process of such a response, cells recognize curvature and accordingly reshape their membrane. Beyond this, we highlight state-of-the-art microtechnologies for engineering curved biomaterials at cell-scale, and describe aspects that impair or improve readouts of the pure effect of curvature on cells.
Collapse
Affiliation(s)
- Danielle Baptista
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Liliana Teixeira
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work.
| |
Collapse
|
22
|
Chen Z, Zhao R. Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomater Sci Eng 2019; 5:3688-3702. [DOI: 10.1021/acsbiomaterials.8b01195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaowei Chen
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
23
|
Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L. A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 2018; 177:52-66. [PMID: 29885586 DOI: 10.1016/j.biomaterials.2018.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naïve decellularized liver scaffold (nDLS)-based tissue engineering has been impaired by the lack of a suitable extracellular matrix (ECM) to provide "active micro-environmental" support. AIM The present study aimed to examine whether a novel, regenerative DLS (rDLS) with an active ECM improves primary hepatocyte survival and prevents thrombosis. METHODS rDLS was obtained from a 30-55% partial hepatectomy that was maintained in vivo for 3-5 days and then perfused with detergent in vitro. Compared to nDLS generated from normal livers, rDLS possesses bioactive molecules due to the regenerative period in vivo. Primary mouse hepatocyte survival was evaluated by staining for Ki-67 and Trypan blue exclusion. Thrombosis was assessed by immunohistochemistry and ex vivo diluted whole-blood perfusion. Hemocompatibility was determined by near-infrared laser-Doppler flowmetry and heterotopic transplantation. RESULTS After recellularization, rDLS contained more Ki-67-positive primary hepatocytes than nDLS. rDLS had a higher oxygen saturation and blood flow velocity and a lower expression of integrin αIIb and α4 than nDLS. Tumor necrosis factor-α, hepatocyte growth factor, interleukin-10, interleukin-6 and interleukin-1β were highly expressed throughout the rDLS, whereas expression of collagen-I, collagen-IV and thrombopoietin were lower in rDLS than in nDLS. Improved blood vessel patency was observed in rDLS both in vitro and in vivo. The results in mice were confirmed in large animals (pigs). CONCLUSION rDLS is an effective DLS with an "active microenvironment" that supports primary hepatocyte survival and promotes blood vessel patency. This is the first study to demonstrate a rDLS with a blood microvessel network that promotes hepatocyte survival and resists thrombosis.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Quanyu Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Renpei Xia
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Xiaolin You
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yan Jiang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Lianhua Bai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| |
Collapse
|
24
|
Kollmannsberger P, Bidan CM, Dunlop JWC, Fratzl P, Vogel V. Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts. SCIENCE ADVANCES 2018; 4:eaao4881. [PMID: 29349300 PMCID: PMC5771696 DOI: 10.1126/sciadv.aao4881] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/11/2017] [Indexed: 05/23/2023]
Abstract
Myofibroblasts orchestrate wound healing processes, and if they remain activated, they drive disease progression such as fibrosis and cancer. Besides growth factor signaling, the local extracellular matrix (ECM) and its mechanical properties are central regulators of these processes. It remains unknown whether transforming growth factor-β (TGF-β) and tensile forces work synergistically in up-regulating the transition of fibroblasts into myofibroblasts and whether myofibroblasts undergo apoptosis or become deactivated by other means once tissue homeostasis is reached. We used three-dimensional microtissues grown in vitro from fibroblasts in macroscopically engineered clefts for several weeks and found that fibroblasts transitioned into myofibroblasts at the highly tensed growth front as the microtissue progressively closed the cleft, in analogy to closing a wound site. Proliferation was up-regulated at the growth front, and new highly stretched fibronectin fibers were deposited, as revealed by fibronectin fluorescence resonance energy transfer probes. As the tissue was growing, the ECM underneath matured into a collagen-rich tissue containing mostly fibroblasts instead of myofibroblasts, and the fibronectin fibers were under reduced tension. This correlated with a progressive rounding of cells from the growth front inward, with decreased α-smooth muscle actin expression, YAP nuclear translocation, and cell proliferation. Together, this suggests that the myofibroblast phenotype is stabilized at the growth front by tensile forces, even in the absence of endogenously supplemented TGF-β, and reverts into a quiescent fibroblast phenotype already 10 μm behind the growth front, thus giving rise to a myofibroblast-to-fibroblast transition. This is the hallmark of reaching prohealing homeostasis.
Collapse
Affiliation(s)
- Philip Kollmannsberger
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Science and Technology, ETH (Eidgenössische Technische Hochschule) Zurich, Zurich, Switzerland
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Golm, Germany
| | - Cécile M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Golm, Germany
- Université Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, 38000 Grenoble, France
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Golm, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Golm, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Science and Technology, ETH (Eidgenössische Technische Hochschule) Zurich, Zurich, Switzerland
| |
Collapse
|