1
|
Gilbert C, Krupicka V, Galluzzi F, Popowich A, Bathany K, Claverol S, Arslanoglu J, Tokarski C. Species identification of ivory and bone museum objects using minimally invasive proteomics. SCIENCE ADVANCES 2024; 10:eadi9028. [PMID: 38277452 PMCID: PMC10816696 DOI: 10.1126/sciadv.adi9028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Ivory is a highly prized material in many cultures since it can be carved into intricate designs and have a highly polished surface. Due to its popularity, the animals from which ivory can be sourced are under threat of extinction. Identification of ivory species is not only important for CITES compliance, it can also provide information about the context in which a work was created. Here, we have developed a minimally invasive workflow to remove minimal amounts of material from precious objects and, using high-resolution mass spectrometry-based proteomics, identified the taxonomy of ivory and bone objects from The Metropolitan Museum of Art collection dating from as early as 4000 B.C. We built a proteomic database of underrepresented species based on exemplars from the American Museum of Natural History, and proposed alternative data analysis workflows for samples containing inconsistently preserved organic material. This application demonstrates extensive ivory species identification using proteomics to unlock sequence uncertainties, e.g., Leu/Ile discrimination.
Collapse
Affiliation(s)
- Catherine Gilbert
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Bordeaux Proteome Platform, University of Bordeaux, F-33000 Bordeaux, France
| | - Vaclav Krupicka
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Bordeaux Proteome Platform, University of Bordeaux, F-33000 Bordeaux, France
| | - Francesca Galluzzi
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Bordeaux Proteome Platform, University of Bordeaux, F-33000 Bordeaux, France
| | - Aleksandra Popowich
- Department of Scientific Research, The Metropolitan Museum of Art, New York, NY, USA
| | - Katell Bathany
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Bordeaux Proteome Platform, University of Bordeaux, F-33000 Bordeaux, France
| | - Stéphane Claverol
- Bordeaux Proteome Platform, University of Bordeaux, F-33000 Bordeaux, France
| | - Julie Arslanoglu
- Department of Scientific Research, The Metropolitan Museum of Art, New York, NY, USA
| | - Caroline Tokarski
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Bordeaux Proteome Platform, University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
2
|
Seewald M, Gohl C, Egerbacher M, Handschuh S, Witter K. Endodontic Treatment of a Traumatic Tusk Fracture With Exposed Pulp in an Asian Elephant ( Elephas maximus). J Vet Dent 2021; 38:139-151. [PMID: 34873958 DOI: 10.1177/08987564211054590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tusk fracture in elephants is a common incident often resulting in pulp exposure and pulpitis. Extensive lavage, endodontic therapy, direct pulp capping, or extraction are treatment options. In this report, the successful management of a broken tusk of a juvenile male Asian elephant (Elephas maximus) including morphological analysis of the tusk tip 2 years after surgery are presented. Treatment was carried out under barn conditions and included antimicrobial photodynamic therapy and partial pulpotomy with direct pulp capping. Immediate pain relief was reached. The fractured tusk was preserved and continued to grow. The therapeutic filling material remained intact for over 1 year but was absent 2 years after treatment. The former pulp cavity of the tusk tip was filled with reparative dentin, osteodentin, and bone, but the seal between these hard tissues and pulp chamber dentin was incomplete. Radiographs obtained 3 years after treatment showed no differences in pulp shape, pulp width, and secondary dentin formation between the treated right and the healthy left tusk. It can be concluded that in case of an emergency, the endodontic therapy of a broken elephant tusk can be attempted under improvised conditions with adequate success. Photodynamic therapy might contribute to prevent infection and inflammation of the pulp. The decision tree published by Steenkamp (2019) provides a valuable tool to make quick decisions regarding a suitable therapy of broken tusks.
Collapse
Affiliation(s)
- Matthias Seewald
- 27260Veterinary practice, Tierarzt Dr Matthias Seewald Kleintierpraxis am Alpenzoo, Innsbruck, Austria
| | | | - Monika Egerbacher
- Histology & Embryology, Vetmeduni Vienna, Austria.,31510UMIT-Private University for Health Sciences, Medical Informatics and Technology GmbH, Hall i.T., Austria
| | | | - Kirsti Witter
- Institute of Topographic Anatomy, Vetmeduni Vienna, Austria
| |
Collapse
|
3
|
Bertolotti F, Carmona FJ, Dal Sasso G, Ramírez-Rodríguez GB, Delgado-López JM, Pedersen JS, Ferri F, Masciocchi N, Guagliardi A. On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis. Acta Biomater 2021; 120:167-180. [PMID: 32438109 DOI: 10.1016/j.actbio.2020.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
Abstract
The occurrence of an amorphous calcium phosphate layer covering the crystalline apatite core has been suggested to be an intrinsic feature of both bone mineral and synthetic biomimetic analogs. However, an exahustive quantitative picture of the amorphous-crystalline relationship in these materials is still missing. Here, we present a multiple scale modelling that combines small-angle X-ray scattering (SAXS) and synchrotron wide-angle X-ray total scattering (WAXTS) analyses to investigate the amorphous-crystalline spatial interplay in bone sample and biomimetic carbonated nano-apatites. SAXS analysis indicates the presence of a single morphology consisting of tiny nanoplates (NPLs) and provides a measure of their thickness (falling in the 3-5 nm range). WAXTS analysis was performed by developing atomistic models of apatite NPLs incorporating lattice strain, mostly attributed to the carbonate content, and calculating the X-ray patterns using the Debye Scattering Equation. Upon model optimization, the size and strain parameters of the crystalline platelets were derived and the amorphous component, co-existing with the crystalline one, separated and quantified (in the 23-33 wt% range). Notably, the thickness of the apatite core was found to exhibit nearly null (bone) or minor (< 0.5 nm, biomimetic samples) deviations from that of the entire NPLs, suggesting that the amorphous material remains predominantly distributed along the lateral sides of the NPLs, in a core-crown-like arrangement. The lattice strain analysis indicates a significant stiffness along the c axis, which is comparable in bone and synthetic samples, and larger deformations in the other directions. STATEMENT OF SIGNIFICANCE: Current models of bone mineral and biomimetic nanoapatites suggest the occurrence of an amorphous layer covering the apatitic crystalline nanoplates in a core-shell arrangement. By combining X-ray scattering techniques in the small and wide angle regions, we propose a joint atomic-to-nanometre scale modelling to investigate the amorphous-crystalline interplay within the nanoplates. Estimates are extracted for the thickness of the entire nanoplates and the crystalline core, together with the quantification of the amorphous fraction and apatite lattice strain. Based on the thickness matching, the location of the amorphous material mostly along the edges of the nanoplates is inferred, with a vanishing or very thin layer in the thickness direction, suggesting a core-crown-like arrangement, with possible implications on the mineral surface reactivity.
Collapse
Affiliation(s)
- Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Gregorio Dal Sasso
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale delle Ricerche, Via Valleggio 11, I-22100 Como, Italy
| | - Gloria B Ramírez-Rodríguez
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy; Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, E-18071 Granada, Spain
| | - José Manuel Delgado-López
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva S/N, E-18071 Granada, Spain
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Fabio Ferri
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Via Valleggio 11, I-22100 Como, Italy.
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale delle Ricerche, Via Valleggio 11, I-22100 Como, Italy.
| |
Collapse
|
4
|
Sariisik E, Zistl D, Docheva D, Schilling AF, Benoit M, Sudhop S, Clausen-Schaumann H. Inadequate tissue mineralization promotes cancer cell attachment. PLoS One 2020; 15:e0237116. [PMID: 32857787 PMCID: PMC7454967 DOI: 10.1371/journal.pone.0237116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
Bone metastases are a frequent complication in prostate cancer, and several studies have shown that vitamin D deficiency promotes bone metastases. However, while many studies focus on vitamin D’s role in cell metabolism, the effect of chronically low vitamin D levels on bone tissue, i.e. insufficient mineralization of the tissue, has largely been ignored. To investigate, whether poor tissue mineralization promotes cancer cell attachment, we used a fluorescence based adhesion assay and single cell force spectroscopy to quantify the adhesion of two prostate cancer cell lines to well-mineralized and demineralized dentin, serving as biomimetic bone model system. Adhesion rates of bone metastases-derived PC3 cells increased significantly on demineralized dentin. Additionally, on mineralized dentin, PC3 cells adhered mainly via membrane anchored surface receptors, while on demineralized dentin, they adhered via cytoskeleton-anchored transmembrane receptors, pointing to an interaction via exposed collagen fibrils. The adhesion rate of lymph node derived LNCaP cells on the other hand is significantly lower than that of PC3 and not predominately mediated by cytoskeleton-linked receptors. This indicates that poor tissue mineralization facilitates the adhesion of invasive cancer cells by the exposure of collagen and emphasizes the disease modifying effect of sufficient vitamin D for cancer patients.
Collapse
Affiliation(s)
- Ediz Sariisik
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Chair of Applied Physics, Ludwig-Maximilians-Universität, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Domenik Zistl
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
| | - Denitsa Docheva
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Department of Trauma Surgery, Experimental Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Arndt F. Schilling
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Clinic for Trauma Surgery, Orthopaedics, and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Benoit
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Chair of Applied Physics, Ludwig-Maximilians-Universität, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
5
|
Nasoori A. Tusks, the extra-oral teeth. Arch Oral Biol 2020; 117:104835. [PMID: 32668361 DOI: 10.1016/j.archoralbio.2020.104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present review aims to: a) describe the features that support tusks in extra-oral position, and b) represent distinctive features of tusks, which provide insights into tusks adaptation to ambient conditions. DESIGN A comprehensive review of scientific literature relevant to tusks and comparable dental tissues was conducted. RESULTS The oral cavity provides a desirable condition which is conducive to tooth health. Therefore, it remains questionable how the bare (exposed) tusks resist the extra-oral conditions. The common features among tusked mammals indicate that the structural (e.g. the peculiar dentinal alignment), cellular (e.g. low or lack of cell populations in the tusk), hormonal (e.g. androgens), and behavioral traits have impact on a tusk's preservation and occurrence. CONCLUSIONS Understanding of bare mineralized structures, such as tusks and antlers, and their compatibility with different environments, can provide important insight into oral biology.
Collapse
Affiliation(s)
- Alireza Nasoori
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
6
|
Abstract
Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.
Collapse
|
7
|
Hao R, Li D. An inspiration from the microstructure of the cortical bone in goat tibia. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
When vigorous goats are running and jumping, their leg bones play a crucial role in dynamic loading. The hierarchical structure of diverse tissues at different length scales is commonly used to account for the superior mechanical properties of bone. Yet, how the goat tibia achieves its remarkable function remains mostly unknown. Scanning electron microscopy was employed to image the multi-scale microstructure of the cortical bone in goat tibia. A new processing method was utilized during the preparation of one of the three kinds of samples. The transverse and longitudinal sections of the cortical bone were observed thoroughly, and high-quality images of the internal organizations are acquired. Some interesting findings, including the two-layered character of cortical bone and the microstructure near osteocyte lacunae, are discussed. A three-dimensional three-level hierarchical structure is found accordingly. Then, the cushioning mechanisms are discussed by analyzing the structure–function relationships of the bone tissues. Finally, a structural model of biomimetic composite is proposed based on the authors’ insights into the constitution of cortical bone, which is expected to inspire engineers to design load-bearing structures with excellent mechanical performance.
Collapse
Affiliation(s)
- Rui Hao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, People’s Republic of China
| | - Dongxu Li
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, People’s Republic of China
| |
Collapse
|
8
|
Hoelzig H, Muenster T, Blanke S, Kloess G, Garmasukis R, Koenig A. Ivory vs. osseous ivory substitutes-Non-invasive diffractometric discrimination. Forensic Sci Int 2020; 308:110159. [PMID: 32006880 DOI: 10.1016/j.forsciint.2020.110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
A new discrimination method for the bioapatite materials bone, antler and ivory was developed using X-ray diffractometry and comprises non-invasive measurements in order to take valuable objects into account. Our approach deals with the analysis of peak intensity ratios resulting from several measurements on each object. For instance, the intensity ratio of the apatite reflections 002 and 310 has been described in the literature as representing the degree of apatite crystal orientation and varies depending on the sample orientation. The decisive factor for the material identification is the value dispersion of intensity ratios resulting from the total of all measurements on one object. This pattern of data points, visualised via kernel density estimation (KDE), is characteristic for ivory, bone and antler, respectively, and enables the discrimination of these materials. The observation is justifiable since apatite crystal orientation adapts to the collagen fibre arrangement which shows major differences between different sorts of bioapatite materials. The patterns of data points were received via analysis of 88 objects made of bone (n = 30), antler (n = 27) and ivory (n = 31). In order to verify several identifications X-ray computer tomography was supplemented. The presented method usefully supplements already existing approaches concerning microscopic, elementary and biochemical analyses.
Collapse
Affiliation(s)
- H Hoelzig
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany.
| | - T Muenster
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - S Blanke
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - G Kloess
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - R Garmasukis
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, Germany
| | - A Koenig
- Department of Prosthodontics and Material Sciences, Leipzig University, Germany
| |
Collapse
|
9
|
Abstract
Natural ivory is no longer readily or legally available, as it is obtained primarily from elephant tusks, which now enjoy international protection. Ivory, however, is the best material known for piano keys. We present a hydroxylapatite–gelatin biocomposite that is chemically identical to natural ivory but with functional properties optimized to replace it. As this biocomposite is fabricated from abundant materials in an environmentally friendly process and is furthermore biodegradable, it is a sustainable solution for piano keys with the ideal functional properties of natural ivory.
Collapse
|
10
|
Anisotropic crack propagation and deformation in dentin observed by four-dimensional X-ray nano-computed tomography. Acta Biomater 2019; 96:400-411. [PMID: 31254684 DOI: 10.1016/j.actbio.2019.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/23/2022]
Abstract
Understanding the cracking behaviour of biological composite materials is of practical importance. This paper presents the first study to track the interplay between crack initiation, microfracture and plastic deformation in three dimensions (3D) as a function of tubule and collagen fibril arrangement in elephant dentin using in situ X-ray nano-computed tomography (nano-CT). A nano-indenter with a conical tip has been used to incrementally indent three test-pieces oriented at 0°, 45° and 70° to the long axis of the tubules (i.e. radial to the tusk). For the 0° sample two significant cracks formed, one of which linked up with microcracks in the axial-radial plane of the tusk originating from the tubules and the other one occurred as a consequence of shear deformation at the tubules. The 70° test-piece was able to bear the greatest loads despite many small cracks forming around the indenter. These were diverted by the microstructure and did not propagate significantly. The 45° test-piece showed intermediate behaviour. In all cases strains obtained by digital volume correlation were well in excess of the yield strain (0.9%), indeed some plastic deformation could even be seen through bending of the tubules. The hoop strains around the conical indenter were anisotropic with the smallest strains correlating with the primary collagen orientation (axial to the tusk) and the largest strains aligned with the hoop direction of the tusk. STATEMENT OF SIGNIFICANCE: This paper presents the first comprehensive study of the anisotropic nature of microfracture, crack propagation and deformation in elephant dentin using time-lapse X-ray nano-computed tomography. To unravel the interplay of collagen fibrils and local deformation, digital volume correlation (DVC) has been applied to map the local strain field while the crack initiation and propagation is tracked in real time. Our results highlight the intrinsic and extrinsic shielding mechanisms and correlate the crack growth behavior in nature to the service requirement of dentin to resist catastrophic fracture. This is of wide interest not just in terms of understanding dentin fracture but also can extend beyond dentin to other anisotropic structural composite biomaterials such as bone, antler and chitin.
Collapse
|