1
|
Xu K, Zou Y, Lin C, Zhang L, Tan M, Li M, Wu J, Li X, He Y, Liu P, Li K, Cai K. Cascade catalysis nanozyme for interfacial functionalization in combating implant infections associated with diabetes via sonodynamic therapy and adaptive immune activation. Biomaterials 2024; 311:122649. [PMID: 38850718 DOI: 10.1016/j.biomaterials.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Innovative solutions are required for the intervention of implant associated infections (IAIs), especially for bone defect patients with chronic inflammatory diseases like diabetes mellitus (DM). The complex immune microenvironment of infections renders implants with direct antibacterial ability inadequate for the prolonged against of bacterial infections. Herein, a synergistic treatment strategy was presented that combined sonodynamic therapy (SDT) with adaptive immune modulation to treat IAIs in diabetes patients. A multifunctional coating was created on the surface of titanium (Ti) implants, consisting of manganese dioxide nanoflakes (MnO2 NFs) with cascade catalytic enzyme activity and a responsive degradable hydrogel containing a sonosensitizer. The reactive oxygen species (ROS) generated by glucose-hydrogen peroxide (H2O2) cascade catalysis and ultrasound (US) activation sonosensitizer helped kill bacteria and release bacterial antigens. Meanwhile, Mn2+ facilitated dendritic cells (DCs) maturation, enhancing antigen presentation to activate both cellular and humoral adaptive immunity against bacterial infections. This approach effectively eliminated bacteria in established diabetic IAIs model and activated systemic antibacterial immunity, providing long-term antibacterial protection. This study presents a non-antibiotic immunotherapeutic strategy for fighting IAIs in chronic diseases.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liangshuai Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Jeang WJ, Bochenek MA, Bose S, Zhao Y, Wong BM, Yang J, Jiang AL, Langer R, Anderson DG. Silicone cryogel skeletons enhance the survival and mechanical integrity of hydrogel-encapsulated cell therapies. SCIENCE ADVANCES 2024; 10:eadk5949. [PMID: 38578991 PMCID: PMC10997197 DOI: 10.1126/sciadv.adk5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
The transplantation of engineered cells that secrete therapeutic proteins presents a promising method for addressing a range of chronic diseases. However, hydrogels used to encase and protect non-autologous cells from immune rejection often suffer from poor mechanical properties, insufficient oxygenation, and fibrotic encapsulation. Here, we introduce a composite encapsulation system comprising an oxygen-permeable silicone cryogel skeleton, a hydrogel matrix, and a fibrosis-resistant polymer coating. Cryogel skeletons enhance the fracture toughness of conventional alginate hydrogels by 23-fold and oxygen diffusion by 2.8-fold, effectively mitigating both implant fracture and hypoxia of encapsulated cells. Composite implants containing xenogeneic cells engineered to secrete erythropoietin significantly outperform unsupported alginate implants in therapeutic delivery over 8 weeks in immunocompetent mice. By improving mechanical resiliency and sustaining denser cell populations, silicone cryogel skeletons enable more durable and miniaturized therapeutic implants.
Collapse
Affiliation(s)
- William J. Jeang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew A. Bochenek
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suman Bose
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yichao Zhao
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan M. Wong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiawei Yang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Alexis L. Jiang
- Department of Computer Science, Wellesley College, Wellesley, MA 02481, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Lin L, Geng D, She D, Kuai X, Du C, Fu P, Zhu Y, Wang J, Pang Z, Zhang J. Targeted nanotheranostics for the treatment of epilepsy through in vivo hijacking of locally activated macrophages. Acta Biomater 2024; 174:314-330. [PMID: 38036284 DOI: 10.1016/j.actbio.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Epilepsy refers to a disabling neurological disorder featured by the long-term and unpredictable occurrence of seizures owing to abnormal excessive neuronal electrical activity and is closely linked to unresolved inflammation, oxidative stress, and hypoxia. The difficulty of accurate localization and targeted drug delivery to the lesion hinders the effective treatment of this disease. The locally activated inflammatory cells in the epileptogenic region offer a new opportunity for drug delivery to the lesion. In this work, CD163-positive macrophages in the epileptogenic region were first harnessed as Trojan horses after being hijacked by targeted albumin manganese dioxide nanoparticles, which effectively penetrated the brain endothelial barrier and delivered multifunctional nanomedicines to the epileptic foci. Hence, accumulative nanoparticles empowered the visualization of the epileptogenic lesion through microenvironment-responsive MR T1-weight imaging of manganese dioxide. Besides, these manganese-based nanomaterials played a pivotal role in shielding neurons from cell apoptosis mediated by oxidative stress and hypoxia. Taken together, the present study provides an up-to-date approach for integrated diagnosis and treatment of epilepsy and other hypoxia-associated inflammatory diseases. STATEMENT OF SIGNIFICANCE: The therapeutic effects of antiepileptic drugs (AEDs) are hindered by insufficient drug accumulation in the epileptic site. Herein, we report an efficient strategy to use locally activated macrophages as carriers to deliver multifunctional nanoparticles to the brain lesion. As MR-responsive T1 contrast agents, multifunctional BMC nanoparticles can be harnessed to accurately localize the epileptogenic region with high sensitivity and specificity. Meanwhile, catalytic nanoparticles BMC can synergistically scavenge ROS, generate O2 and regulate neuroinflammation for the protection of neurons in the brain.
Collapse
Affiliation(s)
- Lin Lin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Dejun She
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Xinping Kuai
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Chengjuan Du
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China
| | - Jianhong Wang
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| |
Collapse
|
5
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
6
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
7
|
Meng CY, Ma XY, Xu MY, Pei SF, Liu Y, Hao ZL, Li QZ, Feng FM. Transcriptomics-based investigation of manganese dioxide nanoparticle toxicity in rats' choroid plexus. Sci Rep 2023; 13:8510. [PMID: 37231062 PMCID: PMC10213021 DOI: 10.1038/s41598-023-35341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Manganese dioxide nanoparticles (MnO2-NPs) have a wide range of applications in biomedicine. Given this widespread usage, it is worth noting that MnO2-NPs are definitely toxic, especially to the brain. However, the damage caused by MnO2-NPs to the choroid plexus (CP) and to the brain after crossing CP epithelial cells has not been elucidated. Therefore, this study aims to investigate these effects and elucidate potential underlying mechanisms through transcriptomics analysis. To achieve this objective, eighteen SD rats were randomly divided into three groups: the control group (control), low-dose exposure group (low-dose) and high-dose exposure group (high-dose). Animals in the two treated groups were administered with two concentrations of MnO2-NPs (200 mg kg-1 BW and 400 mg kg-1 BW) using a noninvasive intratracheal injection method once a week for three months. Finally, the neural behavior of all the animals was tested using a hot plate tester, open-field test and Y-type electric maze. The morphological characteristics of the CP and hippocampus were observed by H&E stain, and the transcriptome of CP tissues was analysed by transcriptome sequencing. The representative differentially expressed genes were quantified by qRT-PCR. We found that treatment with MnO2-NPs could induce learning capacity and memory faculty decline and destroy the structure of hippocampal and CP cells in rats. High doses of MnO2-NPs had a more obvious destructive capacity. For transcriptomic analysis, we found that there were significant differences in the numbers and types of differential genes in CP between the low- and high-dose groups compared to the control. Through GO terms and KEGG analysis, high-dose MnO2-NPs significantly affected the expression of transporters, ion channel proteins, and ribosomal proteins. There were 17 common differentially expressed genes. Most of them were transporter and binding genes on the cell membrane, and some of them had kinase activity. Three genes, Brinp, Synpr and Crmp1, were selected for qRT-PCR to confirm their expression differences among the three groups. In conclusion, high-dose MnO2-NPs exposure induced abnormal neurobehaviour, impaired memory function, destroyed the structure of the CP and changed its transcriptome in rats. The most significant DEGs in the CP were within the transport system.
Collapse
Affiliation(s)
- Chun-Yan Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Xin-Yi Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Ming-Yan Xu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Sheng-Fei Pei
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Yang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Zhuo-Lu Hao
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Qing-Zhao Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Fu-Min Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
| |
Collapse
|
8
|
Wang J, Zhao S, Chen J, Liu X, Chen H, Lu T, Xu M, Guo X, Shen X, Liu C, Li C. Phage-Ce6-Manganese Dioxide Nanocomposite-Mediated Photodynamic, Photothermal, and Chemodynamic Therapies to Eliminate Biofilms and Improve Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21904-21916. [PMID: 37115597 DOI: 10.1021/acsami.3c01762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biofilms have become one of the fundamental issues for chronic infections, while traditional therapies are often ineffective in removing quiescent (persister) cells from biofilms, resulting in a variety of implant-related or nosocomial infections. Recently, bacteriophage (phage) therapy has reflourished in research and clinical trials. However, phage therapy alone manifested many intrinsic defects, including poor biofilm penetration, incomplete clearance of quiescent cells, etc. In this study, a phage-Chlorin e6 (Ce6)-manganese dioxide nanocomposite (PCM) was constructed by mild biomineralization. The results demonstrated that PCM contained both the vigorous activities of host bacterial targeting and efficient delivery of Ce6 to penetrate the biofilm. Assisted with NIR irradiation, robust reactive oxygen species (ROS) was triggered within the biofilm. In the weak acidic and GSH-rich infection niche, PCM was degraded into ultra-small nanosheets, endowing PCM with moderate photothermal therapy (PTT) effects and considerable Mn2+ release, thus exerting strong chemodynamic therapy (CDT) effects in situ. In vivo application demonstrated that the combination of PCM application and NIR irradiation strikingly reduced the pathogen loading, activated innate and adaptive immunity, promoted neocollagen rearrangement, and attenuated cicatricial tissue formation. Our research may pave a new way for bacterial treatment, biofilm-related infections, and other diseases caused by bacteria.
Collapse
Affiliation(s)
- Jinfeng Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Shujing Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Jiamin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Xingxing Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Hongyican Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Tao Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Mingji Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, PR China
| | - Caixia Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| |
Collapse
|
9
|
Akanchise T, Angelova A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants (Basel) 2023; 12:393. [PMID: 36829952 PMCID: PMC9952277 DOI: 10.3390/antiox12020393] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Long-term neurological complications, persisting in patients who cannot fully recover several months after severe SARS-CoV-2 coronavirus infection, are referred to as neurological sequelae of the long COVID syndrome. Among the numerous clinical post-acute COVID-19 symptoms, neurological and psychiatric manifestations comprise prolonged fatigue, "brain fog", memory deficits, headache, ageusia, anosmia, myalgias, cognitive impairments, anxiety, and depression lasting several months. Considering that neurons are highly vulnerable to inflammatory and oxidative stress damages following the overproduction of reactive oxygen species (ROS), neuroinflammation and oxidative stress have been suggested to dominate the pathophysiological mechanisms of the long COVID syndrome. It is emphasized that mitochondrial dysfunction and oxidative stress damages are crucial for the pathogenesis of neurodegenerative disorders. Importantly, antioxidant therapies have the potential to slow down and prevent disease progression. However, many antioxidant compounds display low bioavailability, instability, and transport to targeted tissues, limiting their clinical applications. Various nanocarrier types, e.g., liposomes, cubosomes, solid lipid nanoparticles, micelles, dendrimers, carbon-based nanostructures, nanoceria, and other inorganic nanoparticles, can be employed to enhance antioxidant bioavailability. Here, we highlight the potential of phytochemical antioxidants and other neuroprotective agents (curcumin, quercetin, vitamins C, E and D, melatonin, rosmarinic acid, N-acetylcysteine, and Ginkgo Biloba derivatives) in therapeutic strategies for neuroregeneration. A particular focus is given to the beneficial role of nanoparticle-mediated drug-delivery systems in addressing the challenges of antioxidants for managing and preventing neurological disorders as factors of long COVID sequelae.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
10
|
Augustine R, Gezek M, Seray Bostanci N, Nguyen A, Camci-Unal G. Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 455:140783. [PMID: 36644784 PMCID: PMC9835968 DOI: 10.1016/j.cej.2022.140783] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Angelina Nguyen
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
11
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
12
|
Shaukat A, Hussain G, Irfan S, Ijaz MU, Anwar H. Therapeutic Potential of MgO and MnO Nanoparticles Within the Context of Thyroid Profile and Pancreatic Histology in a Diabetic Rat Model. Dose Response 2022; 20:15593258221128743. [PMID: 36158742 PMCID: PMC9500299 DOI: 10.1177/15593258221128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
Magnesium oxide (MgO) and manganese oxide (MnO) have been reported to be effective against Diabetes Mellitus (DM). However, their nanoparticulate form has not been evaluated for antidiabetic effect. MgO and MnO nanoparticles (15–35 nm) were synthesized and subsequently characterized by ultraviolet-visible spectroscopy (UV-VIS), zeta sizer, and scanning electron microscopy. 6–7 weeks old rats weighing 200–220 mg were divided into 07 equal groups (n = 8), namely, negative control (NC), positive control (PC), standard control (Std-C), MgO high dose group (MgO-300) and low dose group (MgO-150), and MnO nanoparticle high dose (MnO-30) and low dose group (MnO-15). Diabetes was chemically induced (streptozotocin 60 mg/kg B.W) in all groups except the NC. Animals were given CMD and water was ad libitum. Nanoparticles were supplemented for 30 days after the successful induction of diabetes. Blood and tissue samples were collected after the 30th day of the trial. The mean serum glucose, insulin, and glucagon levels were improved maximally in the MgO-300 group followed by MgO-150 and MnO-30 groups. Whereas the MnO-15 group fails to show any substantial improvement in the levels of glucose, insulin, and glucagon as compared to the positive control group. Interesting the serum triiodothyronine, thyroxine, and thyroid-stimulating hormone levels were markedly improved in all the nanoparticle treatment groups and were found to be similar to the standard control group. These results highlight the modulatory properties of MgO and MnO nanoparticles and merit further studies delineating the molecular mechanisms through which these nanoparticles induce antidiabetic effects.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
13
|
Zhang W, Yang M, Sun T, Zhang J, Zhao Y, Li J, Li Z. Can Manganese Dioxide Microspheres be Used as Intermediaries to Alleviate Intervertebral Disc Degeneration With Strengthening Drugs? Front Bioeng Biotechnol 2022; 10:866290. [PMID: 35433668 PMCID: PMC9011040 DOI: 10.3389/fbioe.2022.866290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Degenerative disc disease (DDD) is a pathological condition associated with intervertebral discs (IVDs) that causes chronic back pain. IVD degeneration has become a significant issue in contemporary society. To date, numerous biological therapies have been applied to alleviate the progression of DDD, among which therapeutic protein injection is the most direct and convenient. However, there are some limitations to applying direct protein injection therapy, the most significant being that the efficacy of this method has a short duration, which is a major factor in its effectiveness and the resulting patient satisfaction. How do we solve this problem? Or how can the effectiveness of the treatment be enhanced? It has been proved that manganese dioxide (MnO2) microspheres, widely used in environmental science, not only regulate the expression of cell genes and cytokines in the microenvironment, but also have the ability to release drugs slowly. We propose that direct injection of protein encapsulated in hollow MnO2 (h-MnO2) microspheres could solve the problem of rapid drug release. In addition, the use of a MnO2 and protein injection in the treatment of DDD may have a synergistic effect, which would be highly significant for the degradation of pro-inflammatory factors in the DDD microenvironment. Therefore, the combination of MnO2 and protein may provide a new therapeutic approach to alleviate the progression of DDD.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, China
| | - Ming Yang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, China
| | - Yantao Zhao
- Department of Orthopedics, Fourth Medical Center of PLA General Hospital, Beijing, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, China
- *Correspondence: Zhonghai Li,
| |
Collapse
|
14
|
Qiu H, Gong H, Bao Y, Jiang H, Tong W. Reactive oxygen species-scavenging hollow MnO 2 nanozymes as carriers to deliver budesonide for synergistic inflammatory bowel disease therapy. Biomater Sci 2021; 10:457-466. [PMID: 34882157 DOI: 10.1039/d1bm01525g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is related to excessive reactive oxygen species (ROS) and high expression of proinflammatory cytokines. An enzymatically active drug carrier that can simultaneously scavenge excessive ROS and deliver anti-inflammatory drugs to inhibit the production of inflammatory cytokines may lead to improved therapeutic effects. Herein, nanoparticles (NPs) that can target activated macrophages, remove ROS and release anti-inflammatory drugs are fabricated by loading budesonide (Bud) into dextran sulfate sodium (DSS)-coated hollow mesoporous manganese dioxide (hMnO2) NPs. This strategy can treat IBD better through the synergistic effect of the ROS-scavenging hMnO2 carriers and anti-inflammatory drug by blocking the amplification effect of inflammation. In addition, compared with free Bud, the drug delivery system can reduce side effects of Bud and improve its treatment outcome at the same dosage. Therefore, this study provides a new method for the design of highly effective synergistic anti-inflammatory nanomedicines.
Collapse
Affiliation(s)
- Huiqiang Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hengtai Gong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuheng Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hong Jiang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China.
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
15
|
Luo J, Zhang Y, Zhu S, Tong Y, Ji L, Zhang W, Zhang Q, Bi Q. The application prospect of metal/metal oxide nanoparticles in the treatment of osteoarthritis. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1991-2002. [PMID: 34415355 PMCID: PMC8486704 DOI: 10.1007/s00210-021-02131-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
The current understanding of osteoarthritis is developing from a mechanical disease caused by cartilage wear to a complex biological response involving inflammation, oxidative stress and other aspects. Nanoparticles are widely used in drug delivery due to its good stability in vivo and cell uptake efficiency. In addition to the above advantages, metal/metal oxide NPs, such as cerium oxide and manganese dioxide, can also simulate the activity of antioxidant enzymes and catalyze the degradation of superoxide anions and hydrogen peroxide. Degrading of metal/metal oxide nanoparticles releases metal ions, which may slow down the progression of osteoarthritis by inhibiting inflammation, promoting cartilage repair and inhibiting cartilage ossification. In present review, we focused on recent research works concerning osteoarthritis treating with metal/metal oxide nanoparticles, and introduced some potential nanoparticles that may have therapeutic effects.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Yin Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Senbo Zhu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Yu Tong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Lichen Ji
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Wei Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Qingdao University, Qingdao, 266071, Shandong, China
| | - Qiong Zhang
- Operating Theater, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China. .,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
16
|
Abuid NJ, Urdaneta ME, Gattas-Asfura KM, Zientek C, Silgo CI, Torres JA, Otto KJ, Stabler CL. Engineering the Multi-Enzymatic Activity of Cerium Oxide Nanoparticle Coatings for the Antioxidant Protection of Implants. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100016. [PMID: 34485991 PMCID: PMC8412420 DOI: 10.1002/anbr.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Imbalance of oxidants is a universal contributor to the failure of implanted devices and tissues. A sustained oxidative environment leads to cytotoxicity, prolonged inflammation, and ultimately host rejection of implanted devices/grafts. The incorporation of antioxidant materials can inhibit this redox/inflammatory cycle and enhance implant efficacy. Cerium oxide nanoparticles (CONP) is a highly promising agent that exhibits potent, ubiquitous, and self-renewable antioxidant properties. Integrating CONP as surface coatings provides ease in translating antioxidant properties to various implants/grafts. Herein, we describe the formation of CONP coatings, generated via the sequential deposition of CONP and alginate, and the impact of coating properties, pH, and polymer molecular weight, on their resulting redox profile. Investigation of CONP deposition, layer formation, and coating uniformity/thickness on their resulting oxidant scavenging activity identified key parameters for customizing global antioxidant properties. Results found lower molecular weight alginates and physiological pH shift CONP activity to a higher H2O2 to O2 --scavenging capability. The antioxidant properties measured for these various coatings translated to distinct antioxidant protection to the underlying encapsulated cells. Information gained from this work can be leveraged to tailor coatings towards specific oxidant-scavenging applications and prolong the function of medical devices and cellular implants.
Collapse
Affiliation(s)
- Nicholas J Abuid
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Morgan E Urdaneta
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kerim M Gattas-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Caterina Zientek
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cristina Isusi Silgo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Jose A Torres
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-7011 USA
| |
Collapse
|
17
|
Sobańska Z, Roszak J, Kowalczyk K, Stępnik M. Applications and Biological Activity of Nanoparticles of Manganese and Manganese Oxides in In Vitro and In Vivo Models. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1084. [PMID: 33922170 PMCID: PMC8145730 DOI: 10.3390/nano11051084] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
The expanding applications of nanotechnology seem to be a response to many technological, environmental, and medical challenges. The unique properties of nanoparticles allow for developing new technologies and therapies. Among many investigated compounds is manganese and its oxides, which in the form of nanoparticles, could be a promising alternative for gadolinium-based contrast agents used in diagnostic imaging. Manganese, which is essential for living organisms as an enzyme cofactor, under excessive exposure-for example, due to water contamination or as an occupational hazard for welders-can lead to neurological disorders, including manganism-a condition similar to Parkinson's disease. This review attempts to summarise the available literature data on the potential applications of manganese and manganese oxide nanoparticles and their biological activity. Some of the published studies, both in vitro and in vivo, show negative effects of exposure to manganese, mainly on the nervous system, whereas other data suggest that it is possible to develop functionalised nanoparticles with negligible toxicity and novel promising properties.
Collapse
Affiliation(s)
- Zuzanna Sobańska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Kornelia Kowalczyk
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Maciej Stępnik
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
- QSAR Lab Ltd., Trzy Lipy 3 St., 80-172 Gdańsk, Poland
| |
Collapse
|
18
|
Liu S, Li K, Hu T, Shao D, Huang S, Xie Y, Zheng X. Zn-doped MnO 2 nanocoating with enhanced catalase-mimetic activity and cytocompatibility protects pre-osteoblasts against H 2O 2-induced oxidative stress. Colloids Surf B Biointerfaces 2021; 202:111666. [PMID: 33677135 DOI: 10.1016/j.colsurfb.2021.111666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Therapeutic application in prevention and treatment of bone diseases, particularly osteoporosis, has recently started to emerge for manganese dioxide (MnO2) nanoparticles and nanocoatings whereby their antioxidant catalase-mimetic property can be exploited to control oxidative stress by reducing the amount of H2O2. Doping is an efficient method to enhance the catalase-mimetic activity of MnO2, which can potentially ameliorate osteogenesis under oxidative stress. Herein, Zn2+ doped MnO2 (Zn-MnO2) nanocoating was fabricated on orthopedic titanium implant by a facile UV-photolysis reaction. The Zn-MnO2 nanocoating showed better cytocompatibility than the MnO2 nanocoating, as indicated by enhanced cell proliferation, differentiation and mineralization of MC3T3-E1 pre-osteoblasts. This was probably due to the increased surface hydrophilicity as well as the combination effect of released Zn2+ and Mn2+ from the Zn-MnO2 nanocoating. Importantly, the Zn-MnO2 nanocoating with enhanced catalase-like activity exerted greater effects to suppress the intracellular oxidation products generation and prevent the depletion of dismutase superoxide levels under H2O2-induced oxidative stress, which in turn protected MC3T3-E1 pre-osteoblast functions. Overall, surface modification of titanium implants with the Zn-MnO2 nanocoating could be utilized to ameliorate oxidative stress-inhibited osteogenesis.
Collapse
Affiliation(s)
- Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dandan Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shansong Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Adjei IM, Jordan J, Tu N, Trinh TL, Kandell W, Wei S, Sharma B. Functional recovery of natural killer cell activity by nanoparticle‐mediated delivery of transforming growth factor beta 2 small interfering RNA. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/jin2.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isaac M. Adjei
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville Florida 32611 USA
| | - Jahnelle Jordan
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville Florida 32611 USA
| | - Nhan Tu
- Moffitt Cancer Center Tampa Florida 33612 USA
| | | | | | - Sheng Wei
- Moffitt Cancer Center Tampa Florida 33612 USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville Florida 32611 USA
| |
Collapse
|
20
|
Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 2019; 224:119467. [PMID: 31557589 PMCID: PMC7025913 DOI: 10.1016/j.biomaterials.2019.119467] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 01/10/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of osteoarthritis and has become an important therapeutic target. Investigations of various antioxidant supplements, reactive oxidative species (ROS) pathway mediators, and free radical scavengers for treating osteoarthritis have demonstrated common disadvantages including poor bioavailability and stability, as well as rapid joint clearance or release profiles from delivery vehicles. Moreover, these therapies do not target cartilage, which irreversibly degenerates in the presence of oxidative stress. The goal of this study was to engineer a nanoparticle system capable of sustained retention in the joint space, localization to cartilage, and mitigation of oxidative stress. Towards this goal, ROS scavenging manganese dioxide nanoparticles with physicochemical properties (less than 20 nm and cationic) that facilitate their uptake into cartilage were developed and characterized. These particles penetrated through the depth of cartilage explants and were found both in the extracellular matrix as well as intracellularly within the resident chondrocytes. Furthermore, the particles demonstrated chondroprotection of cytokine-challenged cartilage explants by reducing the loss of glycosaminoglycans and release of nitric oxide. Quantitative PCR analysis revealed that the particles mitigated impacts of oxidative stress related genes in cytokine-challenged chondrocytes. When injected intra-articularly into rats, the particles persisted in the joint space over one week, with 75% of the initial signal remaining in the joint. Biodistribution and histological analysis revealed accumulation of particles at the chondral surfaces and colocalization of the particles with the lacunae of chondrocytes. The results suggest that the manganese dioxide nanoparticles could be a promising approach for the chondroprotection of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Olivia Liseth
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA.
| |
Collapse
|
21
|
Abuid NJ, Gattás-Asfura KM, Schofield EA, Stabler CL. Layer-by-Layer Cerium Oxide Nanoparticle Coating for Antioxidant Protection of Encapsulated Beta Cells. Adv Healthc Mater 2019; 8:e1801493. [PMID: 30633854 PMCID: PMC6625950 DOI: 10.1002/adhm.201801493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Indexed: 01/15/2023]
Abstract
In type 1 diabetes, the replacement of the destroyed beta cells could restore physiological glucose regulation and eliminate the need for exogenous insulin. Immunoisolation of these foreign cellular transplants via biomaterial encapsulation is widely used to prevent graft rejection. While highly effective in blocking direct cell-to-cell contact, nonspecific inflammatory reactions to the implant lead to the overproduction of reactive oxygen species, which contribute to foreign body reaction and encapsulated cell loss. For antioxidant protection, cerium oxide nanoparticles (CONPs) are a self-renewable, ubiquitous, free radical scavenger currently explored in several biomedical applications. Herein, 2-12 alternating layers of CONP/alginate are assembled onto alginate microbeads containing beta cells using a layer-by-layer (LbL) technique. The resulting nanocomposite coatings demonstrate robust antioxidant activity. The degree of cytoprotection correlates with layer number, indicating tunable antioxidant protection. Coating of alginate beads with 12 layers of CONP/alginate provides complete protection to the entrapped beta cells from exposure to 100 × 10-6 m H2 O2 , with no significant changes in cellular metabolic activity, oxidant capacity, or insulin secretion dynamics, when compared to untreated controls. The flexibility of this LbL method, as well as its nanoscale profile, provides a versatile approach for imparting antioxidant protection to numerous biomedical implants, including beta cell transplantation.
Collapse
Affiliation(s)
- Nicholas J Abuid
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Kerim M Gattás-Asfura
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Emily A Schofield
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, UF Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
22
|
Paving the way for successful islet encapsulation. Drug Discov Today 2019; 24:737-748. [PMID: 30738185 DOI: 10.1016/j.drudis.2019.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disorder that decimates pancreatic β-cells which produce insulin. Direct pancreatic islet transplantation cannot serve as a widespread therapeutic modality owing to the need for lifelong immunosuppression and donor shortage. Therefore, several encapsulation techniques have been developed to enclose the islets in semipermeable vehicles that will allow oxygen and nutrient input as well as insulin, other metabolites and waste output, while accomplishing immunoisolation. Although encapsulation technology continues to face significant obstacles, recent advances in material science, stem cell biology and immunology potentially serve as pathways to success. This review summarizes the accomplishments of the past 5 years.
Collapse
|
23
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
25
|
Alhadlaq HA, Akhtar MJ, Ahamed M. Different cytotoxic and apoptotic responses of MCF-7 and HT1080 cells to MnO 2 nanoparticles are based on similar mode of action. Toxicology 2018; 411:71-80. [PMID: 30395893 DOI: 10.1016/j.tox.2018.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Manganese (IV) oxide nanoparticles (MnO2 NPs) are increasingly used in numerous applications. Multiple applications of MnO2 NPs, however, increase the human exposure and thus potential risk related to their toxicity. There is little information regarding the toxicity mechanisms of MnO2 NPs in human cells. In this study, we explored the toxic potential of MnO2 NPs in human breast cancer epithelial (MCF-7) and human fibrosarcoma epithelial (HT1080) cells in order to examine whether epithelial cells of different origins showed similar responses. Results demonstrated that MnO2 NPs induced cell viability reduction and membrane damage in both MCF-7 and HT1080 cells in a dose-dependent manner. MnO2 NPs were also found to induce pro-oxidants generation and antioxidants depletion in both cells. We further observed that MnO2 NPs induce apoptosis in both MCF-7 and HT1080 cells evident by altered regulation of apoptotic genes (p53, bax & bcl-2), cell cycle arrest and low mitochondrial membrane potential. Interestingly, we noticed that HT1080 cells were more susceptible to MnO2 NPs exposure than those of MCF-7 cells. This could be due to higher level of MnO2 NPs uptake into HT1080 cells as compared to MCF-7 cells. However, the mechanism of toxicity induced by MnO2 NPs in both MCF-7 and HT1080 cells was highly similar. This study warrants further research to delineate the underlying mechanisms of MnO2 NPs toxicity at in vivo level.
Collapse
Affiliation(s)
- Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|