1
|
Kumar R, Parashar A. Effect of the degree of polymerization and water content on the thermal transport phenomena in PEGDA hydrogel: a molecular-dynamics-based study. Phys Chem Chem Phys 2023. [PMID: 37409672 DOI: 10.1039/d3cp00667k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
A hydrogel is a 3D cross-linked polymer network that can absorb copious amounts of water or biological fluid. Due to their biocompatibility and non-toxicity, hydrogels have a wide range of applications in biomedical engineering. To develop hydrogels with superior thermal dissipation properties, atomistic-level studies are required to quantify the effect of the water content and the degree of polymerization. Classical mechanics-based non-equilibrium molecular dynamics (NEMD) simulations were performed in conjunction with a mathematical formulation developed by Müller-Plathe to explore the thermal conductivity of the poly(ethylene glycol)diacrylate (PEGDA) hydrogel. This work reveals that the thermal conductivity of the PEGDA hydrogel is enhanced with the increase in water content and approaches the value of the thermal conductivity of water at 85% water content in the hydrogel. The PEGDA-9 hydrogel, with a lower level of degree of polymerization, has a superior thermal conductivity than the PEGDA-13 and PEGDA-23 hydrogels. The lower level of degree of polymerization is associated with the higher mesh density of polymer chain network junctions that help to achieve the superior thermal conductivity at higher water contents. Increasing the water content improves the structural stability and compactness of the polymer chains, which can be further associated with the enhanced phonon transfer in PEGDA hydrogels. The work will help in the development of PEGDA-based hydrogels with superior thermal dissipation properties for tissue engineering.
Collapse
Affiliation(s)
- Raju Kumar
- Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Avinash Parashar
- Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
A computational framework for biomaterials containing three-dimensional random fiber networks based on the affine kinematics. Biomech Model Mechanobiol 2022; 21:685-708. [PMID: 35084592 DOI: 10.1007/s10237-022-01557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 11/02/2022]
Abstract
Understanding the structure-function relationship of biomaterials can provide insights into different diseases and advance numerous biomedical applications. This paper presents a finite element-based computational framework to model biomaterials containing a three-dimensional fiber network at the microscopic scale. The fiber network is synthetically generated by a random walk algorithm, which uses several random variables to control the fiber network topology such as fiber orientations and tortuosity. The geometric information of the generated fiber network is stored in an array-like data structure and incorporated into the nonlinear finite element formulation. The proposed computational framework adopts the affine fiber kinematics, based on which the fiber deformation can be expressed by the nodal displacement and the finite element interpolation functions using the isoparametric relationship. A variational approach is developed to linearize the total strain energy function and derive the nodal force residual and the stiffness matrix required by the finite element procedure. Four numerical examples are provided to demonstrate the capabilities of the proposed computational framework, including a numerical investigation about the relationship between the proposed method and a class of anisotropic material models, a set of synthetic examples to explore the influence of fiber locations on material local and global responses, a thorough mesh-sensitivity analysis about the impact of mesh size on various numerical results, and a detailed case study about the influence of material structures on the performance of eggshell-membrane-hydrogel composites. The proposed computational framework provides an efficient approach to investigate the structure-function relationship for biomaterials that follow the affine fiber kinematics.
Collapse
|
3
|
Jiang T, Yang T, Bao Q, Sun W, Yang M, Mao C. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B 2021; 10:4741-4758. [PMID: 34812829 DOI: 10.1039/d1tb01935j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels are prevalent scaffolds for tissue regeneration because of their hierarchical architectures along with outstanding biocompatibility and unique rheological and mechanical properties. For decades, researchers have found that many materials (natural, synthetic, or hybrid) can form hydrogels using different cross-linking strategies. Traditional strategies for fabricating hydrogels include physical, chemical, and enzymatical cross-linking methods. However, due to the diverse characteristics of different tissues/organs to be regenerated, tissue-customized hydrogels need to be developed through precisely controlled processes, making the manufacture of hydrogels reliant on novel cross-linking strategies. Thus, hybrid cross-linkable materials are proposed to tackle this challenge through hybrid cross-linking strategies. Here, different cross-linkable materials and their associated cross-linking strategies are summarized. From the perspective of the major characteristics of the target tissues/organs, we critically analyze how different cross-linking strategies are tailored to fit the regeneration of such tissues and organs. To further advance this field, more appropriate cross-linkable materials and cross-linking strategies should be investigated. In addition, some innovative technologies, such as 3D bioprinting, the internet of medical things (IoMT), and artificial intelligence (AI), are also proposed to improve the development of hydrogels for more efficient tissue regeneration.
Collapse
Affiliation(s)
- Tongmeng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, P. R. China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
4
|
Cui L, Yao Y, Yim EKF. The effects of surface topography modification on hydrogel properties. APL Bioeng 2021; 5:031509. [PMID: 34368603 PMCID: PMC8318605 DOI: 10.1063/5.0046076] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrogel has been an attractive biomaterial for tissue engineering, drug delivery, wound healing, and contact lens materials, due to its outstanding properties, including high water content, transparency, biocompatibility, tissue mechanical matching, and low toxicity. As hydrogel commonly possesses high surface hydrophilicity, chemical modifications have been applied to achieve the optimal surface properties to improve the performance of hydrogels for specific applications. Ideally, the effects of surface modifications would be stable, and the modification would not affect the inherent hydrogel properties. In recent years, a new type of surface modification has been discovered to be able to alter hydrogel properties by physically patterning the hydrogel surfaces with topographies. Such physical patterning methods can also affect hydrogel surface chemical properties, such as protein adsorption, microbial adhesion, and cell response. This review will first summarize the works on developing hydrogel surface patterning methods. The influence of surface topography on interfacial energy and the subsequent effects on protein adsorption, microbial, and cell interactions with patterned hydrogel, with specific examples in biomedical applications, will be discussed. Finally, current problems and future challenges on topographical modification of hydrogels will also be discussed.
Collapse
Affiliation(s)
- Linan Cui
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
5
|
Long L, Wu C, Hu X, Wang Y. Biodegradable synthetic polymeric composite scaffold‐based tissue engineered heart valve with minimally invasive transcatheter implantation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lin‐yu Long
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Can Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Xue‐feng Hu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Yun‐bing Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| |
Collapse
|
6
|
Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique. Pharmaceutics 2020; 12:pharmaceutics12030207. [PMID: 32121141 PMCID: PMC7150895 DOI: 10.3390/pharmaceutics12030207] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The high printing efficiency and easy availability of desktop digital light processing (DLP) printers have made DLP 3D printing a promising technique with increasingly broad application prospects, particularly in personalized medicine. The objective of this study was to fabricate and evaluate medical samples with external and internal structures using the DLP technique. The influence of different additives and printing parameters on the printability and functionality of this technique was thoroughly evaluated. It was observed that the printability and mechanical properties of external structures were affected by the poly(ethylene glycol) diacrylate (PEGDA) concentration, plasticizers, layer height, and exposure time. The optimal printing solutions for 3D external and internal structures were 100% PEGDA and 75% PEGDA with 0.25 mg/mL tartrazine, respectively. And the optimal layer height for 3D external and internal structures were 0.02 mm and 0.05 mm, respectively. The optimal sample with external structures had an adequate drug-loading ability, acceptable sustained-release characteristics, and satisfactory biomechanical properties. In contrast, the printability of internal structures was affected by the photoabsorber, PEGDA concentration, layer height, and exposure time. The optimal samples with internal structures had good morphology, integrity and perfusion behavior. The present study showed that the DLP printing technique was capable of fabricating implants for drug delivery and physiological channels for in vivo evaluation.
Collapse
|
7
|
Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1761-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Modeling of the Mechanical Behavior of 3D Bioplotted Scaffolds Considering the Penetration in Interlocked Strands. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) bioplotting has been widely used to print hydrogel scaffolds for tissue engineering applications. One issue involved in 3D bioplotting is to achieve the scaffold structure with the desired mechanical properties. To overcome this issue, various numerical methods have been developed to predict the mechanical properties of scaffolds, but limited by the imperfect representation of one key feature of scaffolds fabricated by 3D bioplotting, i.e., the penetration or fusion of strands in one layer into the previous layer. This paper presents our study on the development of a novel numerical model to predict the elastic modulus (one important index of mechanical properties) of 3D bioplotted scaffolds considering the aforementioned strand penetration. For this, the finite element method was used for the model development, while medium-viscosity alginate was selected for scaffold fabrication by the 3D bioplotting technique. The elastic modulus of the bioplotted scaffolds was characterized using mechanical testing and results were compared with those predicted from the developed model, demonstrating a strong congruity between them. Once validated, the developed model was also used to investigate the effect of other geometrical features on the mechanical behavior of bioplotted scaffolds. Our results show that the penetration, pore size, and number of printed layers have significant effects on the elastic modulus of bioplotted scaffolds; and also suggest that the developed model can be used as a powerful tool to modulate the mechanical behavior of bioplotted scaffolds.
Collapse
|
9
|
Mehta SM, Jin T, Stanciulescu I, Grande-Allen KJ. Engineering biologically extensible hydrogels using photolithographic printing. Acta Biomater 2018; 75:52-62. [PMID: 29803005 DOI: 10.1016/j.actbio.2018.05.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023]
Abstract
Biomaterials for tissue engineering that recapitulate the mechanical response and biological function of native tissue are highly sought after to lessen the burden of damaged or diseased tissue. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are a popular candidate because of their favorable bioactive properties. However, their mechanical behavior is very dissimilar to that of biological tissue, which behaves in a mechanically anisotropic, nonlinear, and viscoelastic fashion. It has been previously shown that PEGDA hydrogels can be patterned in alternating linear strips of different stiffnesses to generate anisotropic behavior, but these constructs still have a linear stress-strain response. In this study, we imparted nonlinear mechanical properties to PEGDA hydrogels by fabricating composite hydrogel constructs consisting of a stiff sinusoidal reinforcement embedded into a softer base matrix. This was achieved by polymerizing low molecular weight (MW) PEGDA hydrogel precursor into a stiff sinusoidal shape and then polymerizing this construct into a high MW precursor. Samples were generated with different relative stiffness between the two components and a range of sinusoid periodicities to assess the tunability of the resulting stress-strain curve. Tensile testing indicates that the sinusoidal patterning gives rise to nonlinear stress-strain behavior. Varying the relative stiffness was shown to tune the slope of the linear region of the stress-strain curve, and varying periodicity was shown to affect the length of the toe region of this curve. We conclude that composite hydrogels with stiff sinusoidally-patterned reinforcements display mechanical properties more similar to those of biological tissue than uniform or linearly-patterned hydrogels. STATEMENT OF SIGNIFICANCE Hydrogel biomaterials are a popular candidate for engineering constructs that can mimic the properties of native tissue for disease modeling and tissue-engineering applications. Studies have shown that poly(ethylene) glycol diacrylate (PEGDA) hydrogels can be fabricated to display many biological aspects of native tissue. However, they are unable to recapitulate fundamental mechanical properties of such tissue, such as anisotropy and nonlinearity. Photolithographic techniques have been employed to generate anisotropic linear PEGDA hydrogels via patterned reinforcement. The present study indicates that such techniques can be modified to generate PEGDA constructs with a sinusoidal reinforcement that display a strongly nonlinear response to tensile loading. This work sets the stage for more intricate patterning for providing increased control over hydrogel mechanical response.
Collapse
|
10
|
Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue Engineered Heart Valve-A Review of Current Approaches. Adv Healthc Mater 2017; 6. [PMID: 29171921 DOI: 10.1002/adhm.201700918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Indexed: 11/08/2022]
Abstract
Tissue engineered heart valves (TEHVs) have the potential to address the shortcomings of current implants through the combination of cells and bioactive biomaterials that promote growth and proper mechanical function in physiological conditions. The ideal TEHV should be anti-thrombogenic, biocompatible, durable, and resistant to calcification, and should exhibit a physiological hemodynamic profile. In addition, TEHVs may possess the capability to integrate and grow with somatic growth, eliminating the need for multiple surgeries children must undergo. Thus, this review assesses clinically available heart valve prostheses, outlines the design criteria for developing a heart valve, and evaluates three types of biomaterials (decellularized, natural, and synthetic) for tissue engineering heart valves. While significant progress has been made in biomaterials and fabrication techniques, a viable tissue engineered heart valve has yet to be translated into a clinical product. Thus, current strategies and future perspectives are also discussed to facilitate the development of new approaches and considerations for heart valve tissue engineering.
Collapse
Affiliation(s)
- Aline L. Y. Nachlas
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Siyi Li
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Michael E. Davis
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Children's Heart Research & Outcomes (HeRO) Center Children's Healthcare of Atlanta & Emory University Atlanta GA 30322 USA
| |
Collapse
|
11
|
Li Q, Bai Y, Jin T, Wang S, Cui W, Stanciulescu I, Yang R, Nie H, Wang L, Zhang X. Bioinspired Engineering of Poly(ethylene glycol) Hydrogels and Natural Protein Fibers for Layered Heart Valve Constructs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16524-16535. [PMID: 28448124 DOI: 10.1021/acsami.7b03281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Layered constructs from poly(ethylene glycol) (PEG) hydrogels and chicken eggshell membranes (ESMs) are fabricated, which can be further cross-linked by glutaraldehyde (GA) to form GA-PEG-ESM composites. Our results indicate that ESMs composed of protein fibrous networks show elastic moduli ∼3.3-5.0 MPa and elongation percentages ∼47-56%, close to human heart valve leaflets. Finite element simulations reveal obvious stress concentration on a partial number of fibers in the GA-cross-linked ESM (GA-ESM) samples, which can be alleviated by efficient stress distribution among multiple layers of ESMs embedded in PEG hydrogels. Moreover, the polymeric networks of PEG hydrogels can prevent mineral deposition and enzyme degradation of protein fibers from incorporated ESMs. The fibrous structures of ESMs retain in the GA-PEG-ESM samples after subcutaneous implantation for 4 weeks, while those from ESM and GA-ESM samples show early degradation to certain extent, suggesting the prevention of enzymatic degradation of protein fibers by the polymeric network of PEG hydrogels in vivo. Thus, these GA-PEG-ESM layered constructs show heterogenic structures and mechanical properties comparable to heart valve leaflets, as well as improved functions to prevent progressive calcification and enzymatic degeneration, which are likely used for artificial heart valves.
Collapse
Affiliation(s)
- Qian Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- Department of Chemistry, Northeastern University , Shenyang, Liaoning 110004, China
| | - Yun Bai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Tao Jin
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
| | - Shuo Wang
- Institute of Bionanotechnology and Tissue Engineering, College of Life Sciences, Hunan University , Changsha, Hunan 410082, China
| | - Wei Cui
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
| | - Ilinca Stanciulescu
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
| | - Rui Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Hemin Nie
- Institute of Bionanotechnology and Tissue Engineering, College of Life Sciences, Hunan University , Changsha, Hunan 410082, China
| | - Linshan Wang
- Department of Chemistry, Northeastern University , Shenyang, Liaoning 110004, China
| | - Xing Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , Shenyang, Liaoning 110016, China
- School of Materials Science, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|