1
|
Yang JW, Lee J, Song KI, Park D, Cha HJ. Acrylated adhesive proteinic microneedle patch for local drug delivery and stable device implantation. J Control Release 2024; 371:193-203. [PMID: 38782066 DOI: 10.1016/j.jconrel.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Microneedle patches have been developed as favorable platforms for delivery systems, such as the locoregional application of therapeutic drugs, and implantation systems, such as electronic devices on visceral tissue surfaces. However, the challenge lies in finding materials that can achieve both biocompatibility and stable fixation on the target tissue. To address this issue, utilizing a biocompatible adhesive biomaterial allows the flat part of the patch to adhere as well, enabling double-sided adhesion for greater versatility. In this work, we propose an adhesive microneedle patch based on mussel adhesive protein (MAP) with enhanced mechanical strength via ultraviolet-induced polyacrylate crosslinking and Coomassie brilliant blue molecules. The strong wet tissue adhesive and biocompatible nature of engineered acrylated-MAP resulted in the development of a versatile wet adhesive microneedle patch system for in vivo usage. In a mouse tumor model, this microneedle patch effectively delivered anticancer drugs while simultaneously sealing the skin wound. Additionally, in an application of rat subcutaneous implantation, an electronic circuit was stably anchored using a double-sided wet adhesive microneedle patch, and its signal location underneath the skin did not change over time. Thus, the proposed acrylated-MAP-based wet adhesive microneedle patch system holds great promise for biomedical applications, paving the way for advancements in drug delivery therapeutics, tissue engineering, and implantable electronic medical devices.
Collapse
Affiliation(s)
- Jang Woo Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaeyun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kang Il Song
- Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
2
|
Rasouli M, Fattahi R, Nuoroozi G, Zarei-Behjani Z, Yaghoobi M, Hajmohammadi Z, Hosseinzadeh S. The role of oxygen tension in cell fate and regenerative medicine: implications of hypoxia/hyperoxia and free radicals. Cell Tissue Bank 2024; 25:195-215. [PMID: 37365484 DOI: 10.1007/s10561-023-10099-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Student Research Committee, Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zeinab Zarei-Behjani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, Zanjan University, Zanjan, Iran
| | - Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
4
|
Zhao Y, Kang J, Cui Y, Ji S, Nian R, Yu W, Sun Y. Mechanically tunable, antibacterial and bioactive mussel adhesive protein/hyaluronic acid coacervates as bioadhesives. Int J Biol Macromol 2023; 247:125773. [PMID: 37437673 DOI: 10.1016/j.ijbiomac.2023.125773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
In this work a bioadhesive was developed based on coacervates composed of recombinant mussel adhesive protein (MAP) and dopamine grafted hyaluronic acid (HA). Dopamine profoundly affected rheological attributes of the coacervates, leading to reduced rigidity, enhanced chain flexibility, more sol-like and fluid character and higher tolerance against structural collapse. The coacervates were rendered flowability, injectability, and adaptability, benefiting convenient delivery and making good contact with the skin to provide firm sealing for wounds of various shape and depth. It is the first time reported that MAP/HA coacervates are inherently antibacterial with 100 % growth inhibition against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. The antibacterial capability was disclosed to be positively related to catechol content. To further enhance the coacervates bioactivity, a small bioactive peptide thymosin was added and was revealed to promote fibroblasts migration. The coacervates hold great potential as practical bioadhesives both from the perspective of rheological properties and biological activities.
Collapse
Affiliation(s)
- Yang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Jia Kang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China
| | - Yuting Cui
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China
| | - Shengli Ji
- ReaLi Tide Biological Technology (Weihai) Co., Ltd, South Yangguang Road&East Longhai Road, Nanhai New District, Weihai 264402, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China
| | - Wenfa Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China.
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
5
|
Locoregional Melanoma Therapy by Tissue Adhesive Microneedle Patch-assisted Trans-tumoral Delivery of Anticancer Drug. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Jeon EY, Choi DS, Choi S, Won JY, Jo Y, Kim HB, Jung Y, Shin SC, Min H, Choi HW, Lee MS, Park Y, Chung JJ, Jin HS. Enhancing adoptive T-cell therapy with fucoidan-based IL-2 delivery microcapsules. Bioeng Transl Med 2023; 8:e10362. [PMID: 36684086 PMCID: PMC9842027 DOI: 10.1002/btm2.10362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Adoptive cell therapy (ACT) with antigen-specific T cells is a promising treatment approach for solid cancers. Interleukin-2 (IL-2) has been utilized in boosting the efficacy of ACT. However, the clinical applications of IL-2 in combination with ACT is greatly limited by short exposure and high toxicities. Herein, a complex coacervate was designed to intratumorally deliver IL-2 in a sustained manner and protect against proteolysis. The complex coacervate consisted of fucoidan, a specific IL-2 binding glycosaminoglycan, and poly-l-lysine, a cationic counterpart (FPC2). IL-2-laden FPC2 exhibited a preferential bioactivity in ex vivo expansion of CD8+T cells over Treg cells. Additionally, FPC2 was embedded in pH modulating injectable gel (FPC2-IG) to endure the acidic tumor microenvironment. A single intratumoral administration of FPC2-IG-IL-2 increased expansion of tumor-infiltrating cytotoxic lymphocytes and reduced frequencies of myeloid populations. Notably, the activation and persistency of tumor-reactive T cells were observed only in the tumor site, not in the spleen, confirming a localized effect of FPC2-IG-IL-2. The immune-favorable tumor microenvironment induced by FPC2-IG-IL-2 enabled adoptively transferred TCR-engineered T cells to effectively eradicate tumors. FPC2-IG delivery system is a promising strategy for T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Eun Young Jeon
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Seunghyun Choi
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Yunju Jo
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Hye-Bin Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Youngmee Jung
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- School of Electrical and Electronic Engineering Yonsei University Seoul South Korea
- Yonsei-KIST Convergence Research Institute Seoul South Korea
| | - Sang Chul Shin
- Technology Support Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hophil Min
- Doping Control Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hae Woong Choi
- Department of Life Sciences Korea University Seoul South Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine Seoul South Korea
| | - Yoon Park
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology Seoul National University Hospital Seoul South Korea
- Department of Medicine Seoul National University College of Medicine Seoul South Korea
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| |
Collapse
|
7
|
Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates. Biomolecules 2022; 12:biom12121817. [PMID: 36551245 PMCID: PMC9775361 DOI: 10.3390/biom12121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA) and chitosan (CHI) are biopolyelectrolytes which are interesting for both the medical and polymer physics communities due to their biocompatibility and semi-flexibility, respectively. In this work, we demonstrate by rheology experiments that the linear viscoelasticity of HA/CHI coacervates depends strongly on the molecular weight of the polymers. Moduli for coacervates were found significantly higher than those of individual HA and CHI physical gels. A remarkable 1.5-fold increase in moduli was noted when catechol-conjugated HA and CHI were used instead. This was attributed to the conversion of coacervates to chemical gels by oxidation of 3,4-dihydroxyphenylalanine (DOPA) groups in HA and CHI to di-DOPA crosslinks. These rheological results put HA/CHI coacervates in the category of strong candidates as injectable tissue scaffolds or medical adhesives.
Collapse
|
8
|
Cardoso LMDF, Barreto T, Gama JFG, Alves LA. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers (Basel) 2022; 14:polym14132641. [PMID: 35808686 PMCID: PMC9268758 DOI: 10.3390/polym14132641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
One of the limitations in organ, tissue or cellular transplantations is graft rejection. To minimize or prevent this, recipients must make use of immunosuppressive drugs (IS) throughout their entire lives. However, its continuous use generally causes several side effects. Although some IS dose reductions and withdrawal strategies have been employed, many patients do not adapt to these protocols and must return to conventional IS use. Therefore, many studies have been carried out to offer treatments that may avoid IS administration in the long term. A promising strategy is cellular microencapsulation. The possibility of microencapsulating cells originates from the opportunity to use biomaterials that mimic the extracellular matrix. This matrix acts as a support for cell adhesion and the syntheses of new extracellular matrix self-components followed by cell growth and survival. Furthermore, by involving the cells in a polymeric matrix, the matrix acts as an immunoprotective barrier, protecting cells against the recipient’s immune system while still allowing essential cell survival molecules to diffuse bilaterally through the polymer matrix pores. In addition, this matrix can be associated with IS, thus diminishing systemic side effects. In this context, this review will address the natural biomaterials currently in use and their importance in cell therapy.
Collapse
|
9
|
Lee HS, Jeon EY, Nam JJ, Park JH, Choi IC, Kim SH, Chung JJ, Lee K, Park JW, Jung Y. Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomater 2022; 141:219-232. [PMID: 35081432 DOI: 10.1016/j.actbio.2022.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury causes severe loss of motor and sensory functions, consequently increasing morbidity in affected patients. An autogenous nerve graft is considered the current gold standard for reconstructing nerve defects and recovering lost neurological functions; however, there are certain limitations to this method, such as limited donor nerve supply. With advances in regenerative medicine, recent research has focused on the fabrication of tissue-engineered nerve grafts as promising alternatives to the autogenous nerve grafts. In this study, we designed a nerve guidance conduit using an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane with a visible light-crosslinked gelatin hydrogel. The PLCL nanoporous membrane with permeability served as a flexible and non-collapsible epineurium for the nerve conduit; the inner-aligned gelatin hydrogel paths were fabricated via 3D printing and a photocrosslinking system. The resultant gelatin hydrogel with microgrooved surface pattern was established as a conducting guidance path for the effective regeneration of axons and served as a reservoir that can incorporate and release bioactive molecules. From in vivo performance tests using a rat sciatic nerve defect model, our PLCL/gelatin conduit demonstrated successful axonal regeneration, remyelination capacities and facilitated functional recovery. Hence, the PLCL/gelatin conduit developed in this study is a promising substitute for autogenous nerve grafts. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits (NGCs) are developed as promising recovery techniques for bridging peripheral nerve defects. However, there are still technological limitations including differences in the structures and components between natural peripheral nerve and NGCs. In this study, we designed a NGC composed of an electrospun poly(lactide-co-ε-caprolactone) (PLCL) membrane and 3D printed inner gelatin hydrogel to serve as a flexible and non-collapsible epineurium and a conducting guidance path, respectively, to mimic the fascicular structure of the peripheral nerve. In particular, in vitro cell tests clearly showed that gelatin hydrogel could guide the cells and function as a reservoir that incorporate and release nerve growth factor. From in vivo performance tests, our regenerative conduit successfully led to axonal regeneration with effective functional recovery.
Collapse
Affiliation(s)
- Hyun Su Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Young Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Jun Nam
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hun Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - In Cheul Choi
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
11
|
Double-layered adhesive microneedle bandage based on biofunctionalized mussel protein for cardiac tissue regeneration. Biomaterials 2021; 278:121171. [PMID: 34624751 DOI: 10.1016/j.biomaterials.2021.121171] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Heart failure following myocardial infarction (MI), the primary cause of mortality worldwide, is the consequence of cardiomyocyte death or dysfunction. Clinical efforts involving the delivery of growth factors (GFs) and stem cells with the aim of regenerating cardiomyocytes for the recovery of structural and functional integrity have largely failed to deliver, mainly due to short half-lives and rapid clearance in in vivo environments. In this work, we selected and genetically fused four biofunctional peptides possessing angiogenic potential, originating from extracellular matrix proteins and GFs, to bioengineered mussel adhesive protein (MAP). We found that MAPs fused with vascular endothelial growth factor (VEGF)-derived peptide and fibronectin-derived RGD peptide significantly promoted the proliferation and migration of endothelial cells in vitro. Based on these characteristics, we fabricated advanced double-layered adhesive microneedle bandages (DL-AMNBs) consisting of a biofunctional MAP-based root and a regenerated silk fibroin (SF)-based tip, allowing homogeneous distribution of the regenerative factor via swellable microneedles. Our developed DL-AMNB system clearly demonstrated better preservation of cardiac muscle and regenerative effects on heart remodeling in a rat MI model, which might be attributed to the prolonged retention of therapeutic peptides as well as secure adhesion between the patch and host myocardium by MAP-inherent strong underwater adhesiveness.
Collapse
|
12
|
Maeng S, Park TY, Min JS, Jin L, Joo KI, Park WC, Cha HJ. Sutureless Transplantation of Amniotic Membrane Using a Visible Light-Curable Protein Bioadhesive for Ocular Surface Reconstruction. Adv Healthc Mater 2021; 10:e2100100. [PMID: 34050621 DOI: 10.1002/adhm.202100100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/16/2021] [Indexed: 02/06/2023]
Abstract
The conjunctiva is a thin mucous membrane of the eye. Pterygium, a commonly appearing disease on the ocular surface, requires surgery to excise the conjunctiva to prevent visual deterioration. Recently, transplantation of the amniotic membrane (AM), which is the innermost membrane of the placenta, has been highlighted as an efficient method to cure conjunctiva defects because of its advantages of no side effects compared to mitomycin C treatment and not leaving additional scars on donor site compared to conjunctival autografting. However, to minimize additional damage to the ocular surface by suturing, AM transplantation (AMT) needs to be simplified by using a less invasive, time-saving method. In this work, a visible light-curable protein bioadhesive (named FixLight) for efficient sutureless AMT is applied. FixLight, which is based on bioengineered mussel adhesive protein (MAP), is easily applied between damaged ocular surfaces and transplanted AM, and rapidly cured by harmless blue light activation. Through in vivo evaluation using a rabbit model, the authors demonstrated that FixLight enabled facile, fast, and strong attachment of AM on sclera and promoted ocular surface reconstruction with good biocompatibility. Thus, FixLight can be successfully used as a promising clinical bioadhesive in opthalmological surgeries that require sutureless and rapid operation.
Collapse
Affiliation(s)
- Seong‐Woo Maeng
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Ji Sang Min
- Department of Ophthalmology Dong‐A University College of Medicine Busan 49201 Republic of Korea
- Institute of Vision Research Department of Ophthalmology Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Longyu Jin
- Department of Ophthalmology Dong‐A University College of Medicine Busan 49201 Republic of Korea
- Department of Ophthalmology Shenzen People's Hospital Shenzen 1017 China
| | - Kye Il Joo
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Division of Chemical Engineering and Materials Science Ewha Womans University Seoul 03760 Republic of Korea
| | - Woo Chan Park
- Department of Ophthalmology Dong‐A University College of Medicine Busan 49201 Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
13
|
Zhang LL, Xiong YY, Yang YJ. The Vital Roles of Mesenchymal Stem Cells and the Derived Extracellular Vesicles in Promoting Angiogenesis After Acute Myocardial Infarction. Stem Cells Dev 2021; 30:561-577. [PMID: 33752473 DOI: 10.1089/scd.2021.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is an event of ischemic myocardial necrosis caused by acute coronary artery occlusion, which ultimately leads to a large loss of cardiomyocytes. The prerequisite of salvaging ischemic myocardium and improving cardiac function of patients is to provide adequate blood perfusion in the infarcted area. Apart from reperfusion therapy, it is also urgent and imperative to promote angiogenesis. Recently, growing evidence based on promising preclinical data indicates that mesenchymal stem cells (MSCs) can provide therapeutic effects on AMI by promoting angiogenesis. Extracellular vesicles (EVs), membrane-encapsulated vesicles with complex cargoes, including proteins, nucleic acids, and lipids, can be derived from MSCs and represent part of their functions, so EVs also possess the ability to promote angiogenesis. However, poor control of the survival and localization of MSCs hindered clinical transformation and made scientists start looking for new approaches based on MSCs. Identifying the role of MSCs and their derived EVs in promoting angiogenesis can provide a theoretical basis for improved MSC-based methods, and ultimately promote the clinical treatment of AMI. This review highlights potential proangiogenic mechanisms of transplanted MSCs and the derived EVs after AMI and summarizes the latest literature concerning the novel methods based on MSCs to maximize the angiogenesis capability.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Kim HJ, Pyun JH, Park TY, Yoon SG, Maeng SW, Choi HS, Joo KI, Kang SH, Cha HJ. Preclinical evaluation of a regenerative immiscible bioglue for vesico-vaginal fistula. Acta Biomater 2021; 125:183-196. [PMID: 33652167 DOI: 10.1016/j.actbio.2021.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Currently, there are no clinically available tissue adhesives that work effectively in the fluid-rich and highly dynamic environments of the human body, such as the urinary system. This is especially relevant to the management of vesico-vaginal fistula, and developing a high-performance tissue adhesive for this purpose could vastly expand urologists' surgical repertoire and dramatically reduce patient discomfort. Herein, we developed a water-immiscible mussel protein-based bioadhesive (imWIMBA) with significantly improved properties in all clinical respects, allowing it to achieve rapid and strong underwater adhesion with tunable rheological properties. We evaluated in vivo potential of imWIMBA for sealing thermally injured fistula tracts between the bladder and vagina. Importantly, the use of imWIMBA in the presence of prolonged bladder drainage resulted in perfect closure of the vesico-vaginal fistula in operated pigs. Thus, imWIMBA could be successfully used for many surgical applications and improve treatment efficacy when combined with conventional surgical methods. STATEMENT OF SIGNIFICANCE: Vesico-vaginal fistula (VVF) is an abnormal opening between the bladder and the vagina, which is a stigmatized disease in many developing countries. Leakage of urine into internal organs can induce serious complications and delay wound repair. Conventional VVF treatment requires skillful suturing to provide a tension-free and watertight closure. In addition, there is no clinically approved surgical glue that works in wet and highly dynamic environments such as the urinary system. In this work, for potential clinical VVF closure and regeneration, we developed an advanced immiscible mussel protein-based bioglue with fast, strong, wet adhesion and tunable rheological properties. This regenerative immiscible bioglue could be successfully used for sealing fistulas and further diverse surgical applications as an adjuvant for conventional suture methods.
Collapse
|
15
|
Park TY, Maeng SW, Jeon EY, Joo KI, Cha HJ. Adhesive protein-based angiogenesis-mimicking spatiotemporal sequential release of angiogenic factors for functional regenerative medicine. Biomaterials 2021; 272:120774. [PMID: 33798963 DOI: 10.1016/j.biomaterials.2021.120774] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 01/08/2023]
Abstract
Damaged vascular structures after critical diseases are difficult to completely restore to their original conditions without specific treatments. Thus, therapeutic angiogenesis has been spotlighted as an attractive strategy. However, effective strategies for mimicking angiogenic processes in the body have not yet been developed. In the present work, we developed a bioengineered mussel adhesive protein (MAP)-based novel therapeutic angiogenesis platform capable of spatiotemporally releasing angiogenic growth factors to target disease sites with high viscosity and strong adhesiveness in a mucus-containing environment with curvature. Polycationic MAP formed complex coacervate liquid microdroplets with polyanionic hyaluronic acid and subsequently gelated into microparticles. Platelet-derived growth factor (PDGF), which is a late-phase angiogenic factor, was efficiently encapsulated during the process of coacervate microparticle formation. These PDGF-loaded microparticles were blended with vascular endothelial growth factor (VEGF), which is the initial-phase angiogenic factor, in MAP-based pregel solution and finally crosslinked in situ into a hydrogel at the desired site. The microparticle-based angiogenic-molecule spatiotemporal sequential (MASS) release platform showed good adhesion and underwater durability, and its elasticity was close to that of target tissue. Using two in vivo critical models, i.e., full-thickness excisional wound and myocardial infarction models, the MASS release platform was evaluated for its in vivo feasibility as an angiogenesis-inducing platform and demonstrated effective angiogenesis as well as functional regenerative efficacy. Based on these superior physicochemical characteristics, the developed MASS release platform could be successfully applied in many biomedical practices as a waterproof bioadhesive with the capability for the spatiotemporal delivery of angiogenic molecules in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seong-Woo Maeng
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Eun Young Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
16
|
Abstract
Regenerative medicine is a novel scientific field that employs the use of stem cells as cell-based therapy for the regeneration and functional restoration of damaged tissues and organs. Stem cells bear characteristics such as the capacity for self-renewal and differentiation towards specific lineages and, therefore, serve as a backup reservoir in case of tissue injuries. Therapeutically, they can be autologously or allogeneically transplanted for tissue regeneration; however, allogeneic stem cell transplantation can provoke host immune responses leading to a host-versus-transplant reaction. A probable solution to this problem is stem cell encapsulation, a technique that utilizes various biomaterials for the creation of a semi-permeable membrane that encases the stem cells. Stem cell encapsulation can be accomplished by employing a great variety of natural and/or synthetic hydrogels and offers many benefits in regenerative medicine, including protection from the host’s immune system and mechanical stress, improved cell viability, proliferation and differentiation, cryopreservation and controlled and continuous delivery of the stem-cell-secreted therapeutic agents. Here, in this review, we report and discuss almost all natural and synthetic hydrogels used in stem cell encapsulation, along with the benefits that these materials, alone or in combination, could offer to cell therapy through functional cell encapsulation.
Collapse
|
17
|
Zhou L, Shi H, Li Z, He C. Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications. Macromol Rapid Commun 2020; 41:e2000149. [DOI: 10.1002/marc.202000149] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Lili Zhou
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Huihui Shi
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering A:STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Chaobin He
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
- Institute of Materials Research and Engineering A:STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| |
Collapse
|
18
|
Park TY, Oh JM, Cho JS, Sim SB, Lee J, Cha HJ. Stem cell-loaded adhesive immiscible liquid for regeneration of myocardial infarction. J Control Release 2020; 321:602-615. [DOI: 10.1016/j.jconrel.2020.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
|
19
|
Wang X, Xu P, Yao Z, Fang Q, Feng L, Guo R, Cheng B. Preparation of Antimicrobial Hyaluronic Acid/Quaternized Chitosan Hydrogels for the Promotion of Seawater-Immersion Wound Healing. Front Bioeng Biotechnol 2019; 7:360. [PMID: 31921796 PMCID: PMC6914676 DOI: 10.3389/fbioe.2019.00360] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/12/2019] [Indexed: 02/02/2023] Open
Abstract
Wound immersion in seawater with high salt, high sodium, and a high abundance of pathogenic bacteria, especially gram-negative bacteria, can cause serious infections and difficulties in wound repair. The present study aimed to prepare a composite hydrogel composed of hyaluronic acid (HA) and quaternized chitosan (QCS) that may promote wound healing of seawater-immersed wounds and prevent bacterial infection. Based on dynamic Schiff base linkage, hydrogel was prepared by mixing oxidized hyaluronic acid (OHA) and hyaluronic acid-hydrazide (HA-ADH) under physiological conditions. With the addition of quaternized chitosan, oxidized hyaluronic acid/hyaluronic acid-hydrazide/quaternized chitosan (OHA/HA-ADH/O-HACC and OHA/HA-ADH/N-HACC) composite hydrogels with good swelling properties and mechanical properties, appropriate water vapor transmission rates (WVTR), and excellent stability were prepared. The biocompatibility of the hydrogels was demonstrated by in vitro fibroblast L929 cell culture study. The results of in vitro and in vivo studies revealed that the prepared antibacterial hydrogels could largely inhibit bacterial growth. The in vivo study further demonstrated that the antibacterial hydrogels exhibited high repair efficiencies in a seawater-immersed wound defect model. In addition, the antibacterial hydrogels decreased pro-inflammatory factors (TNF-α, IL-1β, and IL-6) but enhanced anti-inflammatory factors (TGF-β1) in wound. This work indicates that the prepared antibacterial composite hydrogels have great potential in chronic wound healing applications, such as severe wound cure and treatment of open trauma infections.
Collapse
Affiliation(s)
- Xinlu Wang
- The First Clinical Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Pengcheng Xu
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Zexin Yao
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
- Department of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Fang
- The First Clinical Hospital of Guangzhou Medical University, Guangzhou, China
| | - Longbao Feng
- Beogene Biotech (Guangzhou) Co., Ltd., Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Jinan University, Guangzhou, China
| | - Biao Cheng
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| |
Collapse
|
20
|
Park TY, Yang YJ, Ha DH, Cho DW, Cha HJ. Marine-derived natural polymer-based bioprinting ink for biocompatible, durable, and controllable 3D constructs. Biofabrication 2019; 11:035001. [DOI: 10.1088/1758-5090/ab0c6f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Han K, Park TY, Yong K, Cha HJ. Combinational Biomimicking of Lotus Leaf, Mussel, and Sandcastle Worm for Robust Superhydrophobic Surfaces with Biomedical Multifunctionality: Antithrombotic, Antibiofouling, and Tissue Closure Capabilities. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9777-9785. [PMID: 30785265 DOI: 10.1021/acsami.8b21122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface wetting occurring in daily life causes undesired contaminations, which are critical issues in various fields. To solve these problems, the nonwetting property of a superhydrophobic (SH) surface has proven its utility by preventing contaminant infiltration, serious infections, or malfunction. However, the application of SH surfaces in the biomedical field has been limited due to the weak durability and toxicity of the related components. To overcome these limitations, we developed a robust and biocompatible SH surface through combinational biomimicking of three natural organisms, lotus leaf, mussel, and sandcastle worm, for the first time. Using the water-immiscible and polycationic characteristics of mussel adhesive protein (iMglue), an SH iMglue-SiO2(TiO2/SiO2)2 coating was fabricated by solution-based electrical charge-controlled layer-by-layer growth of nanoparticles (NPs). The fabricated iMglue-SiO2(TiO2/SiO2)2 SH surface showed excellent durable nonwetting properties and was applied to an intracatheter tube coating to develop antithrombotic catheters under blood flow. Furthermore, we developed a iMglue-employed SH patch for a tissue closure bandage by spraying hydrophobic SiO2 NPs on the iMglue-covered cotton pads. The prepared iMglue-employing SH patch showed perfect bifunctionality with excellent antibiofouling and tissue closure capabilities. Our work presents a novel, useful strategy for fabricating a biomedically multifunctional, robust SH surface through combinational mimicking of natural organisms.
Collapse
Affiliation(s)
- Kiduk Han
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Tae Yoon Park
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Kijung Yong
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang 37673 , Korea
| |
Collapse
|