1
|
Mercer IG, Yu K, Devanny AJ, Gordon MB, Kaufman LJ. Plasticity variable collagen-PEG interpenetrating networks modulate cell spreading. Acta Biomater 2024; 187:242-252. [PMID: 39218279 DOI: 10.1016/j.actbio.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix protein collagen I has been used extensively in the field of biomaterials due to its inherent biocompatibility and unique viscoelastic and mechanical properties. Collagen I self-assembly into fibers and networks is environmentally sensitive to gelation conditions such as temperature, resulting in gels with distinct network architectures and mechanical properties. Despite this, collagen gels are not suitable for many applications given their relatively low storage modulus. We have prepared collagen-poly(ethylene glycol) [PEG] interpenetrating network (IPN) hydrogels to reinforce the collagen network, which also induces changes to network plasticity, a recent focus of study in cell-matrix interactions. Here, we prepare collagen/PEG IPNs, varying collagen concentration and collagen gelation temperature to assess changes in microarchitecture and mechanical properties of these networks. By tuning these parameters, IPNs with a range of stiffness, plasticity and pore size are obtained. Cell studies suggest that matrix plasticity is a key determinant of cell behavior, including cell elongation, on these gels. This work presents a natural/synthetic biocompatible matrix that retains the unique structural properties of collagen networks with increased storage modulus and tunable plasticity. The described IPN materials will be of use for applications in which control of cell spreading is desirable, as only minimal changes in sample preparation lead to changes in cell spreading and circularity. Additionally, this study contributes to our understanding of the connection between collagen self-assembly conditions and matrix structural and mechanical properties and presents them as useful tools for the design of other collagen based biomaterials. STATEMENT OF SIGNIFICANCE: We developed a collagen-poly(ethylene glycol) interpenetrating network (IPN) platform that retains native collagen architecture and biocompatibility but provides higher stiffness and tunable plasticity. With minor changes in collagen gelation temperature or concentration, IPN gels with a range of plasticity, storage modulus, and pore size can be obtained. The tunable plasticity of the gels is shown to modulate cell spreading, with a greater proportion of elongated cells on the most plastic of IPNs, supporting the assertion that matrix plasticity is a key determinant of cell spreading. The material can be of use for situations where control of cell spreading is desired with minimal intervention, and the findings herein may be used to develop similar collagen based IPN platforms.
Collapse
Affiliation(s)
- Iris G Mercer
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Karen Yu
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Alexander J Devanny
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Melissa B Gordon
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, PA 18042, United States
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
2
|
Liao Z, Lim JJH, Lee JXT, Chua D, Vos MIG, Yip YS, Too CB, Cao H, Wang JK, Shou Y, Tay A, Lehti K, Cheng HS, Tay CY, Tan NS. Attenuating Epithelial-to-Mesenchymal Transition in Cancer through Angiopoietin-Like 4 Inhibition in a 3D Tumor Microenvironment Model. Adv Healthc Mater 2024; 13:e2303481. [PMID: 37987244 DOI: 10.1002/adhm.202303481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Joseph Jing Heng Lim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Choon Boon Too
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Huan Cao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
3
|
Reynolds DS, de Lázaro I, Blache ML, Liu Y, Jeffreys NC, Doolittle RM, Grandidier E, Olszewski J, Dacus MT, Mooney DJ, Lewis JA. Microporogen-Structured Collagen Matrices for Embedded Bioprinting of Tumor Models for Immuno-Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210748. [PMID: 37163476 DOI: 10.1002/adma.202210748] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Embedded bioprinting enables the rapid design and fabrication of complex tissues that recapitulate in vivo microenvironments. However, few biological matrices enable good print fidelity, while simultaneously facilitate cell viability, proliferation, and migration. Here, a new microporogen-structured (µPOROS) matrix for embedded bioprinting is introduced, in which matrix rheology, printing behavior, and porosity are tailored by adding sacrificial microparticles composed of a gelatin-chitosan complex to a prepolymer collagen solution. To demonstrate its utility, a 3D tumor model is created via embedded printing of a murine melanoma cell ink within the µPOROS collagen matrix at 4 °C. The collagen matrix is subsequently crosslinked around the microparticles upon warming to 21 °C, followed by their melting and removal at 37 °C. This process results in a µPOROS matrix with a fibrillar collagen type-I network akin to that observed in vivo. Printed tumor cells remain viable and proliferate, while antigen-specific cytotoxic T cells incorporated in the matrix migrate to the tumor site, where they induce cell death. The integration of the µPOROS matrix with embedded bioprinting opens new avenues for creating complex tissue microenvironments in vitro that may find widespread use in drug discovery, disease modeling, and tissue engineering for therapeutic use.
Collapse
Affiliation(s)
- Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Manon L Blache
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Nicholas C Jeffreys
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Ramsey M Doolittle
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Estée Grandidier
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Jason Olszewski
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mason T Dacus
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
4
|
Azimian Zavareh V, Rafiee L, Sheikholeslam M, Shariati L, Vaseghi G, Savoji H, Haghjooy Javanmard S. Three-Dimensional in Vitro Models: A Promising Tool To Scale-Up Breast Cancer Research. ACS Biomater Sci Eng 2022; 8:4648-4672. [PMID: 36260561 DOI: 10.1021/acsbiomaterials.2c00277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Common models used in breast cancer studies, including two-dimensional (2D) cultures and animal models, do not precisely model all aspects of breast tumors. These models do not well simulate the cell-cell and cell-stromal interactions required for normal tumor growth in the body and lake tumor like microenvironment. Three-dimensional (3D) cell culture models are novel approaches to studying breast cancer. They do not have the restrictions of these conventional models and are able to recapitulate the structural architecture, complexity, and specific function of breast tumors and provide similar in vivo responses to therapeutic regimens. These models can be a link between former traditional 2D culture and in vivo models and are necessary for further studies in cancer. This review attempts to summarize the most common 3D in vitro models used in breast cancer studies, including scaffold-free (spheroid and organoid), scaffold-based, and chip-based models, particularly focused on the basic and translational application of these 3D models in drug screening and the tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Vajihe Azimian Zavareh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Cancer Prevention Research Center, Omid Hospital, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada.,Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
5
|
Jubelin C, Muñoz-Garcia J, Griscom L, Cochonneau D, Ollivier E, Heymann MF, Vallette FM, Oliver L, Heymann D. Three-dimensional in vitro culture models in oncology research. Cell Biosci 2022; 12:155. [PMID: 36089610 PMCID: PMC9465969 DOI: 10.1186/s13578-022-00887-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer is a multifactorial disease that is responsible for 10 million deaths per year. The intra- and inter-heterogeneity of malignant tumors make it difficult to develop single targeted approaches. Similarly, their diversity requires various models to investigate the mechanisms involved in cancer initiation, progression, drug resistance and recurrence. Of the in vitro cell-based models, monolayer adherent (also known as 2D culture) cell cultures have been used for the longest time. However, it appears that they are often less appropriate than the three-dimensional (3D) cell culture approach for mimicking the biological behavior of tumor cells, in particular the mechanisms leading to therapeutic escape and drug resistance. Multicellular tumor spheroids are widely used to study cancers in 3D, and can be generated by a multiplicity of techniques, such as liquid-based and scaffold-based 3D cultures, microfluidics and bioprinting. Organoids are more complex 3D models than multicellular tumor spheroids because they are generated from stem cells isolated from patients and are considered as powerful tools to reproduce the disease development in vitro. The present review provides an overview of the various 3D culture models that have been set up to study cancer development and drug response. The advantages of 3D models compared to 2D cell cultures, the limitations, and the fields of application of these models and their techniques of production are also discussed.
Collapse
|
6
|
Jin M, Koçer G, Paez JI. Luciferin-Bioinspired Click Ligation Enables Hydrogel Platforms with Fine-Tunable Properties for 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5017-5032. [PMID: 35060712 DOI: 10.1021/acsami.1c22186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an increasing interest in coupling reactions for cross-linking of cell-encapsulating hydrogels under biocompatible, chemoselective, and tunable conditions. Inspired by the biosynthesis of luciferins in fireflies, here we exploit the cyanobenzothiazole-cysteine (CBT-Cys) click ligation to develop polyethylene glycol hydrogels as tunable scaffolds for cell encapsulation. Taking advantage of the chemoselectivity and versatility of CBT-Cys ligation, a highly flexible gel platform is reported here. We demonstrate luciferin-inspired hydrogels with important advantages for cell encapsulation applications: (i) gel precursors derived from inexpensive reagents and with good stability in aqueous solution (>4 weeks), (ii) adjustable gel mechanics within physiological ranges (E = 180-6240 Pa), (iii) easy tunability of the gelation rate (seconds to minutes) by external means, (iv) high microscale homogeneity, (v) good cytocompatibility, and (iv) regulable biological properties. These flexible and robust CBT-Cys hydrogels are proved as supportive matrices for 3D culture of different cell types, namely, fibroblasts and human mesenchymal stem cells. Our findings expand the toolkit of click chemistries for the fabrication of tunable biomaterials.
Collapse
Affiliation(s)
- Minye Jin
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Gülistan Koçer
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| | - Julieta I Paez
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| |
Collapse
|
7
|
Angstadt S, Zhu Q, Jaffee EM, Robinson DN, Anders RA. Pancreatic Ductal Adenocarcinoma Cortical Mechanics and Clinical Implications. Front Oncol 2022; 12:809179. [PMID: 35174086 PMCID: PMC8843014 DOI: 10.3389/fonc.2022.809179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to low therapeutic response rates and poor prognoses. Majority of patients present with symptoms post metastatic spread, which contributes to its overall lethality as the 4th leading cause of cancer-related deaths. Therapeutic approaches thus far target only one or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion, or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early micrometastases, and an immunosuppressive tumor microenvironment contribute to the inefficacy of current standard treatments and specific molecular-targeted therapies. To effectively combat cancers like PDAC, we need an innovative approach that can simultaneously impact the multiple hallmarks driving cancer progression. Here, we present the mechanical properties generated by the cell’s cortical cytoskeleton, with a spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC followed by a compilation of studies connecting the cortical cytoskeleton and mechanical properties to proliferation, metastasis, immune cell interactions, cancer cell stemness, and/or metabolism. We further elaborate on the implications of these findings in disease progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s mechanical system has already been shown to prevent metastasis in preclinical models, but it has greater potential for target exploration since it is a foundational property of the cell that regulates various oncogenic behaviors.
Collapse
Affiliation(s)
- Shantel Angstadt
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qingfeng Zhu
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas N. Robinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| | - Robert A. Anders
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Douglas N. Robinson, ; Robert A. Anders,
| |
Collapse
|
8
|
Keller CR, Hu Y, Ruud KF, VanDeen AE, Martinez SR, Kahn BT, Zhang Z, Chen RK, Li W. Human Breast Extracellular Matrix Microstructures and Protein Hydrogel 3D Cultures of Mammary Epithelial Cells. Cancers (Basel) 2021; 13:cancers13225857. [PMID: 34831010 PMCID: PMC8616054 DOI: 10.3390/cancers13225857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Human breast tissue extracellular matrix (ECM) is a microenvironment essential for the survival and biological activities of mammary epithelial cells. The ECM structural features of human breast tissues remain poorly defined. In this study, we identified the structural and mechanical properties of human normal breast and invasive ductal carcinoma tissue ECM using histological methods and atomic force microscopy. Additionally, a protein hydrogel was generated using human breast tissue ECM and defined for its microstructural features using immunofluorescence imaging and machine learning. Furthermore, we examined the three-dimensional growth of normal mammary epithelial cells or breast cancer cells cultured on the ECM protein hydrogel, where the cells exhibited biological phenotypes like those seen in native breast tissues. Our data provide novel insights into cancer cell biology, tissue microenvironment mimicry and engineering, and native tissue ECM-based biomedical and pharmaceutical applications. Abstract Tissue extracellular matrix (ECM) is a structurally and compositionally unique microenvironment within which native cells can perform their natural biological activities. Cells grown on artificial substrata differ biologically and phenotypically from those grown within their native tissue microenvironment. Studies examining human tissue ECM structures and the biology of human tissue cells in their corresponding tissue ECM are lacking. Such investigations will improve our understanding about human pathophysiological conditions for better clinical care. We report here human normal breast tissue and invasive ductal carcinoma tissue ECM structural features. For the first time, a hydrogel was successfully fabricated using whole protein extracts of human normal breast ECM. Using immunofluorescence staining of type I collagen (Col I) and machine learning of its fibrous patterns in the polymerized human breast ECM hydrogel, we have defined the microstructural characteristics of the hydrogel and compared the microstructures with those of other native ECM hydrogels. Importantly, the ECM hydrogel supported 3D growth and cell-ECM interaction of both normal and cancerous mammary epithelial cells. This work represents further advancement toward full reconstitution of the human breast tissue microenvironment, an accomplishment that will accelerate the use of human pathophysiological tissue-derived matrices for individualized biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Yang Hu
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Kelsey F. Ruud
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Anika E. VanDeen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic and Providence Regional Cancer Partnership, Everett, WA 98201, USA;
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Barry T. Kahn
- CellNetix Pathology & Laboratories, Seattle, WA 98104, USA;
- Providence Regional Medical Center, Everett, WA 98201, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Roland K. Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
- Correspondence:
| |
Collapse
|
9
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
10
|
Hui E, Sumey JL, Caliari SR. Click-functionalized hydrogel design for mechanobiology investigations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:670-707. [PMID: 36338897 PMCID: PMC9631920 DOI: 10.1039/d1me00049g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of click-functionalized hydrogels in recent years has coincided with rapid growth in the fields of mechanobiology, tissue engineering, and regenerative medicine. Click chemistries represent a group of reactions that possess high reactivity and specificity, are cytocompatible, and generally proceed under physiologic conditions. Most notably, the high level of tunability afforded by these reactions enables the design of user-controlled and tissue-mimicking hydrogels in which the influence of important physical and biochemical cues on normal and aberrant cellular behaviors can be independently assessed. Several critical tissue properties, including stiffness, viscoelasticity, and biomolecule presentation, are known to regulate cell mechanobiology in the context of development, wound repair, and disease. However, many questions still remain about how the individual and combined effects of these instructive properties regulate the cellular and molecular mechanisms governing physiologic and pathologic processes. In this review, we discuss several click chemistries that have been adopted to design dynamic and instructive hydrogels for mechanobiology investigations. We also chart a path forward for how click hydrogels can help reveal important insights about complex tissue microenvironments.
Collapse
Affiliation(s)
- Erica Hui
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
11
|
León-Campos MI, Claudio-Rizo JA, Rodriguez-Fuentes N, Cabrera-Munguía DA, Becerra-Rodriguez JJ, Herrera-Guerrero A, Soriano-Corral F. Biocompatible interpenetrating polymeric networks in hydrogel state comprised from jellyfish collagen and polyurethane. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Farino Reyes CJ, Pradhan S, Slater JH. The Influence of Ligand Density and Degradability on Hydrogel Induced Breast Cancer Dormancy and Reactivation. Adv Healthc Mater 2021; 10:e2002227. [PMID: 33929776 PMCID: PMC8555704 DOI: 10.1002/adhm.202002227] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/26/2021] [Indexed: 01/07/2023]
Abstract
The role of hydrogel properties in regulating the phenotype of triple negative metastatic breast cancer is investigated using four cell lines: the MDA-MB-231 parental line and three organotropic sublines BoM-1833 (bone-tropic), LM2-4175 (lung-tropic), and BrM2a-831 (brain-tropic). Each line is encapsulated and cultured for 15 days in three poly(ethylene glycol) (PEG)-based hydrogel formulations composed of proteolytically degradable PEG, integrin-ligating RGDS, and the non-degradable crosslinker N-vinyl pyrrolidone. Dormancy-associated metrics including viable cell density, proliferation, metabolism, apoptosis, chemoresistance, phosphorylated-ERK and -p38, and morphological characteristics are quantified. A multimetric classification approach is implemented to categorize each hydrogel-induced phenotype as: 1) growth, 2) balanced tumor dormancy, 3) balanced cellular dormancy, or 4) restricted survival, cellular dormancy. Hydrogels with high adhesivity and degradability promote growth. Hydrogels with no adhesivity, but high degradability, induce restricted survival, cellular dormancy in the parental line and balanced cellular dormancy in the organotropic lines. Hydrogels with reduced adhesivity and degradability induce balanced cellular dormancy in the parental and lung-tropic lines and balanced tumor mass dormancy in bone- and brain-tropic lines. The ability to induce escape from dormancy via dynamic incorporation of RGDS is also presented. These results demonstrate that ECM properties and organ-tropism synergistically regulate cancer cell phenotype and dormancy.
Collapse
Affiliation(s)
- Cindy J Farino Reyes
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| | - Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| |
Collapse
|
13
|
Preciado J, Lam T, Azarin SM, Lou E, Aksan A. Induction of dormancy by confinement: An agarose-silica biomaterial for isolating and analyzing dormant cancer cells. J Biomed Mater Res B Appl Biomater 2021; 109:2117-2130. [PMID: 33983681 DOI: 10.1002/jbm.b.34859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 11/07/2022]
Abstract
The principal cause of cancer deaths is the residual disease, which eventually results in metastases. Certain metastases are induced by disseminated dormancy-capable single cancer cells that can reside within the body undetected for months to years. Awakening of the dormant cells starts a cascade resulting in the patient's demise. Despite its established clinical significance, dormancy research and its clinical translation have been hindered by lack of in vitro models that can identify, isolate, and analyze dormancy-capable cells. We have previously shown that immobilization of cells in a stiff microenvironment induces dormancy in dormancy-capable cell lines. In this communication, we present a novel biomaterial and an in vitro immobilization method to isolate, analyze, and efficiently recover dormancy-capable cancer cells. MCF-7, MDA-MB-231, and MDA-MB-468 cells were individually coated with agarose using a microfluidic flow-focusing device. Coated cells were then immobilized in a rigid and porous silica gel. Dormancy induction by this process was validated by decreased Ki-67 expression, increased p38/ERK activity ratio, and reduced expression of CDK-2, cyclins D1, and E1. We showed that we can reliably and repeatedly induce dormancy in dormancy-capable MCF-7 cells and enhance the dormancy-capable sub-population in MDA-MB-231 cells. As expected, dormancy-resistant MDA-MB-468 cells did not survive immobilization. The dormant cells could be awakened on demand, by digesting the agarose gel in situ, and efficiently recovered by magnetically separating the silica gel, making the cells available for downstream analysis and testing. The awakened cells were shown to regain motility immediately, proliferating, and migrating normally.
Collapse
Affiliation(s)
- Julian Preciado
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tiffany Lam
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Thai VL, Griffin KH, Thorpe SW, Randall RL, Leach JK. Tissue engineered platforms for studying primary and metastatic neoplasm behavior in bone. J Biomech 2021; 115:110189. [PMID: 33385867 PMCID: PMC7855491 DOI: 10.1016/j.jbiomech.2020.110189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Cancer is the second leading cause of death in the United States, claiming more than 560,000 lives each year. Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and young adults, while bone is a common site of metastasis for tumors initiating from other tissues. The heterogeneity, continual evolution, and complexity of this disease at different stages of tumor progression drives a critical need for physiologically relevant models that capture the dynamic cancer microenvironment and advance chemotherapy techniques. Monolayer cultures have been favored for cell-based research for decades due to their simplicity and scalability. However, the nature of these models makes it impossible to fully describe the biomechanical and biochemical cues present in 3-dimensional (3D) microenvironments, such as ECM stiffness, degradability, surface topography, and adhesivity. Biomaterials have emerged as valuable tools to model the behavior of various cancers by creating highly tunable 3D systems for studying neoplasm behavior, screening chemotherapeutic drugs, and developing novel treatment delivery techniques. This review highlights the recent application of biomaterials toward the development of tumor models, details methods for their tunability, and discusses the clinical and therapeutic applications of these systems.
Collapse
Affiliation(s)
- Victoria L Thai
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States
| | - Katherine H Griffin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States; School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States
| | - Steven W Thorpe
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| | - R Lor Randall
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States; Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States.
| |
Collapse
|
15
|
Ort C, Lee W, Kalashnikov N, Moraes C. Disentangling the fibrous microenvironment: designer culture models for improved drug discovery. Expert Opin Drug Discov 2020; 16:159-171. [PMID: 32988224 DOI: 10.1080/17460441.2020.1822815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Standard high-throughput screening (HTS) assays rarely identify clinically viable 'hits', likely because cells do not experience physiologically realistic culture conditions. The biophysical nature of the extracellular matrix has emerged as a critical driver of cell function and response and recreating these factors could be critically important in streamlining the drug discovery pipeline. AREAS COVERED The authors review recent design strategies to understand and manipulate biophysical features of three-dimensional fibrous tissues. The effects of architectural parameters of the extracellular matrix and their resulting mechanical behaviors are deconstructed; and their individual and combined impact on cell behavior is examined. The authors then illustrate the potential impact of these physical features on designing next-generation platforms to identify drugs effective against breast cancer. EXPERT OPINION Progression toward increased culture complexity must be balanced against the demanding technical requirements for high-throughput screening; and strategies to identify the minimal set of microenvironmental parameters needed to recreate disease-relevant responses must be specifically tailored to the disease stage and organ system being studied. Although challenging, this can be achieved through integrative and multidisciplinary technologies that span microfabrication, cell biology, and tissue engineering.
Collapse
Affiliation(s)
- Carley Ort
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Wontae Lee
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University , Montreal, Canada.,Department of Biomedical Engineering, McGill University , Montreal, Canada.,Rosalind & Morris Goodman Cancer Research Center, McGill University , Montreal, Canada
| |
Collapse
|
16
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
17
|
Farino CJ, Pradhan S, Slater JH. The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance. ACS APPLIED BIO MATERIALS 2020; 3:5832-5844. [DOI: 10.1021/acsabm.0c00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, Delaware 19716, United States
- Department of Material Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711, United States
| |
Collapse
|
18
|
Su W, Ran Y, Ma L, Ma X, Yi Z, Chen G, Chen X, Deng Z, Tong Q, Li X. Micro-/Nanomechanics Dependence of Biomimetic Matrices upon Collagen-Based Fibrillar Aggregation and Arrangement. Biomacromolecules 2020; 21:3547-3560. [DOI: 10.1021/acs.biomac.0c00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Zhiwen Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
19
|
Leal-Egaña A, Balland M, Boccaccini AR. Re-engineering Artificial Neoplastic Milieus: Taking Lessons from Mechano- and Topobiology. Trends Biotechnol 2020; 38:142-153. [DOI: 10.1016/j.tibtech.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
|
20
|
Scott KE, Rychel K, Ranamukhaarachchi S, Rangamani P, Fraley SI. Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space. Acta Biomater 2019; 96:81-98. [PMID: 31176842 DOI: 10.1016/j.actbio.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Cells reside in a complex three-dimensional (3D) microenvironment where physical, chemical, and architectural features of the pericellular space regulate important cellular functions like migration, differentiation, and morphogenesis. A major goal of tissue engineering is to identify which properties of the pericellular space orchestrate these emergent cell behaviors and how. In this review, we highlight recent studies at the interface of biomaterials and single cell biophysics that are lending deeper insight towards this goal. Advanced methods have enabled the decoupling of architectural and mechanical features of the microenvironment, revealing multiple mechanisms of adhesion and mechanosensing modulation by biomaterials. Such studies are revealing important roles for pericellular space degradability, hydration, and adhesion competition in cell shape, volume, and differentiation regulation. STATEMENT OF SIGNIFICANCE: Cell fate and function are closely regulated by the local extracellular microenvironment. Advanced methods at the interface of single cell biophysics and biomaterials have shed new light on regulators of cell-pericellular space interactions by decoupling more features of the complex pericellular milieu than ever before. These findings lend deeper mechanistic insight into how biomaterials can be designed to fine-tune outcomes like differentiation, migration, and collective morphogenesis.
Collapse
Affiliation(s)
- Kiersten E Scott
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Kevin Rychel
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Sural Ranamukhaarachchi
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Padmini Rangamani
- Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Pradhan S, Slater JH. Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation. Biomaterials 2019; 215:119177. [PMID: 31176804 PMCID: PMC6592634 DOI: 10.1016/j.biomaterials.2019.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
During metastasis, disseminated tumor cells (DTCs) from the primary tumor infiltrate secondary organs and reside there for varying lengths of time prior to forming new tumors. The time delay between infiltration and active proliferation, known as dormancy, mediates the length of the latency period. DTCs may undergo one of four fates post-infiltration: death, cellular dormancy, dormant micrometastasis, or invasive growth which, is in part, mediated by extracellular matrix (ECM) properties. Recapitulation of these cell states using engineered hydrogels could facilitate the systematic and controlled investigation of the mechanisms by which ECM properties influence DTC fate. Toward this goal, we implemented a set of sixteen hydrogels with systematic variations in chemical (ligand (RGDS) density and enzymatic degradability) and mechanical (elasticity, swelling, mesh size) properties to investigate their influence on the fate of encapsulated metastatic breast cancer cells, MDA-MB-231. Cell viability, apoptosis, proliferation, metabolic activity, and morphological measurements were acquired at five-day intervals over fifteen days in culture. Analysis of the phenotypic metrics indicated the presence of four different cell states that were classified as: (1) high growth, (2) moderate growth, (3) single cell, restricted survival, dormancy, or (4) balanced dormancy. Correlating hydrogel properties with the resultant cancer cell state indicated that ligand (RGDS) density and enzymatic degradability likely had the most influence on cell fate. Furthermore, we demonstrate the ability to reactivate cells from the single cell, dormant state to the high growth state through a dynamic increase in ligand (RGDS) density after forty days in culture. This tunable engineered hydrogel platform offers insight into matrix properties regulating tumor dormancy, and the dormancy-proliferation switch, and may provide future translational benefits toward development of anti-dormancy therapeutic strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA.
| |
Collapse
|
22
|
Lu YC, Chu T, Hall MS, Fu DJ, Shi Q, Chiu A, An D, Wang LH, Pardo Y, Southard T, Danko CG, Liphardt J, Nikitin AY, Wu M, Fischbach C, Coonrod S, Ma M. Physical confinement induces malignant transformation in mammary epithelial cells. Biomaterials 2019; 217:119307. [PMID: 31271857 DOI: 10.1016/j.biomaterials.2019.119307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
The physical microenvironment of tumor cells plays an important role in cancer initiation and progression. Here, we present evidence that confinement - a new physical parameter that is apart from matrix stiffness - can also induce malignant transformation in mammary epithelial cells. We discovered that MCF10A cells, a benign mammary cell line that forms growth-arrested polarized acini in Matrigel, transforms into cancer-like cells within the same Matrigel material following confinement in alginate shell hydrogel microcapsules. The confined cells exhibited a range of tumor-like behaviors, including uncontrolled cellular proliferation and invasion. Additionally, 4-6 weeks after transplantation into the mammary fad pads of immunocompromised mice, the confined cells formed large palpable masses that exhibited histological features similar to that of carcinomas. Taken together, our findings suggest that physical confinement represents a previously unrecognized mechanism for malignancy induction in mammary epithelial cells and also provide a new, microcapsule-based, high throughput model system for testing new breast cancer therapeutics.
Collapse
Affiliation(s)
- Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY, 14853, USA.
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Matthew S Hall
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY, 14853, USA
| | - Dah-Jiun Fu
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Quanming Shi
- Bioengineering, Stanford University, 443 Via Ortega Shriram Center, Stanford, CA, 94305, USA; BioX Institute, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY, 14853, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY, 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY, 14853, USA
| | - Yehudah Pardo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Teresa Southard
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA; Department of Biomedical Science, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Jan Liphardt
- Bioengineering, Stanford University, 443 Via Ortega Shriram Center, Stanford, CA, 94305, USA; BioX Institute, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Alexander Yu Nikitin
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Scott Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA; Department of Biomedical Science, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA.
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Pradhan S, Sperduto JL, Farino CJ, Slater JH. Engineered In Vitro Models of Tumor Dormancy and Reactivation. J Biol Eng 2018; 12:37. [PMID: 30603045 PMCID: PMC6307145 DOI: 10.1186/s13036-018-0120-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
Metastatic recurrence is a major hurdle to overcome for successful control of cancer-associated death. Residual tumor cells in the primary site, or disseminated tumor cells in secondary sites, can lie in a dormant state for long time periods, years to decades, before being reactivated into a proliferative growth state. The microenvironmental signals and biological mechanisms that mediate the fate of disseminated cancer cells with respect to cell death, single cell dormancy, tumor mass dormancy and metastatic growth, as well as the factors that induce reactivation, are discussed in this review. Emphasis is placed on engineered, in vitro, biomaterial-based approaches to model tumor dormancy and subsequent reactivation, with a focus on the roles of extracellular matrix, secondary cell types, biochemical signaling and drug treatment. A brief perspective of molecular targets and treatment approaches for dormant tumors is also presented. Advances in tissue-engineered platforms to induce, model, and monitor tumor dormancy and reactivation may provide much needed insight into the regulation of these processes and serve as drug discovery and testing platforms.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716 USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711 USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716 USA
| |
Collapse
|