1
|
Castañón-Cortés LG, Bravo-Vázquez LA, Santoyo-Valencia G, Medina-Feria S, Sahare P, Duttaroy AK, Paul S. Current advances in the development of microRNA-integrated tissue engineering strategies: a cornerstone of regenerative medicine. Front Bioeng Biotechnol 2024; 12:1484151. [PMID: 39479296 PMCID: PMC11521876 DOI: 10.3389/fbioe.2024.1484151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Regenerative medicine is an innovative scientific field focused on repairing, replacing, or regenerating damaged tissues and organs to restore their normal functions. A central aspect of this research arena relies on the use of tissue-engineered scaffolds, which serve as structural supports that mimic the extracellular matrix, providing an environment that orchestrates cell growth and tissue formation. Remarkably, the therapeutic efficacy of these scaffolds can be improved by harnessing the properties of other molecules or compounds that have crucial roles in healing and regeneration pathways, such as phytochemicals, enzymes, transcription factors, and non-coding RNAs (ncRNAs). In particular, microRNAs (miRNAs) are a class of tiny (20-24 nt), highly conserved ncRNAs that play a critical role in the regulation of gene expression at the post-transcriptional level. Accordingly, miRNAs are involved in a myriad of biological processes, including cell differentiation, proliferation, and apoptosis, as well as tissue regeneration, angiogenesis, and osteogenesis. On this basis, over the past years, a number of research studies have demonstrated that miRNAs can be integrated into tissue-engineered scaffolds to create advanced therapeutic platforms that precisely modulate cellular behavior and offer a controlled and targeted release of miRNAs to optimize tissue repair and regeneration. Therefore, in this current review, we discuss the most recent advances in the development of miRNA-loaded tissue-engineered scaffolds and provide an overview of the future outlooks that should be aborded in this area of study in order to lay the groundwork for the clinical translation of these tissue engineering approaches.
Collapse
Affiliation(s)
| | | | | | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Padmavati Sahare
- School of Engineering and Sciences, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Queretaro, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| |
Collapse
|
2
|
Casarin M, Toniolo I, Todesco M, Carniel EL, Astolfi L, Morlacco A, Moro FD. Mechanical characterization of porcine ureter for the evaluation of tissue-engineering applications. Front Bioeng Biotechnol 2024; 12:1412136. [PMID: 38952671 PMCID: PMC11215493 DOI: 10.3389/fbioe.2024.1412136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction: Clinics increasingly require readily deployable tubular substitutes to restore the functionality of structures like ureters and blood vessels. Despite extensive exploration of various materials, both synthetic and biological, the optimal solution remains elusive. Drawing on abundant literature experiences, there is a pressing demand for a substitute that not only emulates native tissue by providing requisite signals and growth factors but also exhibits appropriate mechanical resilience and behaviour. Methods: This study aims to assess the potential of porcine ureters by characterizing their biomechanical properties in their native configuration through ring and membrane flexion tests. In order to assess the tissue morphology before and after mechanical tests and the eventual alteration of tissue microstructure that would be inserted in material constitutive description, histological staining was performed on samples. Corresponding computational analyses were performed to mimic the experimental campaign to identify the constitutive material parameters. Results: The absence of any damages to muscle and collagen fibres, which only compacted after mechanical tests, was demonstrated. The experimental tests (ring and membrane flexion tests) showed non-linearity for material and geometry and the viscoelastic behaviour of the native porcine ureter. Computational models were descriptive of the mechanical behaviour ureteral tissue, and the material model feasible. Discussion: This analysis will be useful for future comparison with decellularized tissue for the evaluation of the aggression of cell removal and its effect on microstructure. The computational model could lay the basis for a reliable tool for the prediction of solicitation in the case of tubular substitutions in subsequent simulations.
Collapse
Affiliation(s)
- Martina Casarin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Ilaria Toniolo
- Department of Industrial Engineering, University of Padua, Padova, Italy
| | - Martina Todesco
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padova, Italy
| | | | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience DNS, University of Padova, Padova, Italy
| | - Alessandro Morlacco
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Fabrizio Dal Moro
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| |
Collapse
|
3
|
Li F, Zhao B, Zhang L, Chen GQ, Zhu L, Feng XL, Gong MJ, Hu CC, Zhang YY, Li M, Liu YQ. Therapeutic potential of urine-derived stem cells in renal regeneration following acute kidney injury: A comparative analysis with mesenchymal stem cells. World J Stem Cells 2024; 16:525-537. [PMID: 38817335 PMCID: PMC11135250 DOI: 10.4252/wjsc.v16.i5.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 04/07/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.
Collapse
Affiliation(s)
- Fang Li
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Bin Zhao
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Lei Zhang
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Guo-Qing Chen
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Li Zhu
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Xiao-Ling Feng
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Meng-Jia Gong
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Cheng-Chen Hu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Yuan-Yuan Zhang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Ming Li
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Yong-Qiang Liu
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China.
| |
Collapse
|
4
|
Wang X, Li L, Sun B, Hou X, Song S, Shi C, Chen W. Piezo1-ERK1/2-YAP Signaling Cascade Regulates the Proliferation of Urine-derived Stem Cells on Collagen Gels. Curr Stem Cell Res Ther 2024; 19:103-115. [PMID: 36999714 DOI: 10.2174/1574888x18666230331123540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Urine-derived stem cells (USCs) were considered to be an ideal source of stem cells for repairing urological diseases. However, the proliferative ability of USCs significantly decreased when cultured on plastic dishes, which limited their clinical application. It was found that collagen gels could promote the proliferation of USCs, but the underlying molecular mechanisms were unclear. OBJECTIVE The study aims to investigate the role of the mechanically activated cation channel Piezo1 and the transcriptional coactivator YAP in the regulation of proliferation of USCs on collagen gels. METHODS USCs were cultured on collagen gels (group COL), or plastic dishes (group NON). MTT assay, Scratch assay, EDU staining, and immunofluorescence (IF) of Ki67 were performed to evaluate the proliferation of USCs; IF of YAP was conducted to observe its nuclear localization; calcium imaging experiment was executed to evaluate the function of Piezo1; western blot was used to compare changes in protein expression of YAP, LATS1, ERK1/2, and p-ERK1/2. In addition, the regulatory effect of YAP on the proliferative capacity of USCs was confirmed by intervening YAP with its inhibitor verteporfin (VP); and the inhibitor or activator of Piezo1, GsMTx4 or Yoda1 was used to explore the effect of Piezo1 on the nuclear localization of YAP, the proliferation of USCs and the regeneration of injured bladder. RESULTS The results showed that cell proliferation was significantly enhanced in USCs in the COL group with the nuclear accumulation of YAP compared with the NON group and VP attenuated these effects. The expression and function of Piezo1 were higher in the COL group compared with the NON group. Blockage of Piezo1 by GsMTx4 decreased nuclear localization of YAP, the proliferation of USCs, and caused the failure of bladder reconstruction. Activation of Piezo1 by Yoda1 increased the nuclear expression of YAP, and the proliferation of USCs, which further improved the regeneration of the injured bladder. Finally, the ERK1/2 rather than LATS1 was revealed to participate in the Piezo1/YAP signal cascades of USCs proliferation. CONCLUSION Taken together, Piezo1-ERK1/2-YAP signal cascades were involved in regulating the proliferation ability of USCs in collagen gels which would be beneficial for the regeneration of the bladder.
Collapse
Affiliation(s)
- Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Bishao Sun
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xianglin Hou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Abuharb AI, Alzarroug AF, Algahtani SN, Alghamdi HK, Alosaimi FA, Alsuwayna N, Almughira AI. The Impact and Implications of Regenerative Medicine in Urology. Cureus 2024; 16:e52264. [PMID: 38352111 PMCID: PMC10863929 DOI: 10.7759/cureus.52264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
Urology focuses on the treatment of genitourinary disorders through therapies ranging from lifestyle changes to advanced surgeries; the field has recently incorporated robotic and minimally invasive technologies that have improved patient outcomes and reduced hospital stays and complications. However, these methods still have certain limitations. Regenerative medicine, focusing on natural repair abilities, can be an effective and safer alternative. This review aims to examine the impact of regenerative medicine in urology. We adopted a systematic review design by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An exhaustive online literature search involving the databases PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar was conducted spanning the period between January 2010 and October 2023. Data were extracted from studies on regenerative medicine in urology with a special focus on efficacy and safety. Data from 16 studies were analyzed, which showed that cell therapy, biological materials, and tissue engineering are generally used in the field of urinary diseases. The main applications include the regeneration of urinary tissue, the correction of urinary incontinence, the treatment of erectile dysfunction, the reconstruction of ureteric defects, and the formation of bladder tissue. The study findings generally lack definitive conclusions on effectiveness and safety. While our results indicate that regenerative medicine is successful on a subjective level, more clinical trials are needed to establish its effectiveness and safety.
Collapse
Affiliation(s)
- Abdullah I Abuharb
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | | - Saad N Algahtani
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Hatan K Alghamdi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Fahad A Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Nasser Alsuwayna
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | |
Collapse
|
6
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Cui L, Zhao Y, Zhong Y, Zhang L, Zhang X, Guo Z, Wang F, Chen X, Tong H, Fan J. Combining decellularized adipose tissue with decellularized adventitia extravascular matrix or small intestinal submucosa matrix for the construction of vascularized tissue-engineered adipose. Acta Biomater 2023; 170:567-579. [PMID: 37683968 DOI: 10.1016/j.actbio.2023.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Adipose tissue is an endocrine organ. It serves many important functions, such as energy storage, hormones secretion, and providing insulation, cushioning and aesthetics to the body etc. Adipose tissue engineering offers a promising treatment for soft tissue defects. Early adipose tissue production and long-term survival are closely associated with angiogenesis. Decellularized matrix has a natural ECM (extracellular matrix) component, good biocompatibility, and low immunogenicity. Therefore, in this study, the injectable composite hydrogels were developed to construct vascularized tissue-engineered adipose by using the pro-angiogenic effects of aortic adventitia extravascular matrix (Adv) or small intestinal submucosa (SIS), and the pro-adipogenic effects of decellularized adipose tissue (DAT). The composite hydrogels were cross-linked by genipin. The adipogenic and angiogenic abilities of composite hydrogels were investigated in vitro, and in a rat dorsal subcutaneous implant model. The results showed that DAT and SIS or Adv 1:1 composite hydrogel promoted the migration and tube formation of endothelial cells. Furthermore, DAT and SIS or Adv 1:1 composite hydrogel enhanced adipogenic differentiation of adipose-derived mesenchymal stem cells (ASCs) through activation of PPARγ and C/EBPα. The in vivo studies further demonstrated that DAT with SIS or Adv in a 1:1 ratio also significantly promoted adipogenesis and angiogenesis. In addition, DAT with SIS or Adv in a 1:1 ratio hydrogel recruited macrophage population with enhanced M2-type macrophage polarization, suggesting a positive effect of inflammatory response on angiogenesis. In conclusion, these data suggest that the composite hydrogels of DAT with SIS or Adv in 1:1 ratio have apparent pro-adiogenic and angiogenic abilities, thus providing a promising cell-free tissue engineering biomaterial with broad clinical applications. STATEMENT OF SIGNIFICANCE: Decellularized adipose tissue (DAT) has emerged as an important biomaterial in adipose tissue regeneration. Early adipose tissue production and long-term survival is tightly related to the angiogenesis. The revascularization of the DAT is a key issue that needs to be solved in adipose regeneration. In this study, the injectable composite hydrogels were developed by using DAT with Adv (aortic adventitia extravascular matrix) or SIS (small intestinal submucosa) in different ratio. We demonstrated that the combination of DAT with SIS or Adv in 1:1 ratio effectively improved the proliferation of adipose stem cells and endothelial cells, and promoted greater adipose regeneration and tissue vascularization as compared to the DAT scaffold. This study provides the potential biomaterial for clinical soft tissue regeneration.
Collapse
Affiliation(s)
- Lu Cui
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Yujia Zhao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Yuxuan Zhong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Lanlan Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xinnan Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Zhenglong Guo
- Second Clinical Medical College, Shengjing Hospital, China Medical University, No.36 Sanhao Road, Heping District, Shenyang, Liaoning Province 110004, PR China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin Chen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hao Tong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
8
|
Huang LP, Liu Y, Li QJ, Zhang WQ, Wu CY, Zhao LM, Xie HQ. A Modified Small Intestinal Submucosa Patch with Multifunction to Promote Scarless Repair and Reinvigoration of Urethra. Adv Healthc Mater 2023; 12:e2300519. [PMID: 37062917 DOI: 10.1002/adhm.202300519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Indexed: 04/18/2023]
Abstract
To reconstruct and restore the functions of the male urethra is a challenging task for urologists. The acellular matrix graft currently used in the clinics is mono-functional and may cause a series of complications including stricture, fibrosis, and stone formation. As a result, such graft materials cannot meet the increasing demand for multifunctionality in the field of urethral tissue engineering. In this context, a multifunctional urethral patch is designed for the repair of urethral defects by mixing protocatechualdehyde (PCA) with small intestinal submucosa (SIS) under an alkalin condition to allow cross linking. As shown, the PCA/SIS patch possesses excellent biocompatibility, antioxidant activity, and anti-inflammatory property. More importantly, this patch can remarkably promote the adhesion, proliferation, and directional extension of rabbit bladder epithelial mucous cells (R-EMCs) as well as rabbit bladder smooth muscle cells (R-SMCs), and upregulate the expression of cytokeratin in the EMCs and contractile protein in the SMCs in vitro. In vivo experiments also confirm that the PCA/SIS patch can significantly enhance scarless repair of urethral defects in rabbits by facilitating smooth muscle regeneration, reducing excessive collagen deposition, and accelerating re-epithelialization and neovascularization. Taken together, the newly developed multifunctional PCA/SIS patch provides a promising candidate for urethral regeneration.
Collapse
Affiliation(s)
- Li-Ping Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian-Jin Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen-Qian Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Yu Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Department of Orthopedics Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Song B, Fang L, Mao X, Ye X, Yan Z, Ma Q, Shi Z, Hu Y, Zhu Y, Cheng Y. Gelatin-grafted tubular asymmetric scaffolds promote ureteral regeneration via activation of the integrin/Erk signaling pathway. Front Bioeng Biotechnol 2023; 10:1092543. [PMID: 36686259 PMCID: PMC9849368 DOI: 10.3389/fbioe.2022.1092543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: The repair of a diseased ureter is an urgent clinical issue that needs to be solved. A tissue-engineered scaffold for ureteral replacement is currently insufficient due to its incompetent bioactivity, especially in long-segment abnormalities. The primary reason is the failure of urothelialization on scaffolds. Methods: In this work, we investigated the ability of gelatin-grafted tubular scaffold in ureteral repairment and its related biological mechanism. We designed various porous asymmetric poly (L-lactic acid) (PLLA)/poly (L-lactide-co-e-caprolactone) (PLCL) tubes with a thermally induced phase separation (TIPS) method via a change in the ratio of solvents (named PP). To regulate the phenotype of urothelial cells and ureteral reconstruction, gelatin was grafted onto the tubular scaffold using ammonolysis and glutaraldehyde crosslinking (named PP-gel). The in vitro and in vivo experiments were performed to test the biological function and the mechanism of the scaffolds. Results and Discussion: The hydrophilicity of the scaffold significantly increased after gelatin grafting, which promoted the adhesion and proliferation of urothelial cells. Through subcutaneous implantation in rats, PP-gel scaffolds demonstrated good biocompatibility. The in vivo replacement showed that PP-gel could improve urothelium regeneration and maintain renal function after the ureter was replaced with an ∼4 cm-long PP-gel tube using New Zealand rabbits as the experimental animals. The related biologic mechanism of ureteral reconstruction was detected in detail. The gelatin-grafted scaffold upgraded the integrin α6/β4 on the urothelial cell membrane, which phosphorylates the focal adhesion kinase (FAK) and enhances urothelialization via the MAPK/Erk signaling pathway. Conclusion: All these results confirmed that the PP46-gel scaffold is a promising candidate for the constitution of an engineered ureter and to repair long-segment ureteral defects.
Collapse
Affiliation(s)
- Baiyang Song
- School of Medicine, Ningbo University, Ningbo, China,Department of Urology, Ningbo First Hospital, Ningbo, China
| | - Li Fang
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Xufeng Mao
- School of Medicine, Ningbo University, Ningbo, China
| | - Xianwang Ye
- Department of Radiology, Ningbo First Hospital, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Qi Ma
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Zewen Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiwei Hu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| |
Collapse
|
10
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
11
|
Song YT, Li YQ, Tian MX, Hu JG, Zhang XR, Liu PC, Zhang XZ, Zhang QY, Zhou L, Zhao LM, Li-Ling J, Xie HQ. Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioact Mater 2022; 14:443-455. [PMID: 35415280 PMCID: PMC8978277 DOI: 10.1016/j.bioactmat.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes. Biomaterials such as submucosa of small intestine (SIS) have been widely used as patches for bladder repair, but the outcomes are not fully satisfactory. To capture stem cells in situ has been considered as a promising strategy to speed up the process of re-cellularization and functionalization. In this study, we have developed an anti-CD29 antibody-conjugated SIS scaffold (AC-SIS) which is capable of specifically capturing urine-derived stem cells (USCs) in situ for tissue repair and regeneration. The scaffold has exhibited effective capture capacity and sound biocompatibility. In vivo experiment proved that the AC-SIS scaffold could promote rapid endothelium healing and smooth muscle regeneration. The endogenous stem cell capturing scaffolds has thereby provided a new revenue for developing effective and safer bladder patches. We developed an anti-CD29 antibody-crosslinked submucosa of small intestine scaffold (AC-SIS). AC-SIS is capable of specifically capturing urine-derived stem cells (USCs) as well as possesses a sound biocompatibility. AC-SIS promotes in situ tissue regeneration by facilitating the repair of bladder epithelium, smooth muscle and angiogenesis. Design and application of endogenous stem cell capturing scaffolds provides a new strategy for bladder repair.
Collapse
Affiliation(s)
- Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Qing Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mao-Xuan Tian
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Aesthetic Surgery, The People's Hospital of Pengzhou, Chengdu, Sichuan, 611930, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Ru Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Peng-Cheng Liu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Medical Genetics and Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
12
|
García-Perdomo HA, Jurado-Penagos A. Application of regenerative medicine and 3d bioprinting in urology. Actas Urol Esp 2022; 46:323-328. [PMID: 35660078 DOI: 10.1016/j.acuroe.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/05/2021] [Indexed: 06/15/2023]
Abstract
In the last two decades, a new purpose has collected great efforts from scientists in all branches of medicine. It is about the possibility to make the body regenerate ill tissues and organs by itself with de right artificial stimuli or the construction of new functional organs to replace the damaged ones. This process comprises various interdisciplinary approaches to healthcare, such as tissue engineering, molecular medicine, biotechnology, and three-dimensional printing. Urologists have been remarkably active in this field of medicine called Regenerative Medicine. The searching of the different requirements like suitable and compatible biomaterials, versatile cells, adequate techniques to construct tissues, available biomolecules, and the knowledge of all these minimizing risks, are some of the aims and the approximations until now. Despite many obstacles, in vitro and in vivo studies are already showing encouraging options. We will review the advances related to the bladder, urethra, ureter, and kidneys. Difficulties such as ethical issues, time investment and high costs, have been some of the drawbacks encountered. Further studies are still required for its clinical application in daily life.
Collapse
Affiliation(s)
- Herney Andres García-Perdomo
- Division of Urology/Urooncology, Departament of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia.
| | - Angie Jurado-Penagos
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
13
|
Construction of Tissue-Engineered Bladder Scaffolds with Composite Biomaterials. Polymers (Basel) 2022; 14:polym14132654. [PMID: 35808700 PMCID: PMC9269300 DOI: 10.3390/polym14132654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Various congenital and acquired urinary system abnormalities can cause structural damage to patients’ bladders. This study aimed to construct and evaluate a novel surgical patch encapsulated with adipose-derived stem cells (ADSCs) for bladder tissue regeneration. The surgical patch consists of multiple biomaterials, including bladder acellular matrix (BAM), collagen type I from rat tail, microparticle emulsion cross-linking polylactic-co-glycolic acid (PLGA)-chitosan (CS) with PLGA-sodium alginate (SA), and growth factors. ADSCs were seeded on the surgical patch. Approximately 50% of the bladder was excised and replaced with a surgical patch. Histological, immunohistochemical and urodynamic analyses were performed at the 2nd, 4th, and 8th weeks after surgery, respectively. The PLGA-CS, PLGA-SA or surgical patch showed no cytotoxicity to ADSCs. PLGA-CS cross-linked with PLGA-SA at a ratio of 5:5 exhibited a loose microporous structure and was chosen as the candidate for ADSC seeding. We conducted bladder repair surgery in rats using the patch, successfully presenting urothelium layers, muscle bundles, and vessel regeneration and replacing 50% of the rat’s natural bladder in vivo. Experiments through qualitative and quantitative evaluation demonstrate the application potential of the composite biomaterials in promoting the repair and reconstruction of bladder tissue.
Collapse
|
14
|
Kapetanos K, Light A, Thakare N, Mahbubani K, Saeb-Parsy K, Saeb-Parsy K. Bioengineering solutions for Ureteric disorders: Clinical need, challenges and opportunities. BJU Int 2022; 130:408-419. [PMID: 35388587 PMCID: PMC9544734 DOI: 10.1111/bju.15741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Objectives To summarise the causes of ureteric damage and the current standard of care, discussing the risks and benefits of available therapeutic options. We then focus on the current and future solutions that can be provided by ureteric bioengineering and provide a description of the ideal characteristics of a bioengineered product. Methods We performed a literature search in February 2021 in: Google Scholar, Medline, and Web of Science. Three searches were conducted, investigating: (a) the epidemiology of ureteric pathology, (b) the current standard of care, and (c) the state of the art in ureteric bioengineering. Results The most‐common causes of ureteric damage are iatrogenic injury and external trauma. Current approaches to treatment include stent placement or surgical reconstruction. Reconstruction can be done using either urological tissue or segments of the gastrointestinal tract. Limitations include scarring, strictures, and infections. Several bioengineered alternatives have been explored in animal studies, with variations in the choice of scaffold material, cellular seeding populations, and pre‐implantation processing. Natural grafts and hybrid material appear to be associated with superior outcomes. Furthermore, seeding of the scaffold material with stem cells or differentiated urothelial cells allows for better function compared to acellular scaffolds. Some studies have attempted to pre‐implant the graft in the omentum prior to reconstruction, but this has yet to prove any definitive benefits. Conclusion There is an unmet clinical need for safer and more effective treatment for ureteric injuries. Urological bioengineering is a promising solution in preclinical studies. However, substantial scientific, logistic, and economic challenges must be addressed to harness its transformative potential in improving outcomes.
Collapse
Affiliation(s)
| | - Alexander Light
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Niyukta Thakare
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Krishnaa Mahbubani
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kasra Saeb-Parsy
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge
| |
Collapse
|
15
|
Wu S, Chen Z, Yu X, Duan X, Chen J, Liu G, Gong M, Xing F, Sun J, Huang S, Zhou X. A sustained release of BMP2 in urine-derived stem cells enhances the osteogenic differentiation and the potential of bone regeneration. Regen Biomater 2022; 9:rbac015. [PMID: 35529046 PMCID: PMC9070791 DOI: 10.1093/rb/rbac015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cell-based tissue engineering is one of the optimistic approaches to replace current treatments for bone defects. Urine-derived stem cells (USCs) are obtained non-invasively and become one of the promising seed cells for bone regeneration. An injectable BMP2-releasing chitosan microspheres/type I collagen hydrogel (BMP2-CSM/Col I hydrogel) was fabricated. USCs proliferated in a time-dependent fashion, spread with good extension and interconnected with each other in different hydrogels both for 2D and 3D models. BMP2 was released in a sustained mode for more than 28 days. Sustained-released BMP2 increased the ALP activities and mineral depositions of USCs in 2D culture, and enhanced the expression of osteogenic genes and proteins in 3D culture. In vivo, the mixture of USCs and BMP2-CSM/Col I hydrogels effectively enhanced bone regeneration, and the ratio of new bone volume to total bone volume was 38% after 8 weeks of implantation. Our results suggested that BMP2-CSM/Col I hydrogels promoted osteogenic differentiation of USCs in 2D and 3D culture in vitro and USCs provided a promising cell source for bone tissue engineering in vivo. As such, USCs-seeded hydrogel scaffolds are regarded as an alternative approach in the repair of bone defects.
Collapse
Affiliation(s)
- Shuang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Zhao Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xi Yu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xin Duan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jialei Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Guoming Liu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jiachen Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Shishu Huang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiang Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
16
|
García-Perdomo H, Jurado-Penagos A. Aplicación de la medicina regenerativa y la bioimpresión 3D en urología. Actas Urol Esp 2022. [DOI: 10.1016/j.acuro.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zhou Q, Cheng Y, Sun F, Shen J, Nasser MI, Zhu P, Zhang X, Li Y, Yin G, Wang Y, Wu X, Zhao M. A Comprehensive Review of the Therapeutic Value of Urine-Derived Stem Cells. Front Genet 2022; 12:781597. [PMID: 35047009 PMCID: PMC8762167 DOI: 10.3389/fgene.2021.781597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Stem cells possess regenerative powers and multidirectional differentiation potential and play an important role in disease treatment and basic medical research. Urine-derived stem cells (USCs) represent a newly discovered type of stem cell with biological characteristics similar to those of mesenchymal stromal cells (MSCs), including their doubling time and immunophenotype. USCs are noninvasive and can be readily obtained from voided urine and steadily cultured. Based on advances in this field, USCs and their secretions have increasingly emerged as ideal sources. USCs may play regulatory roles in the cellular immune system, oxidative stress, revascularization, apoptosis and autophagy. This review summarizes the applications of USCs in tissue regeneration and various disease treatments. Furthermore, by analysing their limitations, we anticipate the development of more feasible therapeutic strategies to promote USC-based individualized treatment.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiyu Cheng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fang Sun
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxiang Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiushan Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
18
|
Ławkowska K, Rosenbaum C, Petrasz P, Kluth L, Koper K, Drewa T, Pokrywczynska M, Adamowicz J. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol 2022; 10:1040987. [PMID: 36950181 PMCID: PMC10026841 DOI: 10.3389/fbioe.2022.1040987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Advanced techniques of reconstructive urology are gradually reaching their limits in terms of their ability to restore urinary tract function and patients' quality of life. A tissue engineering-based approach to urinary tract reconstruction, utilizing cells and biomaterials, offers an opportunity to overcome current limitations. Although tissue engineering studies have been heralding the imminent introduction of this method into clinics for over a decade, tissue engineering is only marginally applied. In this review, we discuss the role of tissue engineering in reconstructive urology and try to answer the question of why such a promising technology has not proven its clinical usability so far.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Clemens Rosenbaum
- Department of Urology Asklepios Klinik Barmbek Germany, Urologist in Hamburg, Hamburg, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Piotr Petrasz
- Department of Urology Voivodeship Hospital Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Luis Kluth
- Department of Urology, University Medical Center Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Marta Pokrywczynska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | | |
Collapse
|
19
|
Garzón I, Jaimes-Parra BD, Pascual-Geler M, Cózar JM, Sánchez-Quevedo MDC, Mosquera-Pacheco MA, Sánchez-Montesinos I, Fernández-Valadés R, Campos F, Alaminos M. Biofabrication of a Tubular Model of Human Urothelial Mucosa Using Human Wharton Jelly Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:1568. [PMID: 34068343 PMCID: PMC8153323 DOI: 10.3390/polym13101568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Several models of bioartificial human urothelial mucosa (UM) have been described recently. In this study, we generated novel tubularized UM substitutes using alternative sources of cells. Nanostructured fibrin-agarose biomaterials containing fibroblasts isolated from the human ureter were used as stroma substitutes. Then, human Wharton jelly mesenchymal stromal cells (HWJSC) were used to generate an epithelial-like layer on top. Three differentiation media were used for 7 and 14 days. Results showed that the biofabrication methods used here succeeded in generating a tubular structure consisting of a stromal substitute with a stratified epithelial-like layer on top, especially using a medium containing epithelial growth and differentiation factors (EM), although differentiation was not complete. At the functional level, UM substitutes were able to synthesize collagen fibers, proteoglycans and glycosaminoglycans, although the levels of control UM were not reached ex vivo. Epithelial differentiation was partially achieved, especially with EM after 14 days of development, with expression of keratins 7, 8, and 13 and pancytokeratin, desmoplakin, tight-junction protein-1, and uroplakin 2, although at lower levels than controls. These results confirm the partial urothelial differentiative potential of HWJSC and suggest that the biofabrication methods explored here were able to generate a potential substitute of the human UM for future clinical use.
Collapse
Affiliation(s)
- Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Boris Damián Jaimes-Parra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Department of Histology, Faculty of Health Sciences, University Autónoma de Bucaramanga, 680003 Santander, Colombia
| | | | - José Manuel Cózar
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Urology, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - María del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | | | - Indalecio Sánchez-Montesinos
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Ricardo Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| |
Collapse
|
20
|
Sun X, Zheng W, Qian C, Wu Q, Hao Y, Lu G. Focal adhesion kinase promotes BMP2-induced osteogenic differentiation of human urinary stem cells via AMPK and Wnt signaling pathways. J Cell Physiol 2019; 235:4954-4964. [PMID: 31663128 DOI: 10.1002/jcp.29374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Human urine-derived stem cells (hUSCs) serve as favorable candidates for bone transplants due to their efficient proliferative and multipotent differentiation abilities, as well as the capacity to secrete a variety of vasoactive agents to facilitate tissue engineering. The present study aimed to explore the role of focal adhesion kinase (FAK) in bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation of hUSCs and to investigate the underlying mechanism. The degree of osteogenic differentiation and the correlated signals, following BMP2 overexpression and siRNA-mediated silencing of FAK, were determined in vitro. Moreover, hUSCs induced bone formation in a rat model with cranial defects, in vivo. Our findings revealed that alkaline phosphatase production, calcium deposits, osteocalcin and osteopontin expression, and bone formation were upregulated in vitro and in vivo following BMP2-induced osteogenic differentiation, and AMPK and Wnt signaling pathway activation by FAK could effectively regulate BMP2-enhanced osteogenic differentiation of hUSCs. Taken together, these findings indicated that FAK could mediate BMP2-enhanced osteogenic differentiation of hUSCs through activating adenosine 5'-monophosphate-activated protein kinase and Wnt signaling pathways.
Collapse
Affiliation(s)
- Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiwei Zheng
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chen Qian
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Wu
- Department of Ultrasound, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Guohai Lu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|