1
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
2
|
Li Y, Dong L, Chen Y, Cai W, Yang G, Wang Y. Epithelial differentiation of gingival mesenchymal stem cells enhances re-epithelialization for full-thickness cutaneous wound healing. Stem Cell Res Ther 2024; 15:455. [PMID: 39609719 PMCID: PMC11605919 DOI: 10.1186/s13287-024-04081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Increasing evidence suggests that mesenchymal stem cells (MSCs) repair traumatized tissues primarily through paracrine secretion and differentiation into specific cell types. However, the role of epithelial differentiation of MSCs in cutaneous wound healing is unclear. This study aimed to investigate the epithelial differentiation potential of gingival tissue-derived MSCs (GMSCs) in epithelial cell growth medium and the mechanisms underlying their differentiation into an epithelial-like cell phenotype. METHODS We used scanning electron microscopy to examine GMSCs for epithelial differentiation. Quantitative real-time polymerase chain reaction and Western blotting were respectively used to measure genes and proteins related to epithelial differentiation. Immunofluorescence was used to examine subcellular localization of KLF4, KRT19, and β-catenin proteins. Transcriptome sequencing was used to enrich the mechanisms underlying epithelial differentiation in GMSCs. An MSAB inhibitor was used to validate the Wnt signaling pathway further. The wound healing rate and re-epithelialization were assessed through macroscopical observation and hematoxylin and eosin staining. RESULTS GMSCs cultured in epithelial cell growth medium from days 3 to 15 exhibited decreased expression of mesenchymal-epithelial transition and stemness-related proteins (N-cadherin, Vimentin, KLF4, and SOX2), increased expression of epithelial-related proteins (KRT12, KRT15, KRT19, and E-cadherin), and exhibited epithelial-like morphology. Mechanistically, high-throughput sequencing revealed that the Wnt and TGF-beta signaling pathways were inhibited during epithelial differentiation of GMSCs (Epi-GMSCs). MSAB-induced Wnt signaling pathway inhibition promoted epithelial-related gene and protein expression. Furthermore, we demonstrated the ability of Epi-GMSCs to facilitate wound healing by improving re-epithelialization in a full-thickness skin defect model. CONCLUSIONS Collectively, this study uncovers that GMSCs have the ability to differentiate into epithelia and highlights a promising strategy for using Epi-GMSCs to improve cutaneous wound healing.
Collapse
Affiliation(s)
- Yongzheng Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Lingling Dong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yani Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Jang Y, Lee D, Oh J. Fast Autograft Generation Using Transferable 3D Keratinocyte Cell Sheet on PEDOT:PSS Composite PDMS Membrane for Enhancing Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406529. [PMID: 39588867 DOI: 10.1002/smll.202406529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The application of cell sheet technology for wound healing preserves dense cell tissue and the natural extracellular matrix (ECM), contributing to disease prevention. Despite the effectiveness of autologous and allograft cell sheets for wound healing, conventional cell sheets, although stable, may experience necrosis in their middle layers due to a lack of nutrients or oxygen. To address these issues, a novel approach is proposed to create cell sheets using mechanical and electrical stimulation. This method not only facilitates the transfer of cell sheets but also enhances cell bioactivity. The performance of the proposed membrane, with a mechanically controlled microstructure under electrical stimulation, is validated in both in vitro and in vivo models. The micro-structured membrane allows for diverse electrical stimulation compared to flat membranes, which accelerates the detachment of cell sheets and promotes angiogenesis and re-epithelialization. These findings indicate that the innovative cell sheet technology could significantly enhance rapid wound healing in regenerative medicine.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dongwon Lee
- Department of Polymer Nano Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
4
|
Yang Z, Yang M, Rui S, Hao W, Wu X, Guo L, Armstrong DG, Yang C, Deng W. Exosome-based cell therapy for diabetic foot ulcers: Present and prospect. Heliyon 2024; 10:e39251. [PMID: 39498056 PMCID: PMC11532254 DOI: 10.1016/j.heliyon.2024.e39251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic foot ulcers (DFUs) represent a serious complication of diabetes with high incidence, requiring intensive treatment, prolonged hospitalization, and high costs. It poses a severe threat to the patient's life, resulting in substantial burdens on patient and healthcare system. However, the therapy of DFUs remains challenging. Therefore, exploring cell-free therapies for DFUs is both critical and urgent. Exosomes, as crucial mediators of intercellular communication, have been demonstrated potentially effective in anti-inflammation, angiogenesis, cell proliferation and migration, and collagen deposition. These functions have been proven beneficial in all stages of diabetic wound healing. This review aims to summarize the role and mechanisms of exosomes from diverse cellular sources in diabetic wound healing research. In addition, we elaborate on the challenges for clinical application, discuss the advantages of membrane vesicles as exosome mimics in wound healing, and present the therapeutic potential of exosomes and their mimetic vesicles for future clinical applications.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Mengling Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Lian Guo
- Department of Endocrinology, School of Medicine, Chongqing University Three Gorges Central Hospital, Chongqing, 404000, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Cheng Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| |
Collapse
|
5
|
Hu D, Gao C, Li J, Tong P, Sun Y. The preparation methods and types of cell sheets engineering. Stem Cell Res Ther 2024; 15:326. [PMID: 39334404 PMCID: PMC11438047 DOI: 10.1186/s13287-024-03937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cell therapy has emerged as a viable approach for treating damaged organs or tissues, particularly with advancements in stem cell research and regenerative medicine. The innovative technique of cell sheet engineering offers the potential to create a cell-dense lamellar structure that preserves the extracellular matrix (ECM) secreted by cells, along with the cell-matrix and intercellular junctions formed during in vitro cultivation. In recent years, significant progress has been made in developing cell sheet engineering technology. A variety of novel materials and methods were utilized for enzyme-free cell detachment during the cell sheet formation process. The complexity of cell sheet structures increased to meet advanced usage demands. This review aims to provide an overview of the preparation methods and types of cell sheets, thereby enhancing the understanding of this rapidly evolving technology and offering a fresh perspective on the development and future application of cell sheet engineering.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hangzhou Chexmed Technology Co., Ltd, Hangzhou, China
| | - Ce Gao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Pei Tong
- Hunan Guangxiu Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China.
- Hunan Guangxiu Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
6
|
Kim DY, Ko E, Ryu YH, Lee SJ, Jun YJ. Hyaluronic Acid Based Adipose Tissue-Derived Extracellular Matrix Scaffold in Wound Healing: Histological and Immunohistochemical Study. Tissue Eng Regen Med 2024; 21:829-842. [PMID: 38647955 PMCID: PMC11286915 DOI: 10.1007/s13770-024-00644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND In this study, we explored the potential of human adipose tissue-derived extracellular matrix (adECM) sheets augmented with crosslinked hyaluronic acid (HA) as advanced wound dressings. We aimed to enhance healing efficacy while optimizing cost efficiency. METHODS The adECM was processed from healthy donor tissue and combined with crosslinked HA to form ECM-HA sheets (Scaffiller, Medikan, Korea). In vitro experiments involved seeding adipose-derived stem cells (ASCs) onto these sheets and assessing cell survival and cytokine production. In vivo testing utilized a rat wound model, comparing ECM-HA sheet with HA-based dressing and polyurethane foam dressing. Re-epithelialization and collagen deposition were examined through histopathological examinations, whereas immunohistochemistry was used to assess CD31, alpha smooth muscle actin (α-SMA), and Tenascin C expression as contributing factors to wound healing. RESULTS Results indicated that ECM-HA sheets were produced efficiently, with enhanced growth factor production and ASC survival observed in vitro. In vivo, ECM-HA sheets demonstrated accelerated wound healing, evidenced by improved epithelialization, thicker dermis, increased collagen deposition, and enhanced vascularity. Notably, they exhibited reduced myofibroblast activity and increased expression of Tenascin C, suggesting a favorable healing environment. CONCLUSION ECM-HA sheets offer a promising approach for wound management, combining the benefits of adECM and HA. They present improved stability and cost-effectiveness while promoting essential aspects of wound healing such as angiogenesis and collagen formation. This study underscores the therapeutic potential of ECM-HA sheets in clinical applications aimed at facilitating wound repair.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Plastic and Reconstructive Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunjeong Ko
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Yeon Hee Ryu
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Su Jin Lee
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea
| | - Young Joon Jun
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
7
|
Yang X, Xu Z, Shu F, Xiao J, Zeng Y, Lu X, Yu F, Xi L, Cheng F, Gao B, Chen H. Bioorthogonal targeted cell membrane vesicles/cell-sheet composites reduce postoperative tumor recurrence and scar formation of melanoma. J Control Release 2024; 372:372-385. [PMID: 38901733 DOI: 10.1016/j.jconrel.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
While surgical resection is the predominant clinical strategy in the treatment of melanoma, postoperative recurrence and undetectable metastasis are both pernicious drawbacks to this otherwise highly successful approach. Furthermore, the deep cavities result from tumor excision can leave long lasting wounds which are slow to heal and often leave visible scars. These unmet needs are addressed in the present work through the use of a multidimensional strategy, and also promotes wound healing and scar reduction. In the first phase, cell membrane-derived nanovesicles (NVs) are engineered to show PD-1 and dibenzocyclooctyne (DBCO). These are capable of reactivating T cells by blocking the PD-1/PD-L1 pathway. In the second phase, azido (N3) labeled mesenchymal stem cells (MSCs) are cultured into cell sheets using tissue engineering, then apply directly to surgical wounds to enhance tissue repair. Owing to the complementary association between DBCO and N3 groups, PD-1 NVs were accumulated at the site of excision. This strategy can inhibit postoperative tumor recurrence and metastasis, whilst also promoting wound healing and reducing scar formation. The results of this study set a precedent for a new and innovative multidimensional therapeutic strategy in the postoperative treatment of melanoma.
Collapse
Affiliation(s)
- Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China; Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Jiangwei Xiao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510550, China
| | - Yuqing Zeng
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Xingyu Lu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Fei Yu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Lifang Xi
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510550, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| |
Collapse
|
8
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Chen YC, Chuang EY, Tu YK, Hsu CL, Cheng NC. Human platelet lysate-cultured adipose-derived stem cell sheets promote angiogenesis and accelerate wound healing via CCL5 modulation. Stem Cell Res Ther 2024; 15:163. [PMID: 38853252 PMCID: PMC11163789 DOI: 10.1186/s13287-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND A rising population faces challenges with healing-impaired cutaneous wounds, often leading to physical disabilities. Adipose-derived stem cells (ASCs), specifically in the cell sheet format, have emerged as a promising remedy for impaired wound healing. Human platelet lysate (HPL) provides an attractive alternative to fetal bovine serum (FBS) for culturing clinical-grade ASCs. However, the potential of HPL sheets in promoting wound healing has not been fully investigated. This study aimed to explore the anti-fibrotic and pro-angiogenic capabilities of HPL-cultured ASC sheets and delve into the molecular mechanism. METHODS A rat burn model was utilized to evaluate the efficacy of HPL-cultured ASC sheets in promoting wound healing. ASC sheets were fabricated with HPL, and those with FBS were included for comparison. Various analyses were conducted to assess the impact of HPL sheets on wound healing. Histological examination of wound tissues provided insights into aspects such as wound closure, collagen deposition, and overall tissue regeneration. Immunofluorescence was employed to assess the presence and distribution of transplanted ASCs after treatment. Further in vitro studies were conducted to decipher the specific factors in HPL sheets contributing to angiogenesis. RESULTS HPL-cultured ASC sheets significantly accelerated wound closure, fostering ample and organized collagen deposition in the neo-dermis. Significantly more retained ASCs were observed in wound tissues treated with HPL sheets compared to the FBS counterparts. Moreover, HPL sheets mitigated macrophage recruitment and decreased subsequent wound tissue fibrosis in vivo. Immunohistochemistry also indicated enhanced angiogenesis in the HPL sheet group. The in vitro analyses showed upregulation of C-C motif chemokine ligand 5 (CCL5) and angiogenin in HPL sheets, including both gene expression and protein secretion. Culturing endothelial cells in the conditioned media compared to media supplemented with CCL5 or angiogenin suggested a correlation between CCL5 and the pro-angiogenic effect of HPL sheets. Additionally, through neutralizing antibody experiments, we further validated the crucial role of CCL5 in HPL sheet-mediated angiogenesis in vitro. CONCLUSIONS The present study underscores CCL5 as an essential factor in the pro-angiogenic effect of HPL-cultured ASC sheets during the wound healing process. These findings highlight the potential of HPL-cultured ASC sheets as a promising therapeutic option for healing-impaired cutaneous wounds in clinical settings. Furthermore, the mechanism exploration yields valuable information for optimizing regenerative strategies with ASC products. BRIEF ACKNOWLEDGMENT This research was supported by the National Science and Technology Council, Taiwan (NSTC112-2321-B-002-018), National Taiwan University Hospital (111C-007), and E-Da Hospital-National Taiwan University Hospital Joint Research Program (111-EDN0001, 112-EDN0002).
Collapse
Affiliation(s)
- Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei, 100, Taiwan
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei, 100, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Puistola P, Kethiri A, Nurminen A, Turkki J, Hopia K, Miettinen S, Mörö A, Skottman H. Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15761-15772. [PMID: 38513048 PMCID: PMC10995904 DOI: 10.1021/acsami.3c17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/23/2024]
Abstract
Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor corneas that are used for treating corneal blindness, often resulting from damage in the corneal stromal microstructure. Human adipose tissue is one of the most abundant tissues and easy to access, and adipose tissue-derived stem cells (hASCs) are a highly advantageous cell type for tissue engineering. Furthermore, hASCs have already been studied in clinical trials for treating corneal stromal pathologies. In this study, a corneal stroma-specific ECM was engineered without the need for donor corneas by differentiating hASCs toward corneal stromal keratocytes (hASC-CSKs). Furthermore, this ECM was utilized as a component for corneal stroma-specific bioink where hASC-CSKs were printed to produce corneal stroma structures. This cost-effective approach combined with a clinically relevant cell type provides valuable information on developing more sustainable tissue-specific solutions and advances the field of corneal tissue engineering.
Collapse
Affiliation(s)
- Paula Puistola
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Abhinav Kethiri
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Antti Nurminen
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Johannes Turkki
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Karoliina Hopia
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult
Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Tays
Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, 33520 Tampere, Finland
| | - Anni Mörö
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Heli Skottman
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
11
|
Li G, Wang Q, Liu H, Yang Z, Wu Y, He L, Deng X. Fabricating Composite Cell Sheets for Wound Healing: Cell Sheets Based on the Communication Between BMSCs and HFSCs Facilitate Full-Thickness Cutaneous Wound Healing. Tissue Eng Regen Med 2024; 21:421-435. [PMID: 37995084 PMCID: PMC10987453 DOI: 10.1007/s13770-023-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue. METHODS Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice. RESULTS Experiments confirmed that there is cell-cell communication between BMSCs and HFSCs, which enhances the cell proliferation and migration abilities of both cell types. Cell-cell talk also upregulates the gene expression of pro-angiogenic-related cytokines in BMSCs and pro-hair follicle-related cytokines in HFSCs, as well as causing changes in the properties of secreted extracellular matrix components. CONCLUSIONS Therefore, the composite cell sheet is more conducive for cutaneous wound healing and promoting the regeneration of blood vessels and hair follicles.
Collapse
Affiliation(s)
- Gongjian Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yuhan Wu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li He
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Wu S, Sun S, Fu W, Yang Z, Yao H, Zhang Z. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines 2024; 12:743. [PMID: 38672102 PMCID: PMC11048165 DOI: 10.3390/biomedicines12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been recognized as a cell therapy with the potential to promote skin healing. MSCs, with their multipotent differentiation ability, can generate various cells related to wound healing, such as dermal fibroblasts (DFs), endothelial cells, and keratinocytes. In addition, MSCs promote neovascularization, cellular regeneration, and tissue healing through mechanisms including paracrine and autocrine signaling. Due to these characteristics, MSCs have been extensively studied in the context of burn healing and chronic wound repair. Furthermore, during the investigation of MSCs, their unique roles in skin aging and scarless healing have also been discovered. In this review, we summarize the mechanisms by which MSCs promote wound healing and discuss the recent findings from preclinical and clinical studies. We also explore strategies to enhance the therapeutic effects of MSCs. Moreover, we discuss the emerging trend of combining MSCs with tissue engineering techniques, leveraging the advantages of MSCs and tissue engineering materials, such as biodegradable scaffolds and hydrogels, to enhance the skin repair capacity of MSCs. Additionally, we highlight the potential of using paracrine and autocrine characteristics of MSCs to explore cell-free therapies as a future direction in stem cell-based treatments, further demonstrating the clinical and regenerative aesthetic applications of MSCs in skin repair and regeneration.
Collapse
Affiliation(s)
- Si Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Shengbo Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100050, China
| | - Wentao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
13
|
Wang W, Chen L, Zhang Y, Wang H, Dong D, Zhu J, Fu W, Liu T. Adipose-derived stem cells enriched with therapeutic mRNA TGF-β3 and IL-10 synergistically promote scar-less wound healing in preclinical models. Bioeng Transl Med 2024; 9:e10620. [PMID: 38435824 PMCID: PMC10905533 DOI: 10.1002/btm2.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 03/05/2024] Open
Abstract
Skin wound healing often leads to scar formation, presenting physical and psychological challenges for patients. Advancements in messenger RNA (mRNA) modifications offer a potential solution for pulsatile cytokine delivery to create a favorable wound-healing microenvironment, thereby preventing cutaneous fibrosis. This study aimed to investigate the effectiveness of human adipose-derived stem cells (hADSCs) enriched with N 1-methylpseudouridine (m1ψ) modified transforming growth factor-β3 (TGF-β3) and interleukin-10 (IL-10) mRNA in promoting scar-free healing in preclinical models. The results demonstrated that the modified mRNA (modRNA)-loaded hADSCs efficiently and temporarily secreted TGF-β3 and IL-10 proteins. In a dorsal injury model, hADSCs loaded with modRNA TGF-β3 and IL-10 exhibited multidimensional therapeutic effects, including improved collagen deposition, extracellular matrix organization, and neovascularization. In vitro experiments confirmed the ability of these cells to markedly inhibit the proliferation and migration of keloid fibroblasts, and reverse the myofibroblast phenotype. Finally, collagen degradation mediated by matrix metalloproteinase upregulation was observed in an ex vivo keloid explant culture model. In conclusion, the synergistic effects of the modRNA TGF-β3, IL-10, and hADSCs hold promise for establishing a scar-free wound-healing microenvironment, representing a robust foundation for the management of wounds in populations susceptible to scar formation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Liang Chen
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yuxin Zhang
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Heng Wang
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Dong Dong
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jingjing Zhu
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Tianyi Liu
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
14
|
Saifullah Q, Sharma A. Current Trends on Innovative Technologies in Topical Wound Care for Advanced Healing and Management. Curr Drug Res Rev 2024; 16:319-332. [PMID: 37807417 DOI: 10.2174/0125899775262048230925054922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To investigate critically traditional and modern techniques for cutaneous wound healing and to provide comprehensive information on these novel techniques to encounter the challenges with the existing wound healing methods. SIGNIFICANCE The financial burden and mortality associated with wounds is increasing, so managing wounds is essential. Traditional wound treatments include surgical and non-surgical methods, while modern techniques are advancing rapidly. This review examines the various traditional and modern techniques used for cutaneous wound healing. KEY FINDINGS Traditional wound treatments include surgical techniques such as debridement, skin flaps, and grafts. Non-surgical treatments include skin replacements, topical formulations, scaffold-based skin grafts, and hydrogel-based skin dressings. More modern techniques include using nanoparticles, growth factors, and bioactive substances in wound dressings. Bioengineered skin substitutes using biomaterials, cells, and growth factors are also being developed. Other techniques include stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and 3D-printed/bio-printed wound dressings. CONCLUSION Traditional wound treatments have been replaced by modern techniques such as stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and bioengineered skin substitutes. However, most of these strategies lack effectiveness and thorough evaluation. Therefore, further research is required to develop new techniques for cutaneous wound healing that are effective, cost-efficient, and appealing to patients.
Collapse
Affiliation(s)
- Qazi Saifullah
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Abhishek Sharma
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| |
Collapse
|
15
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
ZABIHI A, PASHAPOUR S, MAHMOODI M. Cell Therapy and Investigation of the Angiogenesis of Fibroblasts with Collagen Hydrogel on the Healing of Diabetic Wounds. Turk J Pharm Sci 2023; 20:302-309. [PMID: 37933815 PMCID: PMC10631366 DOI: 10.4274/tjps.galenos.2022.62679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Objectives A diabetic ulcer is a common disease in patients with diabetes. Because of antibiotic resistance, new therapeutic alternatives are being considered in diabetic foot patients to reduce complications and mortality. This study aimed to evaluate the effect of collagen hydrogel on the wound-healing process in diabetic rats. Materials and Methods Diabetic wounds were induced with streptozotocin in all 42 male Wistar rats. The rats were divided into four groups: (a) treated with fibroblast cells, (b) collagen hydrogel, (c) collagen cultured with fibroblast cells, and (d) a control group. Microscopic and histological (hematoxylin and eosin staining and Mason trichrome staining), measurement of wound surface with image J, skin density and thickness by the ultrasound probe, and skin elasticity with cytometer tool were used to evaluate wound healing at days 14 and 21 after the treatment. Results The results showed that treating diabetic wounds with fibroblasts cultured in collagen hydrogel greatly reduces inflammatory responses in the skin tissue and significantly accelerates the healing process. In addition, 21 days after the start of treatment, skin elasticity, thickness, and density were higher in the collagen + fibroblast group than in the control group. Conclusion In addition, the results of the present study show that diabetic wound dressing can significantly reduce the inflammatory phase in the wound healing process by increasing the speed of collagen synthesis, skin density and elasticity, and angiogenesis.
Collapse
Affiliation(s)
- Abbas ZABIHI
- Islamic Azad University Faculty of Basic Sciences, Department of Biology, Hamedan, Iran
| | - Sanaz PASHAPOUR
- Tehran Medical Sciences Faculty of Pharmacy and Pharmaceutical Sciences; Islamic Azad University, Department of Pharmacology and Toxicology, Tehran, Iran
| | - Minoo MAHMOODI
- Islamic Azad University Faculty of Basic Sciences, Department of Biology, Hamedan, Iran
| |
Collapse
|
17
|
Wang Y, Wu J, Chen J, Lu C, Liang J, Shan Y, Liu J, Li Q, Miao L, He M, Wang X, Zhang J, Wu Z. Mesenchymal stem cells paracrine proteins from three-dimensional dynamic culture system promoted wound healing in third-degree burn models. Bioeng Transl Med 2023; 8:e10569. [PMID: 38023693 PMCID: PMC10658564 DOI: 10.1002/btm2.10569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 12/01/2023] Open
Abstract
Recovery of skin function remains a significant clinical challenge for deep burns owing to the severe scar formation and poor appendage regeneration, and stem cell therapy has shown great potential for injured tissue regeneration. Here, a cell-free therapy system for deep burn skin was explored using mesenchymal stem cell paracrine proteins (MSC-PP) and polyethylene glycol (PEG) temperature-sensitive hydrogels. A three-dimensional (3D) dynamic culture system for MSCs' large-scale expansion was established using a porous gelatin microcarrier crosslinked with hyaluronic acid (PGM-HA), and the purified MSC-PP from culture supernatant was characterized by mass spectrometric analysis. The results showed the 3D dynamic culture system regulated MSCs cell cycle, reduced apoptosis, and decreased lactic acid content, and the MSC-PP produced in 3D group can promote cell proliferation, migration, and adhesion. The MSC-PP + PEG system maintained stable release in 28 days of observation in vitro. The in vivo therapeutic efficacy was investigated in the rabbit's third-degree burn model, and saline, PEG, MSC-PP, and MSC-PP + PEG treatments groups were set. The in vivo results showed that the MSC-PP + PEG group significantly improved wound healing, inhibited scar formation, and facilitated skin appendage regeneration. In conclusion, the MSC-PP + PEG sustained-release system provides a potentially effective treatment for deep burn skin healing.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of OphthalmologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Cheng Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jinchao Liang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Yingyi Shan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Liang Miao
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Mu He
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Xiaoying Wang
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jianhua Zhang
- Special WardsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
18
|
Li Y, Zhang J, Cai W, Wang C, Yu Z, Jiang Z, Lai K, Wang Y, Yang G. CREB3L2 Regulates Hemidesmosome Formation during Epithelial Sealing. J Dent Res 2023; 102:1199-1209. [PMID: 37555472 DOI: 10.1177/00220345231176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
The long-term success rate of dental implants can be improved by establishing a favorable biological sealing with a high-quality epithelial attachment. The application of mesenchymal stem cells (MSCs) holds promise for facilitating the soft tissue integration around implants, but the molecular mechanism is still unclear and the general application of MSC sheet for soft tissue integration is also relatively unexplored. We found that gingival tissue-derived MSC (GMSC) sheet treatment significantly promoted the expression of hemidesmosome (HD)-related genes and proteins in gingival epithelial cells (GECs). The formation of HDs played a key role in strengthening peri-implant epithelium (PIE) sealing. Further, high-throughput transcriptome sequencing showed that GMSC sheet significantly upregulated the PI3K/AKT pathway, confirming that cell adhesion and HD expression in GECs were regulated by GMSC sheet. We observed that the expression of transcription factor CREB3L2 in GECs was downregulated. After treatment with PI3K pathway inhibitor LY294002, CREB3L2 messenger RNA and protein expression levels were upregulated. Further experiments showed that overexpression or knockdown of CREB3L2 could significantly inhibit or promote HD-related genes and proteins, respectively. We confirmed that CREB3L2 was a transcription factor downstream of the PI3K/AKT pathway and participated in the formation of HDs regulated by GMSC sheet. Finally, through the establishment of early implant placement model in rats, we clarified the molecular function of CREB3L2 in PIE sealing as a mechanical transmission molecule in GECs. The application of GMSC sheet-implant complex could enhance the formation of HDs at the implant-PIE interface and decrease the penetration distance of horseradish peroxidase between the implant and PIE. Meanwhile, GMSC sheet reduced the length of CREB3L2 protein expression on PIE. These findings elucidate the potential function and molecular mechanism of MSC sheet regulating the epithelial sealing around implants, providing new insights and ideas for the application of stem cell therapy in regenerative medicine.
Collapse
Affiliation(s)
- Y Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - J Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - W Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - C Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Z Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Z Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - K Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Y Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - G Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207334. [PMID: 37162248 PMCID: PMC10369252 DOI: 10.1002/advs.202207334] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.
Collapse
Affiliation(s)
- Yi Qin
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Gaoran Ge
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Liangliang Wang
- Department of OrthopaedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu213000China
| | - Yusen Qiao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
20
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
21
|
Kim SW, Seo I, Hyun J, Eom J, Um SH, Bhang SH. Fibronectin-Enriched Interface Using a Spheroid-Converged Cell Sheet for Effective Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11536-11548. [PMID: 36811454 DOI: 10.1021/acsami.2c20597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cell sheets and spheroids are cell aggregates with excellent tissue-healing effects. However, their therapeutic outcomes are limited by low cell-loading efficacy and low extracellular matrix (ECM). Preconditioning cells with light illumination has been widely accepted to enhance reactive oxygen species (ROS)-mediated ECM expression and angiogenic factor secretion. However, there are difficulties in controlling the amount of ROS required to induce therapeutic cell signaling. Here, we develop a microstructure (MS) patch that can culture a unique human mesenchymal stem cell complex (hMSCcx), spheroid-attached cell sheets. The spheroid-converged cell sheet structure of hMSCcx shows high ROS tolerance compared to hMSC cell sheets owing to its high antioxidant capacity. The therapeutic angiogenic efficacy of hMSCcx is reinforced by regulating ROS levels without cytotoxicity using light (610 nm wavelength) illumination. The reinforced angiogenic efficacy of illuminated hMSCcx is based on the increased gap junctional interaction by enhanced fibronectin. hMSCcx engraftment is significantly improved in our novel MS patch by means of ROS tolerative structure of hMSCcx, leading to robust wound-healing outcomes in a mouse wound model. This study provides a new method to overcome the limitations of conventional cell sheets and spheroid therapy.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiin Eom
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
22
|
A Novel Dressing Composed of Adipose Stem Cells and Decellularized Wharton's Jelly Facilitated Wound Healing and Relieved Lymphedema by Enhancing Angiogenesis and Lymphangiogenesis in a Rat Model. J Funct Biomater 2023; 14:jfb14020104. [PMID: 36826903 PMCID: PMC9960849 DOI: 10.3390/jfb14020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Lymphedema causes tissue swelling due to the accumulation of lymphatic fluid in the tissue, which delays the process of wound-healing. Developing effective treatment options of lymphedema is still an urgent issue. In this study, we aim to fabricate tissue-engineered moist wound dressings with adipose stem cells (ASCs) and decellularized Wharton's jelly (dWJ) from the human umbilical cord in order to ameliorate lymphedema. Rat ASCs were proliferated and an apparent layer was observed on dWJ at day 7 and 14. A rat tail lymphedema model was developed to evaluate the efficacy of the treatment. Approximately 1 cm of skin near the base of the rat tail was circularly excised. The wounds were treated by secondary healing (control) (n = 5), decellularized Wharton's jelly (n = 5) and ASC-seeded dWJ (n = 5). The wound-healing rate and the tail volume were recorded once a week from week one to week five. Angiogenesis and lymphangiogenesis were assessed by immunochemistry staining with anti-CD31 and anti-LYVE1. The results showed that the wound-healing rate was faster and the tail volume was lesser in the ASC-seeded dWJ group than in the control group. More CD31+ and LYVE-1+ cells were observed at the wound-healing area in the ASC-seeded dWJ group than in the control group. This proves that tissue-engineered moist wound dressings can accelerate wound-healing and reduce lymphedema by promoting angiogenesis and lymphangiogenesis.
Collapse
|
23
|
Liu JL, Kang DL, Mi P, Xu CZ, Zhu L, Wei BM. Mesenchymal Stem Cell Derived Extracellular Vesicles: Promising Nanomedicine for Cutaneous Wound Treatment. ACS Biomater Sci Eng 2023; 9:531-541. [PMID: 36607315 DOI: 10.1021/acsbiomaterials.2c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A skin wound represents a rupture caused by external damage or the existence of underlying pathological conditions. Sometimes, skin wound healing processes may place a heavy burden on patients, families, and society. Wound healing processes mainly consist of several continuous, dynamic, but overlapping stages, namely, the coagulation stage, inflammation stage, proliferation stage, and remodeling stage. Bacterial infection, excessive inflammation, impaired angiogenesis, and scar formation constitute the four significant factors impeding the recovery efficacy of skin wounds. This encourages scientists to develop multifunctional nanomedicines to meet challenging needs. As we know, mesenchymal stem cells (MSCs) have been widely explored for wound repair owing to their unique capability for self-renewal and multipotency. However, problems including immune concerns and legal restrictions should be properly resolved before MSC-based therapeutics are safely and widely used in clinics. Besides, maintaining the high viability/proliferation capability of MSCs during administration processes and therapy procedures is also one of the biggest technical bottlenecks. Extracellular vesicles (EVs) are cell-derived nanovesicles, that not only possess the basic characteristics and functions of their corresponding maternal cells but also contain several outstanding advantages including abundant sources, excellent biocompatibility, and convenient administration routes. Furthermore, the membrane surface and cavity are easy to flexibly modify to meet versatile application needs. Recently, MSC-derived EVs have emerged as promising therapeutics for skin wound repair. However, current reviews are too broad and rarely focused on the specific roles of EVs in the different stages of wound recovery. Therefore, it is quite necessary to demonstrate the significance of stem cell-derived EVs in promoting wound healing from several specific aspects. Here, this review primarily tries to provide critical comments on current advances in EVs derived from MSCs for wound repair, particularly elaborating on their impressive roles in effectively eliminating infections, inhibiting inflammation, promoting angiogenesis, and reducing scar formation. Last but not least, current limitations and future prospects of EVs derived from MSCs in the areas of wound repair are also objectively analyzed.
Collapse
Affiliation(s)
- Jia-Lin Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - De-Lai Kang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Peng Mi
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Cheng-Zhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| | - Ben-Mei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Changqing Garden, Wuhan, 430023 Hubei, China
| |
Collapse
|
24
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
25
|
Li J, Sun X, Dai J, Yang J, Li L, Zhang Z, Guo J, Bai S, Zheng Y, Shi X. Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing. Int J Biol Macromol 2023; 225:90-102. [PMID: 36509201 DOI: 10.1016/j.ijbiomac.2022.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Preparing sponge dressings with stable wet adhesion remains difficult in wound repair, especially in burn wounds with bleeding and large amounts of exudate. In this work, a multifunctional hybrid sponge dressing (DHGT+PHMB+TiO2NPs) with good wet adhesion was developed by combining biomimetic and enzymatic cross-linking reactions. The sponge dressing matrix (DHGT) was prepared by tyrosinase-catalyzed cross-linking of dopamine-modified hyaluronic acid (DOPA-HA) and gelatin. The multifunctional hybrid sponge dressing was obtained by loading polyhexamethylene biguanide (PHMB) and titanium dioxide nanoparticles (TiO2NPs) onto the DHGT matrix. The newly developed sponge dressing exhibited high mechanical properties, good wet adhesion, antibacterial activity, reactive oxygen species (ROS) scavenging, biocompatibility, and excellent hemostasis ability. In vivo studies showed that the multifunctional hybrid sponge dressing could significantly accelerate the healing of infected full-thickness burn wounds by inhibiting bacterial growth, accelerating skin tissue reepithelialization, collagen deposition, and angiogenesis, as well as regulating the expression of inflammatory factors and cytokines.
Collapse
Affiliation(s)
- Jingsi Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xiaohan Sun
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jiajia Dai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 10 No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Liang Li
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Zibo Zhang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jiadong Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 10 No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 10 No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
26
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
27
|
S100A8 accelerates wound healing by promoting adipose stem cell proliferation and suppressing inflammation. Regen Ther 2022; 21:166-174. [PMID: 35891712 PMCID: PMC9294055 DOI: 10.1016/j.reth.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are stem cells with multidirectional differentiation potential isolated from adipose tissue. They have the same immunomodulatory effect as bone marrow mesenchymal stem cells in wound repair and immune regulation as bone marrow. The mechanism of action of ADSCs in skin wound repair has not been elucidated. S100A8 is a calcium and zinc binding protein, but its role in skin wound healing is rarely reported. We herein show that S100A8 overexpression significantly promoted ADSC proliferation and differentiation, whereas S100A8 knockdown yielded the opposite results. A skin injury model with bone exposure was created in rats by surgically removing the skin from the head and exposing the skull. The wounds were treated with S100A8-overexpressing or S100A8-knockdown ADSCs, and wound healing was monitored. The serum levels of the inflammation-related factors tumor necrosis factor-α and interleukin-6 were decreased significantly after S100A8 overexpression, while the angiogenic factor vascular endothelial growth factor and connective tissue generating factor showed the opposite trend. Histological staining revealed that granulation tissue neovascularization was more pronounced in wounds treated with S100A8-overexpressing ADSCs than that in the control group. We conclude that S100A8 promotes the proliferation of ADSCs and inhibits inflammation to improve skin wound healing.
Collapse
|
28
|
Katiyar S, Singh D, Kumari S, Srivastava P, Mishra A. Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022; 12:316. [PMID: 36276437 PMCID: PMC9547767 DOI: 10.1007/s13205-022-03331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Shikha Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| |
Collapse
|
29
|
Tissue Sheet Engineered Using Human Umbilical Cord-Derived Mesenchymal Stem Cells Improves Diabetic Wound Healing. Int J Mol Sci 2022; 23:ijms232012697. [PMID: 36293557 PMCID: PMC9604116 DOI: 10.3390/ijms232012697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulceration is a common chronic diabetic complication. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been widely used in regenerative medicine owing to their multipotency and easy availability. We developed poly(lactic-co-glycolic acid) (PLGA)-based scaffold to create hUC-MSC tissue sheets. In vitro immunostaining showed that hUC-MSC tissue sheets formed thick and solid tissue sheets with an abundance of extracellular matrix (ECM). Diabetic wounds in mice treated with or without either the hUC-MSC tissue sheet, hUC-MSC injection, or fiber only revealed that hUC-MSC tissue sheet transplantation promoted diabetic wound healing with improved re-epithelialization, collagen deposition, blood vessel formation and maturation, and alleviated inflammation compared to that observed in other groups. Taken collectively, our findings suggest that hUC-MSCs cultured on PLGA scaffolds improve diabetic wound healing, collagen deposition, and angiogenesis, and provide a novel and effective method for cell transplantation, and a promising alternative for diabetic skin wound treatment.
Collapse
|
30
|
Luo Y, Xu X, Ye Z, Xu Q, Li J, Liu N, Du Y. 3D bioprinted mesenchymal stromal cells in skin wound repair. Front Surg 2022; 9:988843. [PMID: 36311952 PMCID: PMC9614372 DOI: 10.3389/fsurg.2022.988843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.
Collapse
|
31
|
Liang Y, Yang C, Ye F, Cheng Z, Li W, Hu Y, Hu J, Zou L, Jiang H. Repair of the Urethral Mucosa Defect Model Using Adipose-Derived Stem Cell Sheets and Monitoring the Fate of Indocyanine Green-Labeled Sheets by Near Infrared-II. ACS Biomater Sci Eng 2022; 8:4909-4920. [PMID: 36201040 DOI: 10.1021/acsbiomaterials.2c00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of urethral mucosa defects is a major challenge in urology. Synthetic materials or autologous mucosa does not provide satisfactory treatment options for long-term or large urethral mucosa defects. In response to this problem, we used autologous adipose-derived stem cells (ADSCs) to synthesize cell sheets in vitro for repairing urethral mucosa defect models. In order to monitor the localization and distribution of cell sheets in vivo, cells and sheets were labeled with indocyanine green (ICG) and the second near-infrared (NIR-II) fluorescence imaging was performed. ICG-based NIR-II imaging can successfully track ADSCs and sheets in vivo up to 8 W. Then, rabbit urethral mucosa defect models were repaired with ICG-ADSCs sheets. At 3 months after operation, retrograde urethrography showed that ADSC sheets could effectively repair urethral mucosa defect and restore urethral patency. Histological analysis showed that in ADSC sheet groups, continuous epithelial cells covered the urethra at the transplantation site, and a large number of vascular endothelial cells could also be seen. In the cell-free sheet group, there was no continuous epithelial cell coverage at the repair site of the urethra, and the expression of pro-inflammatory factor TNF-α was increased. It shows that the extracellular matrix alone without cells is not suitable for repairing urethral defects. Surviving ADSCs in the sheets may play a key role in the repair process. This study provides a new tracing method for tissue engineering to dynamically track grafts using an NIR-II imaging system. The ADSC sheets can effectively restore the structure and function of the urethra. It provides a new option for the repair of urethral mucosa defects.
Collapse
Affiliation(s)
- Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, 200040 Shanghai, China
| |
Collapse
|
32
|
Sharma P, Kumar A, Agarwal T, Dey AD, Moghaddam FD, Rahimmanesh I, Ghovvati M, Yousefiasl S, Borzacchiello A, Mohammadi A, Yella VR, Moradi O, Sharifi E. Nucleic acid-based therapeutics for dermal wound healing. Int J Biol Macromol 2022; 220:920-933. [PMID: 35987365 DOI: 10.1016/j.ijbiomac.2022.08.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 02/06/2023]
Abstract
Non-healing wounds have long been the subject of scientific and clinical investigations. Despite breakthroughs in understanding the biology of delayed wound healing, only limited advances have been made in properly treating wounds. Recently, research into nucleic acids (NAs) such as small-interfering RNA (siRNA), microRNA (miRNA), plasmid DNA (pDNA), aptamers, and antisense oligonucleotides (ASOs) has resulted in the development of a latest therapeutic strategy for wound healing. In this regard, dendrimers, scaffolds, lipid nanoparticles, polymeric nanoparticles, hydrogels, and metal nanoparticles have all been explored as NA delivery techniques. However, the translational possibility of NA remains a substantial barrier. As a result, different NAs must be identified, and their distribution method must be optimized. This review explores the role of NA-based therapeutics in various stages of wound healing and provides an update on the most recent findings in the development of NA-based nanomedicine and biomaterials, which may offer the potential for the invention of novel therapies for this long-term condition. Further, the challenges and potential for miRNA-based techniques to be translated into clinical applications are also highlighted.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, 374-37515 Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran.
| |
Collapse
|
33
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
34
|
Chen B, Zhu X, Guo J, Peng L, Zhang D. Effect of Adipose-Derived Stem Cell on Collagen Deposition in Nude Mouse Model of Scleroderma. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Systemic sclerosis is an autoimmune disease featured by uncontrolled fibrosis and collagen deposition. This study aimed to investigate the impact of adipose-derived stem cells (ADSCs) transplantation on collagen in scleroderma. After establishment of scleroderma model using Bleomycin,
the animals received subcutaneous injection of 0.3 ml fat (group B) or 0.3 ml fat+1×106 ADSCs (group C), or 1×106 ADSCs alone (group D). Mice treated with PBS were taken as control group (group A). One month after operation, the skin tissue at injection site
was collected for H&E staining, and immunohistochemistry to determine the content of TGF-β1 and type III collagen. Compared to control group, group B, C, and D exhibited improvement in collagen deposition and reduction in TGF-β1 content and type III collagen. Combined
graft of fat and ADSCs exerted more significant effect compared to single ADSCs treatment. In conclusion, fat and ADSCs transplantation improves collagen deposition in nude mice with scleroderma and the combined treatment exerts a higher efficacy, suggesting that ADSCs need adipose carrier
and microenvironment. These findings provide a novel insight into the treatment of scleroderma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Xiongxiang Zhu
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Jingdong Guo
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Liang Peng
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Dongmei Zhang
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
35
|
Song M, Zong J, Zou L, Fu Z, Liu J, Wang S. Biological debridement combined with stem cell therapy will be a convenient and efficient method for treating chronic wounds in the future. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Yu J, Hsu YC, Lee JK, Cheng NC. Enhanced angiogenic potential of adipose-derived stem cell sheets by integration with cell spheroids of the same source. Stem Cell Res Ther 2022; 13:276. [PMID: 35765015 PMCID: PMC9241243 DOI: 10.1186/s13287-022-02948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adipose-derived stem cell (ASC) has been considered as a desirable source for cell therapy. In contrast to combining scaffold materials with cells, ASCs can be fabricated into scaffold-free three-dimensional (3D) constructs to promote regeneration at tissue level. However, previous reports have found decreased expression of vascular endothelial growth factor (VEGF) in ASC sheets. In this study, we aimed to integrate ASC spheroids into ASC sheets to enhance the angiogenic capability of cell sheets. Methods ASCs were seeded in agarose microwells to generate uniform cell spheroids with adjustable size, while extracellular matrix deposition could be stimulated by ascorbic acid 2-phosphate to form ASC sheets. RNA sequencing was performed to identify the transcriptomic profiles of ASC spheroids and sheets relative to monolayer ASCs. By transferring ASC spheroids onto ASC sheets, the spheroid sheet composites could be successfully fabricated after a short-term co-culture, and their angiogenic potential was evaluated in vitro and in ovo. Results RNA sequencing analysis revealed that upregulation of angiogenesis-related genes was found only in ASC spheroids. The stimulating effect of spheroid formation on ASCs toward endothelial lineage was demonstrated by enhanced CD31 expression, which maintained after ASC spheroids were seeded on cell sheets. Relative to ASC sheets, enhanced expression of VEGF and hepatocyte growth factor was also noted in ASC spheroid sheets, and conditioned medium of ASC spheroid sheets significantly enhanced tube formation of endothelial cells in vitro. Moreover, chick embryo chorioallantoic membrane assay showed a significantly higher capillary density with more branch points after applying ASC spheroid sheets, and immunohistochemistry also revealed a significantly higher ratio of CD31-positive area. Conclusion In the spheroid sheet construct, ASC spheroids can augment the pro-angiogenesis capability of ASC sheets without the use of exogenous biomaterial or genetic manipulation. The strategy of this composite system holds promise as an advance in 3D culture technique of ASCs for future application in angiogenesis and regeneration therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02948-3.
Collapse
Affiliation(s)
- Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, 1 Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, 300 Zhongda Rd., Taoyuan 320, Taiwan
| | - Jen-Kuang Lee
- Department of Medicine, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd., Taipei 100, Taiwan.
| |
Collapse
|
37
|
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F, Kargozar S. Stem Cell-Mediated Angiogenesis in Skin Tissue Engineering and Wound Healing. Wound Repair Regen 2022; 30:421-435. [PMID: 35638710 PMCID: PMC9543648 DOI: 10.1111/wrr.13033] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The timely management of skin wounds has been an unmet clinical need for centuries. While there have been several attempts to accelerate wound healing and reduce the cost of hospitalisation and the healthcare burden, there remains a lack of efficient and effective wound healing approaches. In this regard, stem cell‐based therapies have garnered an outstanding position for the treatment of both acute and chronic skin wounds. Stem cells of different origins (e.g., embryo‐derived stem cells) have been utilised for managing cutaneous lesions; specifically, mesenchymal stem cells (MSCs) isolated from foetal (umbilical cord) and adult (bone marrow) tissues paved the way to more satisfactory outcomes. Since angiogenesis plays a critical role in all four stages of normal wound healing, recent therapeutic approaches have focused on utilising stem cells for inducing neovascularisation. In fact, stem cells can promote angiogenesis via either differentiation into endothelial lineages or secreting pro‐angiogenic exosomes. Furthermore, particular conditions (e.g., hypoxic environments) can be applied in order to boost the pro‐angiogenic capability of stem cells before transplantation. For tissue engineering and regenerative medicine applications, stem cells can be combined with specific types of pro‐angiogenic biocompatible materials (e.g., bioactive glasses) to enhance the neovascularisation process and subsequently accelerate wound healing. As such, this review article summarises such efforts emphasising the bright future that is conceivable when using pro‐angiogenic stem cells for treating acute and chronic skin wounds.
Collapse
Affiliation(s)
- Zoleikha Azari
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Hu JC, Zheng CX, Sui BD, Liu WJ, Jin Y. Mesenchymal stem cell-derived exosomes: A novel and potential remedy for cutaneous wound healing and regeneration. World J Stem Cells 2022; 14:318-329. [PMID: 35722196 PMCID: PMC9157601 DOI: 10.4252/wjsc.v14.i5.318] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.
Collapse
Affiliation(s)
- Jia-Chen Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wen-Jia Liu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medicine Institute, Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710032, Shaanxi Province, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
39
|
Teraoka S, Honda M, Makishima K, Shimizu R, Tsounapi P, Yumioka T, Iwamoto H, Li P, Morizane S, Hikita K, Hisatome I, Takenaka A. Early effects of an adipose-derived stem cell sheet against detrusor underactivity in a rat cryo-injury model. Life Sci 2022; 301:120604. [DOI: 10.1016/j.lfs.2022.120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
|
40
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
41
|
|
42
|
Aavani F, Biazar E, Kheilnezhad B, Amjad F. 3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Curr Stem Cell Res Ther 2022; 17:415-439. [DOI: 10.2174/1574888x17666220204144544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective bio-mimicking of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges for skin tissue engineering.
Collapse
Affiliation(s)
- Farzaneh. Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Kheilnezhad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fatemeh Amjad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
43
|
Al-Ghadban S, Artiles M, Bunnell BA. Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front Bioeng Biotechnol 2022; 9:837464. [PMID: 35096804 PMCID: PMC8792599 DOI: 10.3389/fbioe.2021.837464] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, stem cell-based regenerative medicine has progressed to clinical testing and therapeutic applications. The applications range from infusions of autologous and allogeneic stem cells to stem cell-derived products. Adult stem cells from adipose tissue (ASCs) show significant promise in treating autoimmune and neurodegenerative diseases, vascular and metabolic diseases, bone and cartilage regeneration and wound defects. The regenerative capabilities of ASCs in vivo are primarily orchestrated by their secretome of paracrine factors and cell-matrix interactions. More recent developments are focused on creating more complex structures such as 3D organoids, tissue elements and eventually fully functional tissues and organs to replace or repair diseased or damaged tissues. The current and future applications for ASCs in regenerative medicine are discussed here.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Department of Microbiology Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
44
|
Rasouli M, Rahimi A, Soleimani M, keshel SH. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions. Acta Histochem 2021; 123:151785. [PMID: 34500185 DOI: 10.1016/j.acthis.2021.151785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023]
Abstract
Skin wound healing, a dynamic physiological process, progresses through coordinated overlapping phases to restore skin integrity. In some pathological conditions such as diabetes, wounds become chronic and hard-to-heal resulting in substantial morbidity and healthcare costs. Despite much advancement in understanding mechanisms of wound healing, chronic and intractable wounds are still a considerable challenge to nations' health care systems. Extracellular matrix (ECM) components play pivotal roles in all phases of wound healing. Therefore, a better understanding of their roles during wound healing can help improve wound care approaches. The ECM provides a 3D structure and forms the stem cell niche to support stem cell adhesion and survival and to regulate stem cell behavior and fate. Also, this dynamic structure reserves growth factors, regulates their bioavailability and provides biological signals. In various diseases, the composition and stiffness of the ECM is altered, which as a result, disrupts bidirectional cell-ECM interactions and tissue regeneration. Hence, due to the impact of ECM changes on stem cell fate during wound healing and the possibility of exploring new strategies to treat chronic wounds through manipulation of these interactions, in this review, we will discuss the importance/impact of ECM in the regulation of stem cell function and behavior to find ideal wound repair and regeneration strategies. We will also shed light on the necessity of using ECM in future wound therapy and highlight the potential roles of various biomimetic and ECM-based scaffolds as functional ECM preparations to mimic the native stem cell niche.
Collapse
|
45
|
Abstract
Scar is a common way of healing after tissue injury. The poor scar healing will not only cause dysfunction of tissues and organs but also affect the appearance of the patients’ body surface, which causes the pressure of life and spirit to the patients. However, the formation of scar tissue is an extremely complex process and its mechanism is not fully understood. At present, there is no treatment method to eliminate scars completely. Fibroblasts are the most abundant cells in the dermis, which have the ability to synthesize and remodel extracellular matrix (ECM). Myofibroblasts actively participate in the wound healing process and influence the outcome. Therefore, both of them play important roles in wound healing and scar formation. Adipose tissue-derived stem cells (ADSCs) are pluripotent stem cells that can act on target cells by paracrine. Adipose tissue stem cell-derived exosomes (ADSC-Exos) are important secretory substances of ADSCs. They are nanomembrane vesicles that can transport a variety of cellular components and fuse with target cells. In this review, we will discuss the effects of ADSCs and ADSC-Exos on the behavior of fibroblasts and myofibroblasts during wound healing and scarring stage in combination with recent studies.
Collapse
|
46
|
Yuan R, Dai X, Li Y, Li C, Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol Med Rep 2021; 24:758. [PMID: 34476508 PMCID: PMC8436211 DOI: 10.3892/mmr.2021.12398] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Pathological scars mainly refer to hypertrophic scars and keloids, and have a high incidence. Moreover, these scars seriously affect the patient's appearance and are associated with significant pain. The present study aimed to investigate the inhibitory effect of microRNA (miR)-29a from human adipose-derived mesenchymal stem cells (hADSCs) exosomes on scar formation. Firstly, the expression of miR-29a in thermal skin tissues of mice and human hypertrophic scar fibroblasts (HSFBs) was detected via reverse transcription-quantitative PCR. Exosomes derived from miR-29a-modified hADSCs were extracted and the influence of miR-29a-modified hADSCs-exo on the proliferation and function of HSFBs was determined. Lastly, the effect of miR-29a-modified hADSCs-exo on scar formation was determined using a thermal mouse model. The results demonstrated that miR-29a was downregulated in scar tissues after scalding and in HSFBs. After treating HSFBs with miR-29a-modified hADSC exosomes, miR-29a-overexpressing hADSC exosomes inhibited the proliferation and migration of HSFBs. Moreover, it was found that TGF-β2 was the target of miR-29a, and that hADSC exosome-derived miR-29a inhibited the fibrosis of HSFBs and scar hyperplasia after scalding in mice by targeting the TGF-β2/Smad3 signaling pathway. In summary, the current data indicated that miR-29a-modified hADSC exosome therapy can decrease scar formation by inhibiting the TGF-β2/Smad3 signaling pathway via its derived exogenous miR-29a, and this may be useful for the future treatment of pathological scars by providing a potential molecular basis.
Collapse
Affiliation(s)
- Ruihong Yuan
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaoming Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yisong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chunshan Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liu Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
47
|
Zhang B, Wu Y, Mori M, Yoshimura K. Adipose-Derived Stem Cell Conditioned Medium and Wound Healing: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:830-847. [PMID: 34409890 DOI: 10.1089/ten.teb.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adipose-derived stem cells (ASCs) have been growing in popularity for their potential in wound healing and tissue engineering. Stem cell therapies are limited in application, with the need to maintain cell viability and function as well as safety concerns. It has been increasingly reported that the effects of ASCs are predominantly attributable to the paracrine effects of the secreted factors, which can be collected in conditioned medium (CM). The goal of this systematic review is to investigate the effects on wound healing of CM collected from ASC culture. Original articles relevant to ASC-CM and wound healing (in vitro: dermal fibroblast, epidermal keratinocytes and their equivalent cell lines; in vivo: full-thickness wound models) were included. The agreement level of selections between two investigators were calculated by the kappa scores. And the information concerning to the publications, CM preparation and its application and effects were extracted and reported in a systematic way and summarized in tables. In total, 121 publications were initially identified through a search of the PubMed/MEDLINE database with a specific search algorithm, and 36 articles were ultimately included after two screenings. Nineteen were in vitro studies that met the search criteria and 17 were in vivo studies with or without in vitro data. In summary, based on the included articles, treatment with ASC conditioned medium (ASC-CM), to a large extent, resulted in positive effects on wound healing in vitro and in vivo. Modulation of the culture conditions of ASCs producing the CM, including hypoxic conditions, alternative substrates, medium supplementation, as well as genetic modification of cells, favorably promoted the effects of ASC-CM. Finally, a discussion of the future perspectives and therapeutic potential of ASC-CM, which also addresses the limitations of the field, is presented. A limitation of the evidence is the inconsistency in CM preparation methods among included articles. In conclusion, ASC-CM is a promising novel cell-free therapy for wound healing in regenerative medicine and warrants further exploration.
Collapse
Affiliation(s)
- Bihang Zhang
- Jichi Medical University, 12838, Department of Plastic Surgery, Shimotsuke, Tochigi, Japan;
| | - Yunyan Wu
- Jichi Medical University, 12838, Department of Plastic Surgery, Shimotsuke, Tochigi, Japan;
| | - Masanori Mori
- Jichi Medical University, 12838, Department of Plastic surgery, Shimotsuke, Tochigi, Japan;
| | - Kotaro Yoshimura
- Jichi Medical University, 12838, Department of Plastic Surgery, Shimotsuke, Tochigi, Japan;
| |
Collapse
|
48
|
Measurement of the Adipose Stem Cells Cell Sheets Transmittance. Bioengineering (Basel) 2021; 8:bioengineering8070093. [PMID: 34356200 PMCID: PMC8301134 DOI: 10.3390/bioengineering8070093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
In the field of cell therapy, the interest in cell sheet technology is increasing. To determine the cell sheet harvesting time requires experience and practice, and different factors could change the harvesting time (variability among donors and culture media, between cell culture dishes, initial cell seeding density). We have developed a device that can measure the transmittance of the multilayer cell sheets, using a light emitting diode and a light detector, to estimate the harvesting time. The transmittance of the adipose stromal cells cell sheets (ASCCS) was measured every other day as soon as the cells were confluent, up to 12 days. The ASCCS, from three different initial seeding densities, were harvested at 8, 10, and 12 days after seeding. Real-time PCR and immunostaining confirmed the expression of specific cell markers (CD29, CD73, CD90, CD105, HLA-A, HLA-DR), but less than the isolated adipose stromal cells. The number of cells per cell sheets, the average thickness per cell sheet, and the corresponding transmittance showed no correlation. Decrease of the transmittance seems to be correlated with the cell sheet maturation. For the first time, we are reporting the success development of a device to estimate ASCCS harvesting time based on their transmittance.
Collapse
|
49
|
Jiang Z, Li N, Zhu D, Ren L, Shao Q, Yu K, Yang G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials 2021; 275:120908. [PMID: 34119885 DOI: 10.1016/j.biomaterials.2021.120908] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Genetically modified cell sheet technology is emerging as a promising biomedical tool to deliver therapeutic genes for regenerative medicine and tissue engineering. Virus-based gene transfection and non-viral gene transfection have been used to fabricate genetically modified cell sheets. Preclinical and clinical studies have shown various beneficial effects of genetically modified cell sheets in the regeneration of bone, periodontal tissue, cartilage and nerves, as well as the amelioration of dental implant osseointegration, myocardial infarction, skeletal muscle ischemia and kidney injury. Furthermore, this technology provides a potential treatment option for various hereditary diseases. However, the method has several limitations, such as safety concerns and difficulties in controlling transgene expression. Therefore, recent studies explored efficient and safe gene transfection methods, prolonged and controllable transgene expression and their potential application in personalized and precision medicine. This review summarizes various types of genetically modified cell sheets, preparation procedures, therapeutic applications and possible improvements.
Collapse
Affiliation(s)
- Zhiwei Jiang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Na Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danji Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Lingfei Ren
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qin Shao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ke Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
50
|
Riha SM, Maarof M, Fauzi MB. Synergistic Effect of Biomaterial and Stem Cell for Skin Tissue Engineering in Cutaneous Wound Healing: A Concise Review. Polymers (Basel) 2021; 13:1546. [PMID: 34065898 PMCID: PMC8150744 DOI: 10.3390/polym13101546] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Stem cell therapy is used to treat a wide range of injuries and degenerative diseases of the skin. Nevertheless, many related studies demonstrated modest improvement in organ functions due to the low survival rate of transplanted cells at the targeted injured area. Thus, incorporating stem cells into biomaterial offer niches to transplanted stem cells, enhancing their delivery and therapeutic effects. Currently, through the skin tissue engineering approach, many attempts have employed biomaterials as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. This review aims to identify the limitations of stem cell therapy in wound healing treatment and potentially highlight how the use of various biomaterials can enhance the therapeutic efficiency of stem cells in tissue regeneration post-implantation. Moreover, the review discusses the combined effects of stem cells and biomaterials in in vitro and in vivo settings followed by identifying the key factors contributing to the treatment outcomes. Apart from stem cells and biomaterials, the role of growth factors and other cellular substitutes used in effective wound healing treatment has been mentioned. In conclusion, the synergistic effect of biomaterials and stem cells provided significant effectiveness in therapeutic outcomes mainly in wound healing improvement.
Collapse
Affiliation(s)
| | | | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.M.R.); (M.M.)
| |
Collapse
|