1
|
Bergman M, Harwood J, Liu L, Shontz KM, Chan C, Chiang T. Long-Term Chondrocyte Retention in Partially Decellularized Tracheal Grafts. Otolaryngol Head Neck Surg 2024; 170:239-244. [PMID: 37365963 PMCID: PMC10782834 DOI: 10.1002/ohn.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Decellularized tracheal grafts possess the biological cues necessary for tissue regeneration. However, conventional decellularization approaches to target the removal of all cell populations including chondrocytes lead to a loss of mechanical support. We have created a partially decellularized tracheal graft (PDTG) that preserves donor chondrocytes and the mechanical properties of the trachea. In this study, we measured PDTG chondrocyte retention with a murine microsurgical model. STUDY DESIGN Murine in vivo time-point study. SETTING Research Institute affiliated with Tertiary Pediatric Hospital. METHODS PDTG was created using a sodium dodecyl sulfate protocol. Partially decellularized and syngeneic grafts were orthotopically implanted into female C57BL/6J mice. Grafts were recovered at 1, 3, and 6 months postimplant. Pre- and postimplant grafts were processed and analyzed via quantitative immunofluorescence. Chondrocytes (SOX9+, DAPI+) present in the host and graft cartilage was evaluated using ImageJ. RESULTS Partial decellularization resulted in the maintenance of gross tracheal architecture with the removal of epithelial and submucosal structures on histology. All grafts demonstrated SOX9+ chondrocytes throughout the study time points. Chondrocytes in PDTG were lower at 6 months compared to preimplant and syngeneic controls. CONCLUSION PDTG retained donor graft chondrocytes at all time points. However, PDTG exhibits a reduction in chondrocytes at 6 months. The impact of these histologic changes on cartilage extracellular matrix regeneration and repair remains unclear.
Collapse
Affiliation(s)
- Maxwell Bergman
- Department of Otolaryngology–Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Jacqueline Harwood
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kimberly M. Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Coreena Chan
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Tendy Chiang
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
2
|
Zeng N, Chen Y, Wu Y, Zang M, Largo RD, Chang EI, Schaverien MV, Yu P, Zhang Q. Pre-epithelialized cryopreserved tracheal allograft for neo-trachea flap engineering. Front Bioeng Biotechnol 2023; 11:1196521. [PMID: 37214293 PMCID: PMC10198577 DOI: 10.3389/fbioe.2023.1196521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Tracheal reconstruction presents a challenge because of the difficulty in maintaining the rigidity of the trachea to ensure an open lumen and in achieving an intact luminal lining that secretes mucus to protect against infection. Methods: On the basis of the finding that tracheal cartilage has immune privilege, researchers recently started subjecting tracheal allografts to "partial decellularization" (in which only the epithelium and its antigenicity are removed), rather than complete decellularization, to maintain the tracheal cartilage as an ideal scaffold for tracheal tissue engineering and reconstruction. In the present study, we combined a bioengineering approach and a cryopreservation technique to fabricate a neo-trachea using pre-epithelialized cryopreserved tracheal allograft (ReCTA). Results: Our findings in rat heterotopic and orthotopic implantation models confirmed that tracheal cartilage has sufficient mechanical properties to bear neck movement and compression; indicated that pre-epithelialization with respiratory epithelial cells can prevent fibrosis obliteration and maintain lumen/airway patency; and showed that a pedicled adipose tissue flap can be easily integrated with a tracheal construct to achieve neovascularization. Conclusion: ReCTA can be pre-epithelialized and pre-vascularized using a 2-stage bioengineering approach and thus provides a promising strategy for tracheal tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peirong Yu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
4
|
Liu L, Dharmadhikari S, Spector BM, Tan ZH, Van Curen CE, Agarwal R, Nyirjesy S, Shontz K, Sperber SA, Breuer CK, Zhao K, Reynolds SD, Manning A, VanKoevering KK, Chiang T. Tissue-engineered composite tracheal grafts create mechanically stable and biocompatible airway replacements. J Tissue Eng 2022; 13:20417314221108791. [PMID: 35782992 PMCID: PMC9243572 DOI: 10.1177/20417314221108791] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
We tested composite tracheal grafts (CTG) composed of a partially decellularized
tracheal graft (PDTG) combined with a 3-dimensional (3D)-printed airway splint
for use in long-segment airway reconstruction. CTG is designed to recapitulate
the 3D extracellular matrix of the trachea with stable mechanical properties
imparted from the extraluminal airway splint. We performed segmental orthotopic
tracheal replacement in a mouse microsurgical model. MicroCT was used to measure
graft patency. Tracheal neotissue formation was quantified histologically.
Airflow dynamic properties were analyzed using computational fluid dynamics. We
found that CTG are easily implanted and did not result in vascular erosion,
tracheal injury, or inflammation. Graft epithelialization and endothelialization
were comparable with CTG to control. Tracheal collapse was absent with CTG.
Composite tracheal scaffolds combine biocompatible synthetic support with PDTG,
supporting the regeneration of host epithelium while maintaining graft
structure.
Collapse
Affiliation(s)
- Lumei Liu
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sayali Dharmadhikari
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Barak M Spector
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Zheng Hong Tan
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Catherine E Van Curen
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Riddhima Agarwal
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sarah Nyirjesy
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kimberly Shontz
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sarah A Sperber
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kai Zhao
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Amy Manning
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kyle K VanKoevering
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Tendy Chiang
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Tang H, Sun W, Chen Y, She Y, Chen C. Future directions for research on tissue-engineered trachea. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Lei C, Mei S, Zhou C, Xia C. Decellularized tracheal scaffolds in tracheal reconstruction: An evaluation of different techniques. J Appl Biomater Funct Mater 2021; 19:22808000211064948. [PMID: 34903089 DOI: 10.1177/22808000211064948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In humans, the trachea is a conduit for ventilation connecting the throat and lungs. However, certain congenital or acquired diseases may cause long-term tracheal defects that require replacement. Tissue engineering is considered a promising method to reconstruct long-segment tracheal lesions and restore the structure and function of the trachea. Decellularization technology retains the natural structure of the trachea, has good biocompatibility and mechanical properties, and is currently a hotspot in tissue engineering studies. This article lists various recent representative protocols for the generation of decellularized tracheal scaffolds (DTSs), as well as their validity and limitations. Based on the advancements in decellularization methods, we discussed the impact and importance of mechanical properties, revascularization, recellularization, and biocompatibility in the production and implantation of DTS. This review provides a basis for future research on DTS and its application in clinical therapy.
Collapse
Affiliation(s)
- Chenyang Lei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Sheng Mei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chun Zhou
- Department of Geriatrics, The 903 Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Hangzhou, China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
7
|
Bai R, Liu J, Zhang J, Shi J, Jin Z, Li Y, Ding X, Zhu X, Yuan C, Xiu B, Liu H, Yuan Z, Liu Z. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche. J Nanobiotechnology 2021; 19:252. [PMID: 34425841 PMCID: PMC8381546 DOI: 10.1186/s12951-021-00993-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair. RESULTS In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair. CONCLUSIONS The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair.
Collapse
Affiliation(s)
- Rui Bai
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiao Zhang
- Department of Cardiology, Beijing Electric Power Hospital, State Grid Corporation of China, Beijing, 100073, China
| | - Jinmiao Shi
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhigeng Jin
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yi Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Xiaoyu Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Bingshui Xiu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huiliang Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
8
|
Villalba-Caloca J, Sotres-Vega A, Giraldo-Gómez DM, Gaxiola-Gaxiola MO, Piña-Barba MC, García-Montes JA, Martínez-Fonseca S, Alonso-Gómez M, Santibáñez-Salgado JA. In vivo performance of decellularized tracheal grafts in the reconstruction of long length tracheal defects: Experimental study. Int J Artif Organs 2021; 44:718-726. [PMID: 34365843 DOI: 10.1177/03913988211025991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The repair of long-segment tracheal lesions remains an important challenge. Nowdays no predictable and dependable substitute has been found. Decellularized tracheal scaffolds have shown to be a promising graft for tracheal transplantation, since it is non-immunogenic. OBJECTIVE Evaluate in vivo decellularized tracheal allografts performance to replace long tracheal segment. METHODS Forty-five swines underwent surgery as follows: Fifteen trachea donors and 30 receptors of decellularized trachea allografts. The receptors were randomly divided in five groups (n = 6). In groups I and II, donor trachea segment was decellularized by 15 cycles with sodium deoxycholate and deoxyribonuclease, in group II, the allograft was reinforced with external surgical steel wire. Groups, III, IV, and V decellularization was reduced to seven cycles, supplemented with cryopreservation in group IV and with glutaraldehyde in group V. A 10 rings segment was excised from the receptor swine and the decellularized trachea graft was implanted to re-establish trachea continuity. RESULTS Both decellularization cycles caused decreased stiffness. All trachea receptors underwent euthanasia before the third post-implant week due to severe dyspnea and trachea graft stenosis, necrosis, edema, inflammation, hemorrhage, and granulation tissue formation in anastomotic sites. Histologically all showed total loss of epithelium, separation of collagen fibers, and alterations in staining. CONCLUSIONS Both decellularization techniques severely damaged the structure of the trachea and the extracellular matrix of the cartilage, resulting in a no functional graft, in spite of the use of surgical wire, cryopreservation or glutaraldehyde treatment. An important drawback was the formation of fibrotic stenosis in both anastomosis.
Collapse
Affiliation(s)
- Jaime Villalba-Caloca
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Avelina Sotres-Vega
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - David M Giraldo-Gómez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel O Gaxiola-Gaxiola
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Maria C Piña-Barba
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jazmín A García-Montes
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Sergio Martínez-Fonseca
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Marcelino Alonso-Gómez
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - J Alfredo Santibáñez-Salgado
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, México
| |
Collapse
|
9
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
10
|
Wang Z, Sun F, Lu Y, Zhang B, Zhang G, Shi H. Rapid Preparation Method for Preparing Tracheal Decellularized Scaffolds: Vacuum Assistance and Optimization of DNase I. ACS OMEGA 2021; 6:10637-10644. [PMID: 34056217 PMCID: PMC8153783 DOI: 10.1021/acsomega.0c06247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Decellularized scaffolds are an effective way for tracheal tissue engineering to perform alternative treatments. However, clinically used decellularized tracheal scaffolds have a long preparation cycle. The purpose of this study is to improve the efficiency of decellularization by vacuum assistance and optimizing the concentration of DNase I in the decellularization process and to quickly obtain tracheal decellularized scaffolds. The trachea of New Zealand white rabbits was decellularized with 2, 4, 6, and 8 KU/mL DNase I under vacuum. The performance of the decellularized tracheal scaffold was evaluated through histological analysis, immunohistochemical staining, DNA residue, extracellular matrix composition, scanning electron microscopy, mechanical properties, cell compatibility, and in vivo experiments. Histological analysis and immunohistochemical staining showed that compared with the native trachea, the hierarchical structure of the decellularized trachea remained unchanged after decellularization, nonchondrocytes were effectively removed, and the antigenicity of the scaffold was significantly weakened. Deoxyribonucleic acid (DNA) quantitative analysis showed that the amount of residual DNA in the 6-KU group was significantly decreased. Scanning electron microscopy and mechanical tests showed that small gaps appeared in the basement membrane of the 6-KU group, and the mechanical properties decreased. The CCK-8 test results and in vivo experiments showed that the 6-KU group's acellular scaffold had good cell compatibility and new blood vessels were visible on the surface. Taken together, the 6-KU group could quickly prepare rabbit tracheal scaffolds with good decellularization effects in only 2 days, which significantly shortened the preparation cycle reducing the required cost.
Collapse
|
11
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
She Y, Fan Z, Wang L, Li Y, Sun W, Tang H, Zhang L, Wu L, Zheng H, Chen C. 3D Printed Biomimetic PCL Scaffold as Framework Interspersed With Collagen for Long Segment Tracheal Replacement. Front Cell Dev Biol 2021; 9:629796. [PMID: 33553186 PMCID: PMC7859529 DOI: 10.3389/fcell.2021.629796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
The rapid development of tissue engineering technology has provided new methods for tracheal replacement. However, none of the previously developed biomimetic tracheas exhibit both the anatomy (separated-ring structure) and mechanical behavior (radial rigidity and longitudinal flexibility) mimicking those of native trachea, which greatly restricts their clinical application. Herein, we proposed a biomimetic scaffold with a separated-ring structure: a polycaprolactone (PCL) scaffold with a ring-hollow alternating structure was three-dimensionally printed as a framework, and collagen sponge was embedded in the hollows amid the PCL rings by pouring followed by lyophilization. The biomimetic scaffold exhibited bionic radial rigidity based on compressive tests and longitudinal flexibility based on three-point bending tests. Furthermore, the biomimetic scaffold was recolonized by chondrocytes and developed tracheal cartilage in vitro. In vivo experiments showed substantial deposition of tracheal cartilage and formation of a biomimetic trachea mimicking the native trachea both structurally and mechanically. Finally, a long-segment tracheal replacement experiment in a rabbit model showed that the engineered biomimetic trachea elicited a satisfactory repair outcome. These results highlight the advantage of a biomimetic trachea with a separated-ring structure that mimics the native trachea both structurally and mechanically and demonstrates its promise in repairing long-segment tracheal defects.
Collapse
Affiliation(s)
- Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Liu L, Dharmadhikari S, Shontz KM, Tan ZH, Spector BM, Stephens B, Bergman M, Manning A, Zhao K, Reynolds SD, Breuer CK, Chiang T. Regeneration of partially decellularized tracheal scaffolds in a mouse model of orthotopic tracheal replacement. J Tissue Eng 2021; 12:20417314211017417. [PMID: 34164107 PMCID: PMC8188978 DOI: 10.1177/20417314211017417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Decellularized tracheal scaffolds offer a potential solution for the repair of long-segment tracheal defects. However, complete decellularization of trachea is complicated by tracheal collapse. We created a partially decellularized tracheal scaffold (DTS) and characterized regeneration in a mouse model of tracheal transplantation. All cell populations except chondrocytes were eliminated from DTS. DTS maintained graft integrity as well as its predominant extracellular matrix (ECM) proteins. We then assessed the performance of DTS in vivo. Grafts formed a functional epithelium by study endpoint (28 days). While initial chondrocyte viability was low, this was found to improve in vivo. We then used atomic force microscopy to quantify micromechanical properties of DTS, demonstrating that orthotopic implantation and graft regeneration lead to the restoration of native tracheal rigidity. We conclude that DTS preserves the cartilage ECM, supports neo-epithelialization, endothelialization and chondrocyte viability, and can serve as a potential solution for long-segment tracheal defects.
Collapse
Affiliation(s)
- Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sayali Dharmadhikari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Zheng Hong Tan
- Collage of Medicine, The Ohio State University, Columbus, OH, USA
| | - Barak M Spector
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Brooke Stephens
- Collage of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maxwell Bergman
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Amy Manning
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kai Zhao
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, OH, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
14
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
15
|
Jung SY, Tran ANT, Kim HY, Choi E, Lee SJ, Kim HS. Development of Acellular Respiratory Mucosal Matrix Using Porcine Tracheal Mucosa. Tissue Eng Regen Med 2020; 17:433-443. [PMID: 32390116 DOI: 10.1007/s13770-020-00260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Respiratory mucosa defects result in airway obstruction and infection, requiring subsequent functional recovery of the respiratory epithelium. Because site-specific extracellular matrix (ECM) facilitates restoration of organ function by promoting cellular migration and engraftment, previous studies considered decellularized trachea an ideal ECM; however, incomplete cell removal from cartilage and mucosal-architecture destruction are frequently reported. Here, we developed a decellularization protocol and applied it to the respiratory mucosa of separated porcine tracheas. METHODS The trachea was divided into groups according to decellularization protocol: native mucosa, freezing-thawing (FT), FT followed by the use of Perasafe-based chemical agents before mucosal separation (wFTP), after mucosal separation (mFTP), and followed by DNase decellularization (mFTD). Decellularization efficacy was evaluated by DNA quantification and hematoxylin and eosin staining, and ECM content of the scaffold was evaluated by histologic analysis and glycosaminoglycan and collagen assays. Biocompatibility was assessed by cell-viability assay and in vivo transplantation. RESULTS The mFTP mucosa showed low antigenicity and maintained the ECM to form a proper microstructure. Additionally, tonsil-derived stem cells remained viable when cultured with or seeded onto mFTP mucosa, and the in vivo host response showed a constructive pattern following implantation of the mFTP scaffolds. CONCLUSION These results demonstrated that xenogenic acellular respiratory mucosa matrix displayed suitable biocompatibility as a scaffold material for respiratory mucosa engineering.
Collapse
Affiliation(s)
- Soo Yeon Jung
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Ewha Womans University, Anyangcheon-ro 1071, Yang Cheon-Gu, Seoul, 07985, Korea
| | - An Nguyen-Thuy Tran
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Ewha Womans University, Anyangcheon-ro 1071, Yang Cheon-Gu, Seoul, 07985, Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Ewha Womans University, Anyangcheon-ro 1071, Yang Cheon-Gu, Seoul, 07985, Korea.,Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Euno Choi
- Department of Pathology, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - So Jeong Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Ewha Womans University, Anyangcheon-ro 1071, Yang Cheon-Gu, Seoul, 07985, Korea
| | - Han Su Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, College of Medicine, Ewha Womans University, Anyangcheon-ro 1071, Yang Cheon-Gu, Seoul, 07985, Korea.
| |
Collapse
|
16
|
Rajab TK, O’Malley TJ, Tchantchaleishvili V. Decellularized scaffolds for tissue engineering: Current status and future perspective. Artif Organs 2020; 44:1031-1043. [DOI: 10.1111/aor.13701] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Thomas J. O’Malley
- Division of Cardiac Surgery Thomas Jefferson University Philadelphia PA USA
| | | |
Collapse
|
17
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
A Comparative Study of the Effects of Different Decellularization Methods and Genipin-Cross-Linking on the Properties of Tracheal Matrices. Tissue Eng Regen Med 2018; 16:39-50. [PMID: 30815349 DOI: 10.1007/s13770-018-0170-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Background Different decellularization methods can affect the integrity and the biomechanical and biocompatible properties of the tracheal matrix. Natural cross-linking with genipin can be applied to improve those properties. The goals of this study were to evaluate the effects of different decellularization methods on the properties of genipin-cross-linked decellularized tracheal matrices in rabbits. Methods The tracheas of New Zealand rabbits were decellularized by the Triton-X 100-processed method (TPM) and the detergent-enzymatic method (DEM) and were then cross-linked with genipin. Mechanical tests, haematoxylin-eosin staining, Masson trichrome staining, Safranin O staining, DAPI staining, scanning electronic microscopy (SEM), and biocompatibility tests were used to evaluate the treatment. The bioengineered trachea and control trachea were then implanted into allogeneic rabbits for 30 days. The structural and functional analyses were performed after transplantation. Results The biomechanical tests demonstrated that the biomechanical properties of the decellularized tracheas decreased and that genipin improved them (p < 0.05). The histological staining results revealed that most of the mucosal epithelial cells were removed and that the decellularized trachea had lower immunogenicity than the control group. The analysis of SEM revealed that the decellularized trachea retained the micro- and ultra-structural architectures of the trachea and that the matrices cross-linked with genipin were denser. The biocompatibility evaluation and in vivo implantation experiments showed that the decellularized trachea treated with the DEM had better biocompatibility than that treated with the TPM and that immunogenicity in the cross-linked tissues was lower than that in the uncross-linked tissues (p < 0.05). Conclusions Compared with the trachea treated with the TPM, the rabbit trachea processed by the DEM had better biocompatibility and lower immunogenicity, and its structural and mechanical characteristics were effectively improved after the genipin treatment, which is suitable for engineering replacement tracheal tissue.
Collapse
|
19
|
Pan S, Zhong Y, Shan Y, Liu X, Xiao Y, Shi H. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction. J Biomed Mater Res A 2018; 107:360-370. [PMID: 30485676 DOI: 10.1002/jbm.a.36536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
The influences of pore sizes and surface modifications on biomechanical properties and biocompatibility (BC) of porous tracheal scaffolds (PTSs) fabricated by polycaprolactone (PCL) using 3D printing technology. The porous grafts were surface-modified through hydrolysis, amination, and nanocrystallization treatment. The surface properties of the modified grafts were characterized by energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The materials were cocultured with bone marrow mesenchymal stem cells (BMSCs). The effect of different pore sizes and surface modifications on the cell proliferation behavior was evaluated by the cell counting kit-8 (CCK-8). Compared to native tracheas, the PTS has good biomechanical properties. A pore diameter of 200 μm is the optimum for cell adhesion, and the surface modifications successfully improved the cytotropism of the PTS. Allogeneic implantation confirmed that it largely retains its structural integrity in the host, and the immune rejection reaction of the PTS decreased significantly after the acute phase. Nano-silicon dioxide (NSD)-modified PTS is a promising material for tissue engineering tracheal reconstruction. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 360-370, 2019.
Collapse
Affiliation(s)
- Shu Pan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yi Zhong
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yibo Shan
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Xueying Liu
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Yuanfan Xiao
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, 225001, China.,Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, 225001, China.,Center of Translational Medicine, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
20
|
Luc G, Charles G, Gronnier C, Cabau M, Kalisky C, Meulle M, Bareille R, Roques S, Couraud L, Rannou J, Bordenave L, Collet D, Durand M. Decellularized and matured esophageal scaffold for circumferential esophagus replacement: Proof of concept in a pig model. Biomaterials 2018; 175:1-18. [PMID: 29793088 DOI: 10.1016/j.biomaterials.2018.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Surgical resection of the esophagus requires sacrificing a long portion of it. Its replacement by the demanding gastric pull-up or colonic interposition techniques may be avoided by using short biologic scaffolds composed of decellularized matrix (DM). The aim of this study was to prepare, characterize, and assess the in vivo remodeling of DM and its clinical impact in a preclinical model. A dynamic chemical and enzymatic decellularization protocol of porcine esophagus was set up and optimized. The resulting DM was mechanically and biologically characterized by DNA quantification, histology, and histomorphometry techniques. Then, in vitro and in vivo tests were performed, such as DM recellularization with human or porcine adipose-derived stem cells, or porcine stromal vascular fraction, and maturation in rat omentum. Finally, the DM, matured or not, was implanted as a 5-cm-long esophagus substitute in an esophagectomized pig model. The developed protocol for esophageal DM fulfilled previously established criteria of decellularization and resulted in a scaffold that maintained important biologic components and an ultrastructure consistent with a basement membrane complex. In vivo implantation was compatible with life without major clinical complications. The DM's scaffold in vitro characteristics and in vivo implantation showed a pattern of constructive remodeling mimicking major native esophageal characteristics.
Collapse
Affiliation(s)
- Guillaume Luc
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Guillaume Charles
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Caroline Gronnier
- Univ. Bordeaux, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Magali Cabau
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Charlotte Kalisky
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Mallory Meulle
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Reine Bareille
- Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France
| | - Samantha Roques
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Lionel Couraud
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; LAPVSO, F-31201, Toulouse Cedex 2, France
| | - Johanna Rannou
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France
| | - Laurence Bordenave
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France
| | - Denis Collet
- CHU Bordeaux, Department of Digestive Surgery, F-33000, Bordeaux, France
| | - Marlène Durand
- CHU Bordeaux, CIC1401, F-33000, Bordeaux, France; Univ. Bordeaux, F-33000, Bordeaux, France; Inserm, Bioingénierie tissulaire, U1026, F-33000, Bordeaux, France.
| |
Collapse
|
21
|
Den Hondt M, Vanaudenaerde BM, Verbeken EK, Vranckx JJ. Epithelial grafting of a decellularized whole-tracheal segment: an in vivo experimental model. Interact Cardiovasc Thorac Surg 2018; 26:753-760. [DOI: 10.1093/icvts/ivx442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Margot Den Hondt
- Department of Plastic and Reconstructive Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Department of Chronic Diseases, Metabolism and Ageing, Lung Transplant Unit, Laboratory of Pulmonology, KU Leuven—University of Leuven, Leuven, Belgium
| | - Eric K Verbeken
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Jan J Vranckx
- Department of Plastic and Reconstructive Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Erten E, Arslan YE. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:21-39. [DOI: 10.1007/5584_2018_231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|