1
|
Jung YJ, Choi H, Choi IS, Lee JK. Biocompatible hydrogel coating on single living cells through visible light-induced polymerization. Chem Commun (Camb) 2024; 61:322-325. [PMID: 39632649 DOI: 10.1039/d4cc03075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Visible light-mediated photocatalysis leads to the efficient hydrogel coating of individual mammalian cells, functionalized with biocompatible anchor molecules tagged with fluorescein serving as a trifecta: photocatalyst, initiator, and fluorophore. NIH3T3 fibroblast cells are encapsulated within hydrogel shells of poly(ethylene glycol) diacrylate (PEGDA) and N-vinylpyrrolidone without any noticeable decrease in cell viability.
Collapse
Affiliation(s)
- Young Jae Jung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
- Department of Chemistry, KAIST, Daejeon 34141, South Korea.
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, South Korea.
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon 34141, South Korea.
| | - Jungkyu K Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
2
|
Feng M, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance. J Am Chem Soc 2024. [PMID: 39561393 DOI: 10.1021/jacs.4c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies. It emphasizes the crucial roles of these frameworks for bioentities in enhancing stability, boosting activity, imparting non-native functions, and synergizing bioentity systems. Concluding with a discussion of the challenges and prospects in the design, characterization, and practical applications of these biocomposites, this Perspective aims to inspire further development of high-performance biocomposites in this promising field.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Chen Y, Tan BSN, Cheng Y, Zhao Y. Artificial Polymerizations in Living Organisms for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202410579. [PMID: 39086115 DOI: 10.1002/anie.202410579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Within living organisms, numerous nanomachines are constantly involved in complex polymerization processes, generating a diverse array of biomacromolecules for maintaining biological activities. Transporting artificial polymerizations from lab settings into biological contexts has expanded opportunities for understanding and managing biological events, creating novel cellular compartments, and introducing new functionalities. This review summarizes the recent advancements in artificial polymerizations, including those responding to external stimuli, internal environmental factors, and those that polymerize spontaneously. More importantly, the cutting-edge biomedical application scenarios of artificial polymerization, notably in safeguarding cells, modulating biological events, improving diagnostic performance, and facilitating therapeutic efficacy are highlighted. Finally, this review outlines the key challenges and technological obstacles that remain for polymerizations in biological organisms, as well as offers insights into potential directions for advancing their practical applications and clinical trials.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Brynne Shu Ni Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
4
|
Mubarok W, Elvitigala KCML, Nakaya H, Hotta T, Sakai S. Cell Cycle Modulation through Physical Confinement in Micrometer-Thick Hydrogel Sheaths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18717-18726. [PMID: 39166379 DOI: 10.1021/acs.langmuir.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Recently, surface engineering of the cell membrane with biomaterials has attracted great attention for various biomedical applications. In this study, we investigated the possibility of modulating cell cycle progression using alginate and gelatin-based hydrogel sheaths with a thickness of ∼1 μm. The hydrogel sheath was formed on cell surfaces through cross-linking catalyzed by horseradish peroxidase immobilized on the cell surface. The hydrogel sheath did not decrease the viability (>95% during 2 days of culture) of the human cervical carcinoma cell line (HeLa) expressing the fluorescent ubiquitination-based cell cycle indicator 2 (HeLa/Fucci2). Coating the HeLa/Fucci2 cells with the hydrogel sheath resulted in a cell cycle arrest in the G2/M phase, which can be caused by the reduced F-actin formation. As a result of this cell cycle arrest, an inhibition of cell growth was observed in the HeLa/Fucci2 cells. Taken together, our results demonstrate that the hydrogel sheath coating on the cell surface is a feasible approach to modulating cell cycle progression.
Collapse
Affiliation(s)
- Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Kelum Chamara Manoj Lakmal Elvitigala
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroto Nakaya
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Hotta
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Whitewolf J, Highley CB. Conformal encapsulation of mammalian stem cells using modified hyaluronic acid. J Mater Chem B 2024; 12:7122-7134. [PMID: 38946474 PMCID: PMC11268093 DOI: 10.1039/d4tb00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Micro- and nanoencapsulation of cells has been studied as a strategy to protect cells from environmental stress and promote survival during delivery. Hydrogels used in encapsulation can be modified to influence cell behaviors and direct assembly in their surroundings. Here, we report a system that conformally encapsulated stem cells using hyaluronic acid (HA). We successfully modified HA with lipid, thiol, and maleimide pendant groups to facilitate a hydrogel system in which HA was deposited onto cell plasma membranes and subsequently crosslinked through thiol-maleimide click chemistry. We demonstrated conformal encapsulation of both neural stem cells (NSCs) and mesenchymal stromal cells (MSCs), with viability of both cell types greater than 90% after encapsulation. Additional material could be added to the conformal hydrogel through alternating addition of thiol-modified and maleimide-modified HA in a layering process. After encapsulation, we tracked egress and viability of the cells over days and observed differential responses of cell types to conformal hydrogels both according to cell type and the amount of material deposited on the cell surfaces. Through the design of the conformal hydrogels, we showed that multicellular assembly could be created in suspension and that encapsulated cells could be immobilized on surfaces. In conjunction with photolithography, conformal hydrogels enabled rapid assembly of encapsulated cells on hydrogel substrates with resolution at the scale of 100 μm.
Collapse
Affiliation(s)
- Jack Whitewolf
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
| | - Christopher B Highley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
6
|
Wu DJ, Rutten MGTA, Huang J, Schotman MJG, van Sprang JF, Tiemeijer BM, ter Huurne GM, Wijnands SPW, Diba M, Dankers PYW. Tuning Structural Organization via Molecular Design and Hierarchical Assembly to Develop Supramolecular Thermoresponsive Hydrogels. Macromolecules 2024; 57:6606-6615. [PMID: 39071041 PMCID: PMC11270986 DOI: 10.1021/acs.macromol.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The cellular microenvironment is composed of a dynamic hierarchical fibrillar architecture providing a variety of physical and bioactive signals to the surrounding cells. This dynamicity, although common in biology, is a challenge to control in synthetic matrices. Here, responsive synthetic supramolecular monomers were designed that are able to assemble into hierarchical fibrous structures, combining supramolecular fiber formation via hydrogen bonding interactions, with a temperature-responsive hydrophobic collapse, resulting in cross-linking and hydrogel formation. Therefore, amphiphilic molecules were synthesized, composed of a hydrogen bonding ureido-pyrimidinone (UPy) unit, a hydrophobic alkyl spacer, and a hydrophilic oligo(ethylene glycol) tail. The temperature responsive behavior was introduced by functionalizing these supramolecular amphiphiles with a relatively short poly(N-isopropylacrylamide) (PNIPAM) chain (M n ∼ 2.5 or 5.5 kg/mol). To precisely control the assembly of these monomers, the length of the alkyl spacer between the UPy moiety and PNIPAM was varied in length. A robust sol-gel transition, with the dodecyl UPy-PNIPAM molecule, was obtained, with a network elasticity enhancing over 2000 times upon heating above room temperature. The UPy-PNIPAM compounds with shorter alkyl spacers were already hydrogels at room temperature. The sol-gel transition of the dodecyl UPy-PNIPAM hydrogelator could be tuned by the incorporation of different UPy-functionalized monomers. Furthermore, we demonstrated the suitability of this system for microfluidic cell encapsulation through a convenient temperature sol-gel transition. Our results indicate that this novel thermoresponsive supramolecular system offers a modular platform to study and guide single-cell behavior.
Collapse
Affiliation(s)
- Dan Jing Wu
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Martin G. T. A. Rutten
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Jingyi Huang
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Maaike J. G. Schotman
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Johnick F. van Sprang
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Bart M. Tiemeijer
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven MB 5600, The Netherlands
| | - Gijs M. ter Huurne
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Macromolecular and Organic Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Sjors P. W. Wijnands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Mani Diba
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Department
of Dentistry-Regenerative Biomaterials, Research Institute for Medical
Innovation, Radboud University Medical Center, 6525EX ,Nijmegen 6500 HB, The Netherlands
| | - Patricia Y. W. Dankers
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| |
Collapse
|
7
|
Kumarasinghe U, Hasturk O, Wang B, Rudolph S, Chen Y, Kaplan DL, Staii C. Impact of Silk-Ionomer Encapsulation on Immune Cell Mechanical Properties and Viability. ACS Biomater Sci Eng 2024; 10:4311-4322. [PMID: 38718147 DOI: 10.1021/acsbiomaterials.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Encapsulation of single cells is a powerful technique used in various fields, such as regenerative medicine, drug delivery, tissue regeneration, cell-based therapies, and biotechnology. It offers a method to protect cells by providing cytocompatible coatings to strengthen cells against mechanical and environmental perturbations. Silk fibroin, derived from the silkworm Bombyx mori, is a promising protein biomaterial for cell encapsulation due to the cytocompatibility and capacity to maintain cell functionality. Here, THP-1 cells, a human leukemia monocytic cell line, were encapsulated with chemically modified silk polyelectrolytes through electrostatic layer-by-layer deposition. The effectiveness of the silk nanocoating was assessed using scanning electron microscopy (SEM) and confocal microscopy and on cell viability and proliferation by Alamar Blue assay and live/dead staining. An analysis of the mechanical properties of the encapsulated cells was conducted using atomic force microscopy nanoindentation to measure elasticity maps and cellular stiffness. After the cells were encapsulated in silk, an increase in their stiffness was observed. Based on this observation, we developed a mechanical predictive model to estimate the variations in stiffness in relation to the thickness of the coating. By tuning the cellular assembly and biomechanics, these encapsulations promote systems that protect cells during biomaterial deposition or processing in general.
Collapse
Affiliation(s)
- Udathari Kumarasinghe
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Brook Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
9
|
An C, Shao F, Long C, Zhang Y, Nie W, Zeng R, Dou Z, Zhao Y, Lin Y, Zhang S, Zhang L, Ren C, Zhang Y, Zhou G, Wang H, Liu J. Local delivery of stem cell spheroids with protein/polyphenol self-assembling armor to improve myocardial infarction treatment via immunoprotection and immunoregulation. Biomaterials 2024; 307:122526. [PMID: 38513434 DOI: 10.1016/j.biomaterials.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Stem cell therapies have shown great potential for treating myocardial infarction (MI) but are limited by low cell survival and compromised functionality due to the harsh microenvironment at the disease site. Here, we presented a Mesenchymal stem cell (MSC) spheroid-based strategy for MI treatment by introducing a protein/polyphenol self-assembling armor coating on the surface of cell spheroids, which showed significantly enhanced therapeutic efficacy by actively manipulating the hostile pathological MI microenvironment and enabling versatile functionality, including protecting the donor cells from host immune clearance, remodeling the ROS microenvironment and stimulating MSC's pro-healing paracrine secretion. The underlying mechanism was elucidated, wherein the armor protected to prolong MSCs residence at MI site, and triggered paracrine stimulation of MSCs towards immunoregulation and angiogenesis through inducing hypoxia to provoke glycolysis in stem cells. Furthermore, local delivery of coated MSC spheroids in MI rat significantly alleviated local inflammation and subsequent fibrosis via mediation macrophage polarization towards pro-healing M2 phenotype and improved cardiac function. In general, this study provided critical insight into the enhanced therapeutic efficacy of stem cell spheroids coated with a multifunctional armor. It potentially opens up a new avenue for designing immunomodulatory treatment for MI via stem cell therapy empowered by functional biomaterials.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Wen Nie
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, PR China
| | - Rui Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuan Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuanyuan Lin
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Faculty of Medicine, Dalian University of Technology, Dalian, 116023, PR China; Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, 116044, PR China
| | - Yang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China.
| |
Collapse
|
10
|
Huang G, Shen H, Xu K, Shen Y, Jiale Jin, Chu G, Xing H, Feng Z, Wang Y. Single-Cell Microgel Encapsulation Improves the Therapeutic Efficacy of Mesenchymal Stem Cells in Treating Intervertebral Disc Degeneration via Inhibiting Pyroptosis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0311. [PMID: 38371273 PMCID: PMC10871001 DOI: 10.34133/research.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
While mesenchymal stem cell (MSC) shows great potentials in treating intervertebral disc degeneration, most MSC die soon after intradiscal transplantation, resulting in inferior therapeutic efficacy. Currently, bulk hydrogels are the common solution to improve MSC survival in tissues, although hydrogel encapsulation impairs MSC migration and disrupts extracellular microenvironment. Cell hydrogel encapsulation has been proposed to overcome the limitation of traditional bulk hydrogels, yet this technique has not been used in treating disc degeneration. Using a layer-by-layer self-assembly technique, we fabricated alginate and gelatin microgel to encapsulate individual MSC for treating disc degeneration. The small size of microgel allowed intradiscal injection of coated MSC. We demonstrated that pyroptosis was involved in MSC death under oxidative stress stimulation, and microgel coating suppressed pyroptosis activation by maintaining mitochondria homeostasis. Microgel coating protected MSC in the harsh disc microenvironment, while retaining vital cellular functions such as migration, proliferation, and differentiation. In a rat model of disc degeneration, coated MSC exhibits prolonged retention in the disc and better efficacy of attenuating disc degeneration, as compared with bare MSC treatment alone. Further, microgel-coated MSC exhibited improved therapeutic effects in treating disc degeneration via suppressing the activation of pyroptosis in the disc. For the first time, microgel-encapsulated MSC was used to treat disc degeneration and obtain encouraging outcomes. The developed biocompatible single-cell hydrogel is an effective strategy to protect MSC and maintain cellular functions and may be an efficacious approach to improving the efficacy of MSC therapy in treating disc degeneration. The objective of this study is to improve the efficacy of cell therapy for treating disc degeneration using single-cell hydrogel encapsulation and further to understand related cytoprotective mechanisms.
Collapse
Affiliation(s)
- Guanrui Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haotian Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaiwang Xu
- Zhejiang University, Hangzhou 310058, China
| | - Yifan Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiale Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongyuan Xing
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhiyun Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yue Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
11
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
12
|
An C, Zhang S, Xu J, Zhang Y, Dou Z, Shao F, Long C, yang J, Wang H, Liu J. The microparticulate inks for bioprinting applications. Mater Today Bio 2024; 24:100930. [PMID: 38293631 PMCID: PMC10825055 DOI: 10.1016/j.mtbio.2023.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a groundbreaking technology for fabricating intricate and functional tissue constructs. Central to this technology are the bioinks, which provide structural support and mimic the extracellular environment, which is crucial for cellular executive function. This review summarizes the latest developments in microparticulate inks for 3D bioprinting and presents their inherent challenges. We categorize micro-particulate materials, including polymeric microparticles, tissue-derived microparticles, and bioactive inorganic microparticles, and introduce the microparticle ink formulations, including granular microparticles inks consisting of densely packed microparticles and composite microparticle inks comprising microparticles and interstitial matrix. The formulations of these microparticle inks are also delved into highlighting their capabilities as modular entities in 3D bioprinting. Finally, existing challenges and prospective research trajectories for advancing the design of microparticle inks for bioprinting are discussed.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, China
| | - Jiqing Xu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianhua yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
13
|
Maciel MM, Hassani Besheli N, Correia TR, Mano JF, Leeuwenburgh SCG. Encapsulation of pristine and silica-coated human adipose-derived mesenchymal stem cells in gelatin colloidal hydrogels for tissue engineering and bioprinting applications. Biotechnol J 2024; 19:e2300469. [PMID: 38403405 DOI: 10.1002/biot.202300469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Colloidal gels assembled from gelatin nanoparticles (GNPs) as particulate building blocks show strong promise to solve challenges in cell delivery and biofabrication, such as low cell survival and limited spatial retention. These gels offer evident advantages to facilitate cell encapsulation, but research on this topic is still limited, which hampers our understanding of the relationship between the physicochemical and biological properties of cell-laden colloidal gels. Human adipose-derived mesenchymal stem cells were successfully encapsulated in gelatin colloidal gels and evaluated their mechanical and biological performance over 7 days. The cells dispersed well within the gels without compromising gel cohesiveness, remained viable, and spread throughout the gels. Cells partially coated with silica were introduced into these gels, which increased their storage moduli and decreased their self-healing capacity after 7 days. This finding demonstrates the ability to modulate gel stiffness by incorporating cells partially coated with silica, without altering the solid content or introducing additional particles. Our work presents an efficient method for cell encapsulation while preserving gel integrity, expanding the applicability of colloidal hydrogels for tissue engineering and bioprinting. Overall, our study contributes to the design of improved cell delivery systems and biofabrication techniques.
Collapse
Affiliation(s)
- Marta M Maciel
- CEB, Campus de Gualtar, Centre of Biological Engineering University of Minho, Braga, Portugal
- Department of Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Negar Hassani Besheli
- Department of Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Tiago R Correia
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal
| | - João F Mano
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal
| | | |
Collapse
|
14
|
Chew CH, Lee HL, Chen AL, Huang WT, Chen SM, Liu YL, Chen CC. Review of electrospun microtube array membrane (MTAM)-a novel new class of hollow fiber for encapsulated cell therapy (ECT) in clinical applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35348. [PMID: 38247238 DOI: 10.1002/jbm.b.35348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 01/23/2024]
Abstract
Encapsulated cell therapy (ECT) shows significant potential for treating neurodegenerative disorders including Alzheimer's and Parkinson's, which currently lack curative medicines and must be managed symptomatically. This novel technique encapsulates functional cells with a semi-permeable membrane, providing protection while enabling critical nutrients and therapeutic substances to pass through. Traditional ECT procedures, on the other hand, pose difficulties in terms of cell survival and retrieval. We introduce the Microtube Array Membrane (MTAM), a revolutionary technology that solves these constraints, in this comprehensive overview. Microtube Array Membrane has distinct microstructures that improve encapsulated cells' long-term viability by combining the advantages of macro and micron scales. Importantly, the MTAM platform improves biosafety by allowing the entire encapsulated unit to be retrieved in the event of an adverse reaction. Our findings show that MTAM-based ECT has a great potential in a variety of illness situations. For cancer treatment, hybridoma cells secreting anti-CEACAM 6 antibodies inhibit triple-negative breast cancer cell lines for an extended period of time. In animal brain models of Alzheimer's disease, hybridoma cells secreting anti-pTau antibodies successfully reduce pTau buildup, accompanied by improvements in memory performance. In mouse models, MTAM-encapsulated primary cardiac mesenchymal stem cells dramatically improve overall survival and heart function. These findings illustrate the efficacy and adaptability of MTAM-based ECT in addressing major issues such as immunological isolation, cell viability, and patient safety. We provide new possibilities for the treatment of neurodegenerative illnesses and other conditions by combining the potential of ECT with MTAM. Continued research and development in this subject has a lot of promise for developing cell therapy and giving hope to people suffering from chronic diseases.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Amanda Lin Chen
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
| | - Shu-Mei Chen
- Division of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research and Marketing Department, MTAMTech Corporation, Taipei, Taiwan
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Falcone N, Ermis M, Tamay DG, Mecwan M, Monirizad M, Mathes TG, Jucaud V, Choroomi A, de Barros NR, Zhu Y, Vrana NE, Kraatz HB, Kim HJ, Khademhosseini A. Peptide Hydrogels as Immunomaterials and Their Use in Cancer Immunotherapy Delivery. Adv Healthc Mater 2023; 12:e2301096. [PMID: 37256647 PMCID: PMC10615713 DOI: 10.1002/adhm.202301096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Nihal Engin Vrana
- SPARTHA Medical, CRBS 1 Rue Eugene Boeckel, Strasbourg, 67000, France
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| |
Collapse
|
16
|
Zhou Y, Liu K, Zhang H. Biomimetic Mineralization: From Microscopic to Macroscopic Materials and Their Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:3516-3531. [PMID: 36944024 DOI: 10.1021/acsabm.3c00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Biomineralization is an attractive pathway to produce mineral-based biomaterials with high performance and hierarchical structures. To date, the biomineralization process and mechanism have been extensively studied, especially for the formation of bone, teeth, and nacre. Inspired by those, abundant biomimetic mineralized materials have been fabricated for biomedical applications. Those bioinspired materials generally exhibit great mechanical properties and biological functions. Nevertheless, substantial gaps remain between biomimetic materials and natural materials, particularly with respect to mechanical properties and mutiscale structures. This Review summarizes the recent progress of micro- and macroscopic biomimetic mineralization from the perspective of materials synthesis and biomedical applications. To begin with, we discuss the progress of biomimetic mineralization at the microscopic level. The mechanical strength, stability, and functionality of the nano- and micromaterials are significantly improved by introducing biominerals, such as DNA nanostructures, nanovaccines, and living cells. Next, numerous biomimetic strategies based on biomineralization at the macroscopic scale are highlighted, including in situ mineralization and bottom-up assembly of mineralized building blocks. Finally, challenges and future perspectives regarding the development of biomimetic mineralization are also presented with the aim of offering insights for the rational design and fabrication of next-generation biomimetic mineralized materials.
Collapse
Affiliation(s)
- Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
17
|
Hasturk O, Sahoo JK, Kaplan DL. Synthesis and characterization of silk-poly(guluronate) hybrid polymers for the fabrication of dual crosslinked, mechanically dynamic hydrogels. POLYMER 2023; 281:126129. [PMID: 37483847 PMCID: PMC10357961 DOI: 10.1016/j.polymer.2023.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The rapid ionic crosslinking of alginate has been actively studied for biomedical applications including hydrogel scaffolds for tissue engineering, injectable gels, and 3D bioprinting. However, the poor structural stability of ionic crosslinks under physiological conditions limits the widespread applications of these hydrogels. Moreover, the lack of cell adhesion to the material combined with the inability of proteases to degrade alginate further restrict utility as hydrogel scaffolds. Blends of alginate with silk fibroin have been proposed for improved structural and mechanical properties, but potential phase separation between the hydrophobic protein and the hydrophilic polysaccharide remains an issue. In this study, we demonstrated the synthesis of a hybrid biopolymer composed of a silk backbone with side chains of poly(guluronate) isolated from alginate to introduce rapid ionic crosslinking on enzymatically crosslinked silk-based hydrogels for on-demand and reversible stiffening and softening properties. Dual crosslinked macro- and microgels of silk fibroin-poly(guluronate) (SF-PG) hybrid polymers displayed dynamic morphology with reversible shrinking and swelling behavior. SF-PG hydrogel discs demonstrated dynamic mechanics with compressive moduli ranging from less than 5 kPa to over 80 kPa and underwent proteolytic degradation unlike covalently crosslinked alginate controls. SF-PG gels supplemented with gelatin substituted with tyramine or both tyramine and PG also supported the attachment and survival of murine fibroblasts, suggesting potential uses of these new hydrogels in mammalian cell culture to investigate cellular responses to dynamic mechanics or modeling of diseases defined by matrix mechanics, such as fibrosis and cancer.
Collapse
Affiliation(s)
- Onur Hasturk
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| | | | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| |
Collapse
|
18
|
An C, Zhou R, Zhang H, Zhang Y, Liu W, Liu J, Bao B, Sun K, Ren C, Zhang Y, Lin Q, Zhang L, Cheng F, Song J, Zhu L, Wang H. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. Acta Biomater 2023; 157:91-107. [PMID: 36427687 DOI: 10.1016/j.actbio.2022.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Injectable granular gels consisting of densely packed microgels serving as scaffolding biomaterial have recently shown great potential for applications in tissue regeneration, which allow administration via minimally invasive surgery, on-target cargo delivery, and high efficiency in nutrient/waste exchange. However, limitations such as insufficient mechanical strength, structural integrity, and uncontrollable differentiation of the encapsulated cells in the scaffolds hamper their further applications in the biomedical field. Herein, we developed a new class of granular gels via bottom-up assembly of cell-laden microgels via photo-triggered imine-crosslinking (PIC) chemistry based on the microfluidic technique. The particulate nature of the granular gels rendered them with shear-thinning and self-healing behavior, thereby functioning as an injectable and adaptable cellularized scaffold for bone tissue regeneration. Specifically, single cell-laden, monodisperse microgels composed of methacrylate- and o-nitrobenzene-functionalized hyaluronic acid and gelatin were prepared using a high-throughput microfluidic technique with a production rate up to 3.7 × 108 microgels/hr, wherein the PIC chemistry alleviated the oxygen inhibition on free-radical polymerization and facilitated enhanced fabrication accuracy, accelerated gelation rate, and improved network strength. Further in vitro and in vivo studies demonstrated that the microgels can serve as carriers to support the activity of the encapsulated mesenchymal stem cells; these cell-laden microgels can also be used as cellularized bone fillers to induce the regeneration of bone tissues as evidenced by the in vivo experiment using the rat femoral condyle defect model. In general, these results represent a significant step toward the precise fabrication of engineered tissue mimics with single-cell resolution and high cell-density and can potentially offer a powerful tool for the design and applications of a next generation of tissue engineering strategy. STATEMENT OF SIGNIFICANCE: Using microfluidic droplet-based technology, we hereby developed a new class of injectable and moldable granular gels via bottom-up assembly of cell-laden microgels as a versatile platform for tissue regeneration. Phototriggered imine-crosslinking chemistry was introduced for microgel cross-linkage, which allowed for the fabrication of microgels with improved matrix homogeneity, accelerated gelation process, and enhanced mechanical strength. We demonstrated that the microgel building blocks within the granular gels facilitated the proliferation and differentiation of the encapsulated mesenchymal stem cells, which can further serve as a cellularized scaffold for the treatment of bone defects.
Collapse
Affiliation(s)
- Chuanfeng An
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Central Laboratory, Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Renjie Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haoyue Zhang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Weijian Liu
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China
| | - Jia Liu
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kai Sun
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China; Faculty of Medicine, Dalian University of Technology,Dalian 116023, P. R. China
| | - Yang Zhang
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian 116024, PR China
| | - Fang Cheng
- Key State Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jiankang Song
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Linyong Zhu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
19
|
Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater 2023; 19:392-405. [PMID: 35574053 PMCID: PMC9062422 DOI: 10.1016/j.bioactmat.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 10/27/2022] Open
Abstract
Living microtissues are used in a multitude of applications as they more closely resemble native tissue physiology, as compared to 2D cultures. Microtissues are typically composed of a combination of cells and materials in varying combinations, which are dictated by the applications' design requirements. Their applications range wide, from fundamental biological research such as differentiation studies to industrial applications such as cruelty-free meat production. However, their translation to industrial and clinical settings has been hindered due to the lack of scalability of microtissue production techniques. Continuous microfluidic processes provide an opportunity to overcome this limitation as they offer higher throughput production rates as compared to traditional batch techniques, while maintaining reproducible control over microtissue composition and size. In this review, we provide a comprehensive overview of the current approaches to engineer microtissues with a focus on the advantages of, and need for, the use of continuous processes to produce microtissues in large quantities. Finally, an outlook is provided that outlines the required developments to enable large-scale microtissue fabrication using continuous processes.
Collapse
Affiliation(s)
- Maik Schot
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Bas van Loo
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Tom Kamperman
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
20
|
Yang GH, Kang D, An S, Ryu JY, Lee K, Kim JS, Song MY, Kim YS, Kwon SM, Jung WK, Jeong W, Jeon H. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res 2022; 26:73. [PMID: 36471437 PMCID: PMC9720982 DOI: 10.1186/s40824-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/13/2022] [Indexed: 12/11/2022] Open
Abstract
Until recent, there are no ideal small diameter vascular grafts available on the market. Most of the commercialized vascular grafts are used for medium to large-sized blood vessels. As a solution, vascular tissue engineering has been introduced and shown promising outcomes. Despite these optimistic results, there are limitations to commercialization. This review will cover the need for extrusion-based 3D cell-printing technique capable of mimicking the natural structure of the blood vessel. First, we will highlight the physiological structure of the blood vessel as well as the requirements for an ideal vascular graft. Then, the essential factors of 3D cell-printing including bioink, and cell-printing system will be discussed. Afterwards, we will mention their applications in the fabrication of tissue engineered vascular grafts. Finally, conclusions and future perspectives will be discussed.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - SangHyun An
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jeong Yeop Ryu
- grid.258803.40000 0001 0661 1556Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok‑ro, Jung‑gu, Daegu, 41944 South Korea
| | - KyoungHo Lee
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jun Sik Kim
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Moon-Yong Song
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Young-Sik Kim
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Sang-Mo Kwon
- grid.262229.f0000 0001 0719 8572Department of Physiology, School of Medicine, Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870 South Korea
| | - Won-Kyo Jung
- grid.412576.30000 0001 0719 8994Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Woonhyeok Jeong
- grid.412091.f0000 0001 0669 3109Department of Plastic and Reconstructive Surgery, Dongsan Medical Center, Keimyung University College of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 South Korea
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| |
Collapse
|
21
|
Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. MICROMACHINES 2022; 13:mi13071038. [PMID: 35888855 PMCID: PMC9318225 DOI: 10.3390/mi13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
An osteochondral defect is a common and frequent disease in orthopedics and treatment effects are not good, which can be harmful to patients. Hydrogels have been applied in the repair of cartilage defects. Many studies have reported that hydrogels can effectively repair osteochondral defects through loaded cells or non-loaded cells. As a new type of hydrogel, photo-crosslinked hydrogel has been widely applied in more and more fields. Meanwhile, 3D bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. Although photo-crosslinkable hydrogel-based 3D bioprinting has some advantages for repairing bone cartilage defects, it also has some disadvantages. Our aim of this paper is to review the current status and prospect of photo-crosslinkable hydrogel-based 3D bioprinting for repairing osteochondral defects.
Collapse
|
22
|
Tiemeijer BM, Tel J. Hydrogels for Single-Cell Microgel Production: Recent Advances and Applications. Front Bioeng Biotechnol 2022; 10:891461. [PMID: 35782502 PMCID: PMC9247248 DOI: 10.3389/fbioe.2022.891461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Single-cell techniques have become more and more incorporated in cell biological research over the past decades. Various approaches have been proposed to isolate, culture, sort, and analyze individual cells to understand cellular heterogeneity, which is at the foundation of every systematic cellular response in the human body. Microfluidics is undoubtedly the most suitable method of manipulating cells, due to its small scale, high degree of control, and gentle nature toward vulnerable cells. More specifically, the technique of microfluidic droplet production has proven to provide reproducible single-cell encapsulation with high throughput. Various in-droplet applications have been explored, ranging from immunoassays, cytotoxicity assays, and single-cell sequencing. All rely on the theoretically unlimited throughput that can be achieved and the monodispersity of each individual droplet. To make these platforms more suitable for adherent cells or to maintain spatial control after de-emulsification, hydrogels can be included during droplet production to obtain “microgels.” Over the past years, a multitude of research has focused on the possibilities these can provide. Also, as the technique matures, it is becoming clear that it will result in advantages over conventional droplet approaches. In this review, we provide a comprehensive overview on how various types of hydrogels can be incorporated into different droplet-based approaches and provide novel and more robust analytic and screening applications. We will further focus on a wide range of recently published applications for microgels and how these can be applied in cell biological research at the single- to multicell scale.
Collapse
Affiliation(s)
- B. M. Tiemeijer
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, Eindhoven, Netherlands
| | - J. Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, Eindhoven, Netherlands
- *Correspondence: J. Tel,
| |
Collapse
|
23
|
Li Y, Yang L, Yu W, Yu X, Wen K, Shao B, Sun J, Shen J, Wang Z. Highly efficient and precise two-step cell selection method for tetramethylenedisulfotetramine-specific monoclonal antibody production. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127689. [PMID: 34799173 DOI: 10.1016/j.jhazmat.2021.127689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Monoclonal antibodies (mAbs) are useful biological tools for research, diagnostics, and pharmaceuticals. Here, we proposed a new mAb discovery platform named the two-step cell selection method (TCSM) for mAbs production of some small molecule haptens as antibiotic, toxins, and pesticides. The first step was performed by a fluorescence-activated cell sorter to enrich the hapten-specific B cells, the second step was an image-based precise pick of single hapten-specific hybridoma cells by confocal laser scanning microscopy. In this study, we used tetramethylenedisulfotetramine (TETS) as a model analyte, which is a highly lethal neurotoxic rodenticide. The TETS-specific hybridoma cells selection was completed within 10 days by the TCSM, compared with at least 40 days in the traditional hybridoma method (THM). The half maximal inhibitory concentration (IC50) of the best mAb 1G6 for TETS in the TCSM was 1.98 ng mL-1, and that of mAb 2B6 in the THM was 11.49 ng mL-1. Antibody-TETS recognition also showed more interactions in mAb 1G6 than in mAb 2B6. Then, the mAb 1G6 was then successfully applied to develop an icELISA for TETS in biological samples with satisfactory sensitivity, accuracy and precision. The results demonstrated that the TCSM was a feasible and efficient method for mAb discovering of poisonous hapten molecules.
Collapse
Affiliation(s)
- Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing 100193, China
| | - Ling Yang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing 100193, China; Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing 100193, China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing 100193, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory of Food Quality and Safety, Beijing 100193, China.
| |
Collapse
|
24
|
Lin D, Chen X, Liu Y, Lin Z, Luo Y, Fu M, Yang N, Liu D, Cao J. Microgel Single-Cell Culture Arrays on a Microfluidic Chip for Selective Expansion and Recovery of Colorectal Cancer Stem Cells. Anal Chem 2021; 93:12628-12638. [PMID: 34495647 DOI: 10.1021/acs.analchem.1c02335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer stem cells (CSCs) are rare and lack definite biomarkers, necessitating new methods for a robust expansion. Here, we developed a microfluidic single-cell culture (SCC) approach for expanding and recovering colorectal CSCs from both cell lines and tumor tissues. By incorporating alginate hydrogels with droplet microfluidics, a high-density microgel array can be formed on a microfluidic chip that allows for single-cell encapsulation and nonadhesive culture. The SCC approach takes advantage of the self-renewal property of stem cells, as only the CSCs can survive in the SCC and form tumorspheres. Consecutive imaging confirmed the formation of single-cell-derived tumorspheres, mainly from a population of small-sized cells. Through on-chip decapsulation of the alginate microgel, ∼6000 live cells can be recovered in a single run, which is sufficient for most biological assays. The recovered cells were verified to have the genetic and phenotypic characteristics of CSCs. Furthermore, multiple CSC-specific targets were identified by comparing the transcriptomics of the CSCs with the primary cancer cells. To summarize, the microgel SCC array offers a label-free approach to obtain sufficient quantities of CSCs and thus is potentially useful for understanding cancer biology and developing personalized CSC-targeting therapies.
Collapse
Affiliation(s)
- Dongguo Lin
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.,Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Xiao Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yang Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zhun Lin
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yanzhang Luo
- Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Mingpeng Fu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Na Yang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Dayu Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,Department of Laboratory Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.,Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Jie Cao
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,Department of General Surgery, The Second Affiliated Hospital of South China University of Technology, 1, Panfu Road, Guangzhou 510180, China
| |
Collapse
|
25
|
Clinical Application of the Novel Cell-Based Biosensor for the Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen: A Practical Approach. BIOSENSORS 2021; 11:bios11070224. [PMID: 34356695 PMCID: PMC8301797 DOI: 10.3390/bios11070224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
The availability of antigen tests for SARS-CoV-2 represents a major step for the mass surveillance of the incidence of infection, especially regarding COVID-19 asymptomatic and/or early-stage patients. Recently, we reported the development of a Bioelectric Recognition Assay-based biosensor able to detect the SARS-CoV-2 S1 spike protein expressed on the surface of the virus in just three minutes, with high sensitivity and selectivity. The working principle was established by measuring the change of the electric potential of membrane-engineered mammalian cells bearing the human chimeric spike S1 antibody after attachment of the respective viral protein. In the present study, we applied the novel biosensor to patient-derived nasopharyngeal samples in a clinical set-up, with absolutely no sample pretreatment. More importantly, membrane-engineered cells were pre-immobilized in a proprietary biomatrix, thus enabling their long-term preservation prior to use as well as significantly increasing their ease-of-handle as test consumables. The plug-and-apply novel biosensor was able to detect the virus in positive samples with a 92.8% success rate compared to RT-PCR. No false negative results were recorded. These findings demonstrate the potential applicability of the biosensor for the early, routine mass screening of SARS-CoV-2 on a scale not yet realized.
Collapse
|
26
|
Lee H, Kim N, Rheem HB, Kim BJ, Park JH, Choi IS. A Decade of Advances in Single-Cell Nanocoating for Mammalian Cells. Adv Healthc Mater 2021; 10:e2100347. [PMID: 33890422 DOI: 10.1002/adhm.202100347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Strategic advances in the single-cell nanocoating of mammalian cells have noticeably been made during the last decade, and many potential applications have been demonstrated. Various cell-coating strategies have been proposed via adaptation of reported methods in the surface sciences and/or materials identification that ensure the sustainability of labile mammalian cells during chemical manipulation. Here an overview of the methodological development and potential applications to the healthcare sector in the nanocoating of mammalian cells made during the last decade is provided. The materials used for the nanocoating are categorized into polymers, hydrogels, polyphenolic compounds, nanoparticles, and minerals, and the corresponding strategies are described under the given set of materials. It also suggests, as a future direction, the creation of the cytospace system that is hierarchically composed of the physically separated but mutually interacting cellular hybrids.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Nayoung Kim
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Hyeong Bin Rheem
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Beom Jin Kim
- Department of Chemistry University of Ulsan Ulsan 44610 Korea
| | - Ji Hun Park
- Department of Science Education Ewha Womans University Seoul 03760 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| |
Collapse
|
27
|
Zhang Z, Liu Q, Tan J, Zhan X, Liu T, Wang Y, Lu G, Wu M, Zhang Y. Coating with flexible DNA network enhanced T-cell activation and tumor killing for adoptive cell therapy. Acta Pharm Sin B 2021; 11:1965-1977. [PMID: 34386331 PMCID: PMC8343197 DOI: 10.1016/j.apsb.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy (ACT) is an emerging powerful cancer immunotherapy, which includes a complex process of genetic modification, stimulation and expansion. During these in vitro or ex vivo manipulation, sensitive cells are inescapability subjected to harmful external stimuli. Although a variety of cytoprotection strategies have been developed, their application on ACT remains challenging. Herein, a DNA network is constructed on cell surface by rolling circle amplification (RCA), and T cell-targeted trivalent tetrahedral DNA nanostructure is used as a rigid scaffold to achieve high-efficient and selective coating for T cells. The cytoprotective DNA network on T-cell surface makes them aggregate over time to form cell clusters, which exhibit more resistance to external stimuli and enhanced activities in human peripheral blood mononuclear cells and liver cancer organoid killing model. Overall, this work provides a novel strategy for in vitro T cell-selective protection, which has a great potential for application in ACT.
Collapse
Affiliation(s)
- Ziyan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiaojuan Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jizhou Tan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxia Zhan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuting Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Gen Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510080, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Kim M, Kim H, Lee YS, Lee S, Kim SE, Lee UJ, Jung S, Park CG, Hong J, Doh J, Lee DY, Kim BG, Hwang NS. Novel enzymatic cross-linking-based hydrogel nanofilm caging system on pancreatic β cell spheroid for long-term blood glucose regulation. SCIENCE ADVANCES 2021; 7:eabf7832. [PMID: 34162541 PMCID: PMC8221614 DOI: 10.1126/sciadv.abf7832] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 05/17/2023]
Abstract
Pancreatic β cell therapy for type 1 diabetes is limited by low cell survival rate owing to physical stress and aggressive host immune response. In this study, we demonstrate a multilayer hydrogel nanofilm caging strategy capable of protecting cells from high shear stress and reducing immune response by interfering cell-cell interaction. Hydrogel nanofilm is fabricated by monophenol-modified glycol chitosan and hyaluronic acid that cross-link each other to form a nanothin hydrogel film on the cell surface via tyrosinase-mediated reactions. Furthermore, hydrogel nanofilm formation was conducted on mouse β cell spheroids for the islet transplantation application. The cytoprotective effect against physical stress and the immune protective effect were evaluated. Last, caged mouse β cell spheroids were transplanted into the type 1 diabetes mouse model and successfully regulated its blood glucose level. Overall, our enzymatic cross-linking-based hydrogel nanofilm caging method will provide a new platform for clinical applications of cell-based therapies.
Collapse
Affiliation(s)
- Minji Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunbum Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangjun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research of Advanced Materials (RIAM), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Tong Z, Jin L, Oliveira JM, Reis RL, Zhong Q, Mao Z, Gao C. Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact Mater 2021; 6:1375-1387. [PMID: 33210030 PMCID: PMC7658331 DOI: 10.1016/j.bioactmat.2020.10.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are three-dimensional platforms that serve as substitutes for native extracellular matrix. These materials are starting to play important roles in regenerative medicine because of their similarities to native matrix in water content and flexibility. It would be very advantagoues for researchers to be able to regulate cell behavior and fate with specific hydrogels that have tunable mechanical properties as biophysical cues. Recent developments in dynamic chemistry have yielded designs of adaptable hydrogels that mimic dynamic nature of extracellular matrix. The current review provides a comprehensive overview for adaptable hydrogel in regenerative medicine as follows. First, we outline strategies to design adaptable hydrogel network with reversible linkages according to previous findings in supramolecular chemistry and dynamic covalent chemistry. Next, we describe the mechanism of dynamic mechanical microenvironment influence cell behaviors and fate, including how stress relaxation influences on cell behavior and how mechanosignals regulate matrix remodeling. Finally, we highlight techniques such as bioprinting which utilize adaptable hydrogel in regenerative medicine. We conclude by discussing the limitations and challenges for adaptable hydrogel, and we present perspectives for future studies.
Collapse
Affiliation(s)
- Zongrui Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017, Barco GMR, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
30
|
Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002425. [PMID: 33747720 PMCID: PMC7967093 DOI: 10.1002/advs.202002425] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 05/14/2023]
Abstract
Cryopreservation technology has developed into a fundamental and important supporting method for biomedical applications such as cell-based therapeutics, tissue engineering, assisted reproduction, and vaccine storage. The formation, growth, and recrystallization of ice crystals are the major limitations in cell/tissue/organ cryopreservation, and cause fatal cryoinjury to cryopreserved biological samples. Flourishing anti-icing materials and strategies can effectively regulate and suppress ice crystals, thus reducing ice damage and promoting cryopreservation efficiency. This review first describes the basic ice cryodamage mechanisms in the cryopreservation process. The recent development of chemical ice-inhibition molecules, including cryoprotectant, antifreeze protein, synthetic polymer, nanomaterial, and hydrogel, and their applications in cryopreservation are summarized. The advanced engineering strategies, including trehalose delivery, cell encapsulation, and bioinspired structure design for ice inhibition, are further discussed. Furthermore, external physical field technologies used for inhibiting ice crystals in both the cooling and thawing processes are systematically reviewed. Finally, the current challenges and future perspectives in the field of ice inhibition for high-efficiency cryopreservation are proposed.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
31
|
Zhang L, Liu G, Lv K, Xin J, Wang Y, Zhao J, Hu W, Xiao C, Zhu K, Zhu L, Nan J, Feng Y, Zhu H, Chen W, Zhu W, Zhang J, Wang J, Wang B, Hu X. Surface-Anchored Nanogel Coating Endows Stem Cells with Stress Resistance and Reparative Potency via Turning Down the Cytokine-Receptor Binding Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003348. [PMID: 33552872 PMCID: PMC7856906 DOI: 10.1002/advs.202003348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 05/04/2023]
Abstract
Stem cell-based therapy has great potential in regenerative medicine. However, the survival and engraftment rates of transplanted stem cells in disease regions are poor and limit the effectiveness of cell therapy due to the fragility of stem cells. Here, an approach involving a single-cell coating of surface-anchored nanogel to regulate stem cell fate with anti-apoptosis capacity in the hypoxic and ischemic environment of infarcted hearts is developed for the first time. A polysialic acid-based system is used to anchor microbial transglutaminase to the external surface of the cell membrane, where it catalyzes the crosslinking of gelatin. The single-cell coating with surface-anchored nanogel endows mesenchymal stem cells (MSCs) with stress resistance by blocking the activity of apoptotic cytokines including the binding of tumor necrosis factor α (TNFα) to tumor necrosis factor receptor, which in turn maintains mitochondrial integrity, function and protects MSCs from TNFα-induces apoptosis. The administration of surface engineered MSCs to hearts results in significant improvements in engraftment, cardiac function, infarct size, and vascularity compared with using uncoated MSCs in treating myocardial infarction. The surface-anchored, biocompatible cell surface engineering with nanogel armor provides a new way to produce robust therapeutic stem cells and may explore immense potentials in cell-based therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
- College of Life ScienceZhejiang Chinese Medical UniversityHangzhou310053China
| | - Guowu Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
| | - Kaiqi Lv
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
| | - Yingchao Wang
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Jing Zhao
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Wangxing Hu
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Changchen Xiao
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Keyang Zhu
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Lianlian Zhu
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Jinliang Nan
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Ye Feng
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
| | - Huaying Zhu
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
- Zhejiang University School of MedicineHangzhou310058China
| | - Wei Chen
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
- Zhejiang University School of MedicineHangzhou310058China
| | - Wei Zhu
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Jianyi Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamAL35294USA
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009China
| |
Collapse
|
32
|
|
33
|
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Yong Wang
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
34
|
Shi P, Wang Y. Synthetic DNA for Cell-Surface Engineering. Angew Chem Int Ed Engl 2021; 60:11580-11591. [PMID: 33006229 DOI: 10.1002/anie.202010278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Indexed: 12/14/2022]
Abstract
The cell membrane is not only a physical barrier, but also a functional organelle that regulates the communication between a cell and its environment. The ability to functionalize the cell membrane with synthetic molecules or nanostructures would advance cellular functions beyond what evolution has provided. The aim of this Minireview is to introduce recent progress in using synthetic DNA and DNA-based nanostructures for cell-surface engineering. We first introduce chemical conjugation and physical binding methods for monovalent and polyvalent surface engineering. We then introduce the application of these methods for either the promotion or inhibition of cell-environment communication in numerous applications, including the promotion of cell-cell recognition, regulation of intracellular pathways, protection of therapeutic cells, and sensing of the intracellular and extracellular microenvironments. Lastly, we summarize current challenges existing in this area and potential solutions to solve these challenges.
Collapse
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
35
|
Abstract
Regenerative medicine is a novel scientific field that employs the use of stem cells as cell-based therapy for the regeneration and functional restoration of damaged tissues and organs. Stem cells bear characteristics such as the capacity for self-renewal and differentiation towards specific lineages and, therefore, serve as a backup reservoir in case of tissue injuries. Therapeutically, they can be autologously or allogeneically transplanted for tissue regeneration; however, allogeneic stem cell transplantation can provoke host immune responses leading to a host-versus-transplant reaction. A probable solution to this problem is stem cell encapsulation, a technique that utilizes various biomaterials for the creation of a semi-permeable membrane that encases the stem cells. Stem cell encapsulation can be accomplished by employing a great variety of natural and/or synthetic hydrogels and offers many benefits in regenerative medicine, including protection from the host’s immune system and mechanical stress, improved cell viability, proliferation and differentiation, cryopreservation and controlled and continuous delivery of the stem-cell-secreted therapeutic agents. Here, in this review, we report and discuss almost all natural and synthetic hydrogels used in stem cell encapsulation, along with the benefits that these materials, alone or in combination, could offer to cell therapy through functional cell encapsulation.
Collapse
|
36
|
Novickij V, Zinkevičienė A, Malyško V, Novickij J, Kulbacka J, Rembialkowska N, Girkontaitė I. Bioluminescence as a sensitive electroporation indicator in sub-microsecond and microsecond range of electrical pulses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112066. [PMID: 33142215 DOI: 10.1016/j.jphotobiol.2020.112066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
The cell membrane permeabilization in electroporation studies is usually quantified using fluorescent markers such as propidium iodide (PI) or YO-PRO, while Chinese Hamster Ovary cell line frequently serves as a model. In this work, as an alternative, we propose a sensitive methodology for detection and analysis of electroporation phenomenon based on bioluminescence. Luminescent mice myeloma SP2/0 cells (transfected using Luciferase-pcDNA3 plasmid) were used as a cell model. Electroporation has been studied using the 0.1-5 μs × 250 and 100 μs × 1-8 pulsing protocols in 1-2.5 kV/cm PEF range. It was shown that the bioluminescence response is dependent on the cell permeabilization state and can be effectively used to detect even weak permeabilization. During saturated permeabilization the methodology accurately predicts the losses of cell viability due to irreversible electroporation. The results have been superpositioned with permeabilization and pore resealing (1 h post-treatment) data using PI. Also, the viability of the cells was evaluated. Lastly, the SP2/0 tumors have been developed in BALB/C mice and the methodology has been tested in vivo using electrochemotherapy with bleomycin.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Veronika Malyško
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Nina Rembialkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
37
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
38
|
Hui Chong LS, Zhang J, Bhat KS, Yong D, Song J. Bioinspired cell-in-shell systems in biomedical engineering and beyond: Comparative overview and prospects. Biomaterials 2020; 266:120473. [PMID: 33120202 DOI: 10.1016/j.biomaterials.2020.120473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
With the development in tissue engineering, cell transplantation, and genetic technologies, living cells have become an important therapeutic tool in clinical medical care. For various cell-based technologies including cell therapy and cell-based sensors in addition to fundamental studies on single-cell biology, the cytoprotection of individual living cells is a prerequisite to extend cell storage life or deliver cells from one place to another, resisting various external stresses. Nature has evolved a biological defense mechanism to preserve their species under unfavorable conditions by forming a hard and protective armor. Particularly, plant seeds covered with seed coat turn into a dormant state against stressful environments, due to mechanical and water/gas constraints imposed by hard seed coat. However, when the environmental conditions become hospitable to seeds, seed coat is ruptured, initiating seed germination. This seed dormancy and germination mechanism has inspired various approaches that artificially induce cell sporulation via chemically encapsulating individual living cells within a thin but tough shell forming a 3D "cell-in-shell" structure. Herein, the recent advance of cell encapsulation strategies along with the potential advantages of the 3D "cell-in-shell" system is reviewed. Diverse coating materials including polymeric shells and hybrid shells on different types of cells ranging from microbes to mammalian cells will be discussed in terms of enhanced cytoprotective ability, control of division, chemical functionalization, and on-demand shell degradation. Finally, current and potential applications of "cell-in-shell" systems for cell-based technologies with remaining challenges will be explored.
Collapse
Affiliation(s)
- Lydia Shi Hui Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Jingyi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore; Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Kiesar Sideeq Bhat
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, 168384, Singapore
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
39
|
Youn W, Kim JY, Park J, Kim N, Choi H, Cho H, Choi IS. Single-Cell Nanoencapsulation: From Passive to Active Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907001. [PMID: 32255241 DOI: 10.1002/adma.201907001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
Single-cell nanoencapsulation is an emerging field in cell-surface engineering, emphasizing the protection of living cells against external harmful stresses in vitro and in vivo. Inspired by the cryptobiotic state found in nature, cell-in-shell structures are formed, which are called artificial spores and which show suppression or retardation in cell growth and division and enhanced cell survival under harsh conditions. The property requirements of the shells suggested for realization of artificial spores, such as durability, permselectivity, degradability, and functionalizability, are demonstrated with various cytocompatible materials and processes. The first-generation shells in single-cell nanoencapsulation are passive in the operation mode, and do not biochemically regulate the cellular metabolism or activities. Recent advances indicate that the field has shifted further toward the formation of active shells. Such shells are intimately involved in the regulation and manipulation of biological processes. Not only endowing the cells with new properties that they do not possess in their native forms, active shells also regulate cellular metabolism and/or rewire biological pathways. Recent developments in shell formation for microbial and mammalian cells are discussed and an outlook on the field is given.
Collapse
Affiliation(s)
- Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Ji Yup Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyeoncheol Cho
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
40
|
Sahoo JK, Choi J, Hasturk O, Laubach I, Descoteaux ML, Mosurkal S, Wang B, Zhang N, Kaplan DL. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomater Sci 2020; 8:4176-4185. [PMID: 32608410 PMCID: PMC7390697 DOI: 10.1039/d0bm00512f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogels provide promising applications in tissue engineering and regenerative medicine, with silk fibroin (SF) offering biocompatibility, biodegradability and tunable mechanical properties. The molecular weight (MW) distribution of SF chains varies from ∼80 to 400 kDa depending on the extraction and purification process utilized to prepare the protein polymer. Here, we report a fundamental study on the effect of different silk degumming (extraction) time (DT) on biomaterial properties of enzymatically crosslinked hydrogels, including secondary structure, mechanical stiffness, in vitro degradation, swelling/contraction, optical transparency and cell behaviour. The results indicate that DT plays a crucial role in determining material properties of the hydrogel; decrease in DT increases β-sheet (crystal) formation and mechanical stiffness while decreasing degradation rate and optical transparency. The findings on the relationships between properties of silk hydrogels and DT should facilitate the more rational design of silk-based hydrogel biomaterials to match properties needed for diverse purpose in biomedical engineering.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Isabel Laubach
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Marc L Descoteaux
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Shreyas Mosurkal
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Boyang Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Nina Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
41
|
Hasturk O, Sahoo JK, Kaplan DL. Synthesis and Characterization of Silk Ionomers for Layer-by-Layer Electrostatic Deposition on Individual Mammalian Cells. Biomacromolecules 2020; 21:2829-2843. [PMID: 32530610 PMCID: PMC7658502 DOI: 10.1021/acs.biomac.0c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanocoating of individual mammalian cells with polymer layers has been of increasing interest in biotechnology and biomedical engineering applications. Electrostatic layer-by-layer (LbL) deposition of polyelectrolytes on negatively charged cell surfaces has been utilized for cell nanocoatings using synthetic or natural polymers with a net charge at physiological conditions. Here, our previous synthesis of silk-based ionomers through modification of silk fibroin (SF) with polyglutamate (PG) and polylysine (PL) was exploited for the nanocoating of mammalian cells. SF-PL constructs were cytotoxic to mammalian cells, thus an alternative approach for the synthesis of silk ionomers through carboxylation and amination of regenerated SF chains was utilized. Through the optimization of material properties and composition of incubation buffers, silk ionomers could be electrostatically assembled on the surface of murine fibroblasts and human mesenchymal stem cells (hMSCs) to form nanoscale multilayers without significantly impairing cell viability. The resulting silk-based protein nanoshells were transient and degraded over time, allowing for cell proliferation. The strategies presented here provide a basis for the cytocompatible nanoencapsulation of mammalian cells within silk-based artificial cell walls, with potential benefits for future studies on surface engineering of mammalian cells, as well as for utility in cell therapies, 3D printing, and preservation.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
42
|
Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics. Int J Pharm 2020; 584:119401. [DOI: 10.1016/j.ijpharm.2020.119401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
43
|
Sun J, Ren Y, Wang W, Hao H, Tang M, Zhang Z, Yang J, Zheng Y, Shi X. Transglutaminase-Catalyzed Encapsulation of Individual Mammalian Cells with Biocompatible and Cytoprotective Gelatin Nanoshells. ACS Biomater Sci Eng 2020; 6:2336-2345. [DOI: 10.1021/acsbiomaterials.0c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimin Sun
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yafeng Ren
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Weibin Wang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Huili Hao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Mingyu Tang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Zibo Zhang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - XianAi Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- Fujian Key Lab of Medical Instrument and Biopharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
44
|
Tang Y, Lin S, Yin S, Jiang F, Zhou M, Yang G, Sun N, Zhang W, Jiang X. In situ gas foaming based on magnesium particle degradation: A novel approach to fabricate injectable macroporous hydrogels. Biomaterials 2020; 232:119727. [DOI: 10.1016/j.biomaterials.2019.119727] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/28/2022]
|
45
|
Hasturk O, Jordan KE, Choi J, Kaplan DL. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 2020; 232:119720. [PMID: 31896515 PMCID: PMC7667870 DOI: 10.1016/j.biomaterials.2019.119720] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Silk fibroin (SF) was enzymatically crosslinked with tyramine-substituted silk fibroin (SF-TA) or gelatin (G-TA) to fabricate hybrid hydrogels with tunable gelation kinetics, mechanical properties and bioactivity. Horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) mediated crosslinking of SF in physiological buffers results in slow gelation and limited mechanical properties. Moreover, SF lacks cell attachment sequences, leading to poor cell-material interactions. These shortcomings can limit the uses of enzymatically crosslinked silk hydrogels in injectable tissue fillings, 3D bioprinting or cell microencapsulation, where rapid gelation and high bioactivity are desired. Here SF/SF-TA and SF/G-TA composite hydrogels were characterized for hydrogel properties and the influence of conjugated cyclic arginine-glycine-aspartic acid (RGD) peptide or G-TA content on bioactivity was explored. Both SF-TA and G-TA significantly increased gelation kinetics, improved mechanical properties and delayed enzymatic degradation in a concentration-dependent manner. β-Sheet formation and hydrogel stiffening were accelerated by SF-TA content but delayed by G-TA. Both cyclic RGD and G-TA significantly improved morphology and metabolic activity of human mesenchymal stem cells (hMSCs) cultured on or encapsulated in composite hydrogels. The hydrogel formulations introduced in this study provide improved control of gel formation and properties, along with biocompatible systems that can be utilized in tissue engineering and cell delivery applications.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Kathryn E Jordan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
46
|
Dai G, Ye K. Editorial introduction to special issue on "Biomaterials for cell manufacturing and tissue biofabrication". Acta Biomater 2019; 95:1-2. [PMID: 31447132 DOI: 10.1016/j.actbio.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Kaiming Ye
- Binghamton University, State University of New York, USA.
| |
Collapse
|
47
|
DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat Commun 2019; 10:2223. [PMID: 31110174 PMCID: PMC6527693 DOI: 10.1038/s41467-019-10231-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 01/21/2023] Open
Abstract
Mammalian cells are different from plant and microbial cells, having no exterior cell walls for protection. Environmental assaults can easily damage or destroy mammalian cells. Thus, the ability to develop a biomimetic cell wall (BCW) on their plasma membrane as a shield can advance various applications. Here we demonstrate the synthesis of BCW with a framing template and a crosslinked matrix for shielding live mammalian cells. The framing template is a supramolecular DNA structure. The crosslinked matrix is a polyelectrolyte complex made of alginate and polylysine. As the entire procedure of BCW synthesis is strictly operated under physiological conditions, BCW-covered mammalian cells can maintain high bioactivity. More importantly, the data show that BCW can shield live mammalian cells from not only physical assaults but also biological assaults. Thus, this study has successfully demonstrated the synthesis of BCW on live mammalian cells with great potential of shielding them from environmental assaults.
Collapse
|
48
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|