1
|
Polyák P, Vadász KF, Tátraaljai D, Puskas JE. Preparation of surgical meshes using self-regulating technology based on reaction-diffusion processes. Med Biol Eng Comput 2024; 62:3343-3354. [PMID: 38837082 PMCID: PMC11485147 DOI: 10.1007/s11517-024-03141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
While reaction-diffusion processes are utilized in multiple scientific fields, these phenomena have seen limited practical application in the polymer industry. Although self-regulating processes driven by parallel reaction and diffusion can lead to patterned structures, most polymeric products with repeating subunits are still prepared by methods that require complex and expensive instrumentation. A notable, high-added-value example is surgical mesh, which is often manufactured by weaving or knitting. In our present work, we demonstrate how the polymer and the biomedical industry can benefit from the pattern-forming capabilities of reaction-diffusion. We would like to propose a self-regulating method that facilitates the creation of surgical meshes from biocompatible polymers. Since the control of the process assumes a thorough understanding of the underlying phenomena, the theoretical background, as well as a mathematical model that can accurately describe the empirical data, is also introduced and explained. Our method offers the benefits of conventional techniques while introducing additional advantages not attainable with them. Most importantly, the method proposed in this paper enables the rapid creation of meshes with an average pore size that can be adjusted easily and tailored to fit the intended area of application.
Collapse
Affiliation(s)
- Péter Polyák
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, OH, USA.
| | - Katalin Fodorné Vadász
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., Budapest, H-1117, Hungary
| | - Dóra Tátraaljai
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., Budapest, H-1117, Hungary
| | - Judit E Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, 44691, OH, USA
| |
Collapse
|
2
|
Wu S, Li Y, Chen S, Zhai H, Ling P. Design and construction of poly (L-lactic-acid) nanofibrous yarns and threads with controllable structure and performances. J Mech Behav Biomed Mater 2023; 148:106214. [PMID: 37918339 DOI: 10.1016/j.jmbbm.2023.106214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
The design and development of electrospun nanofibrous yarns (ENYs) have attracted intensive attentions in the fields of biomedical textiles and tissue engineering, but the inferior fiber arrangement structure, low yarn eveness, and poor tensile properties of currently-obtained ENYs has been troubled for a long time. In this study, a series of innovative strategies which combined a modified electrospinning method with some traditional textile processes like hot stretching, twisting, and plying, were designed and implemented to generate poly (L-lactic-acid) (PLLA) ENYs with adjustable morphology, structure, and tensile properties. PLLA ENYs made from bead-free and uniform PLLA nanofibers were fabricated by our modified electrospinning method, but the as-spun PLLA ENYs exhibited relatively lower fiber alignment degree and tensile properties. A hot stretching technique was explored to process the primary PLLA ENYs to improve the fiber alignment and crystallinity, resulting in a 779.7% increasement for ultimate stress and a 470.4% enhancement for Young's modulus, respectively. Then, the twisting post-treatment was applied to process as-stretched PLLA ENYs, and the tensile performances of as-twisted ENYs was found to present a trend of first increasing and then decreasing with the increasing of twisting degree. Finally, the PLLA threads made from different numbers of as-stretched PLLA ENYs were also manufactured with a traditional plying process, demonstrating the feasibility of further improving the yarn diameter and tensile properties. In all, this study reported a simple and cost-effective technique roadmap which could generate high performance PLLA nanofiber-constructed yarns or threads with controllable structures like highly aligned fiber orientation, twisted structure, and plied structure.
Collapse
Affiliation(s)
- Shaohua Wu
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China; College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China.
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Huiyuan Zhai
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Yantai, 264000, China.
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| |
Collapse
|
3
|
Cotrim M, Oréfice R. Tailoring polycaprolactone/silk electrospun nanofiber yarns by varying compositional and processing parameters. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Han F, Li T, Li M, Zhang B, Wang Y, Zhu Y, Wu C. Nano-calcium silicate mineralized fish scale scaffolds for enhancing tendon-bone healing. Bioact Mater 2023; 20:29-40. [PMID: 35633872 PMCID: PMC9123220 DOI: 10.1016/j.bioactmat.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery, however, this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity. Inspired by the high-performance exoskeleton of natural organisms, we set out to apply natural fish scale (FS) modified by calcium silicate nanoparticles (CS NPs) as a new biomaterial (CS-FS) to overcome the challenge. Benefit from its “Bouligand” microstructure, such FS-based scaffold maintained excellent tensile strength (125.05 MPa) and toughness (14.16 MJ/m3), which are 1.93 and 2.72 times that of natural tendon respectively, allowing it to well meet the requirements for rotator cuff tendon repair. Additionally, CS-FS showed diverse bioactivities by stimulating the differentiation and phenotypic maintenance of multiple types of cells participated into the composition of tendon-bone junction, (e.g. bone marrow mesenchymal stem cells (BMSCs), chondrocyte, and tendon stem/progenitor cells (TSPCs)). In both rat and rabbit rotator cuff tear (RCT) models, CS-FS played a key role in the tendon-bone interface regeneration and biomechanical function, which may be achieved by activating BMP-2/Smad/Runx2 pathway in BMSCs. Therefore, natural fish scale -based biomaterials are the promising candidate for clinical tendon repair due to their outstanding strength and bioactivity. Nano-calcium silicate mineralized fish scale scaffold was first developed for tendon defect repair. •CS-FS exhibited excellent mechanical properties superior to those of natural tendon. •CS-FS showed diverse bioactivities by stimulating the differentiation of multiple types of cells. •CS NPs accelerated tendon-bone interface tendon-bone healing enhancement and biomechanical recovery.
Collapse
|
5
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jao D, Hu X, Beachley V. Bioinspired Silk Fiber Spinning System via Automated Track-Drawing. ACS APPLIED BIO MATERIALS 2021; 4:8192-8204. [DOI: 10.1021/acsabm.1c00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Florio G, Pugno NM, Buehler MJ, Puglisi G. A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations. Acta Biomater 2021; 134:477-489. [PMID: 34303013 DOI: 10.1016/j.actbio.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
We propose a simple general framework to predict folding, native states, energy barriers, protein unfolding, as well as mutation induced diseases and other protein structural analyses. The model should not be considered as an alternative to classical approaches (Molecular Dynamics or Monte Carlo) because it neglects low scale details and rather focuses on global features of proteins and structural information. We aim at the description of phenomena that are out of the range of classical molecular modeling approaches due to the large computational cost: multimolecular interactions, cyclic behavior under variable external interactions, and similar. To demonstrate the effectiveness of the approach in a real case, we focus on the folding and unfolding behavior of tropoelastin and its mutations. Specifically, we derive a discrete mechanical model whose structure is deduced based on a coarse graining approach that allows us to group the amino acids sequence in a smaller number of `equivalent' masses. Nearest neighbor energy terms are then introduced to reproduce the interaction of such amino acid groups. Nearest and non-nearest neighbor energy terms, inter and intra functional blocks are phenomenologically added in the form of Morse potentials. As we show, the resulting system reproduces important properties of the folding-unfolding mechanical response, including the monotonic and cyclic force-elongation behavior, representing a physiologically important information for elastin. The comparison with the experimental behavior of mutated tropoelastin confirms the predictivity of the model. STATEMENT OF SIGNIFICANCE: Classical approaches to the study of phenomena at the molecular scale such as Molecular Dynamics (MD) represent an incredible tool to unveil mechanical and conformational properties of macromolecules, in particular for biological and medical applications. On the other hand, due to the computational cost, the time and spatial scales are limited. Focusing of the real case of tropoelastin, we propose a new approach based on a careful coarse graining of the system, able to describe the overall properties of the macromolecule and amenable of extension to larger scale effects (protein bundles, protein-protein interactions, cyclic loading). The comparison with tropoelastin behavior, also for mutations, is very promising.
Collapse
|
8
|
Wu S, Liu J, Cai J, Zhao J, Duan B, Chen S. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Biofabrication 2021; 13. [PMID: 34450602 DOI: 10.1088/1758-5090/ac2209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Fiber constructed yarns are the elementary building blocks for the generation of implantable biotextiles, and there are always needs for designing and developing new types of yarns to improve the properties of biotextile implants. In the present study, we aim to develop novel nanofiber yarns (NYs) by combining nanostructure that more closely mimic the extracellular matrix fibrils of native tissues with biodegradability, strong mechanical properties and great textile processibility. A novel electrospinning system which integrates yarn formation with hot drawing process was developed to fabricate poly(L-lactic acid) (PLLA) NYs. Compared to the PLLA NYs without hot drawing, the thermally drawn PLLA NYs presented superbly-orientated fibrous structure and notably enhanced crystallinity. Importantly, they possessed admirable mechanical performances, which matched and even exceeded the commercial PLLA microfiber yarns (MYs). The thermally drawn PLLA NYs were also demonstrated to notably promote the adhesion, alignment, proliferation, and tenogenic differentiation of human adipose derived mesenchymal stem cells (hADMSCs) compared to the PLLA NYs without hot drawing. The thermally drawn PLLA NYs were further processed into various nanofibrous tissue scaffolds with defined structures and adjustable mechanical and biological properties using textile braiding and weaving technologies, demonstrating the feasibility and versatility of thermally drawn PLLA NYs for textile-forming utilization. The hADMSCs cultured on PLLA NY-based textiles presented enhanced attachment and proliferation capacities than those cultured on PLLA MY-based textiles. This work presents a facile technique to manufacture high performance PLLA NYs, which opens up opportunities to generate advanced nanostructured biotextiles for surgical implant applications.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
9
|
Jiang C, Wang K, Liu Y, Zhang C, Wang B. Application of textile technology in tissue engineering: A review. Acta Biomater 2021; 128:60-76. [PMID: 33962070 DOI: 10.1016/j.actbio.2021.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
One of the key elements in tissue engineering is to design and fabricate scaffolds with tissue-like properties. Among various scaffold fabrication methods, textile technology has shown its unique advantages in mimicking human tissues' properties such as hierarchical, anisotropic, and strain-stiffening properties. As essential components in textile technology, textile patterns affect the porosity, architecture, and mechanical properties of textile-based scaffolds. However, the potential of various textile patterns has not been fully explored when fabricating textile-based scaffolds, and the effect of different textile patterns on scaffold properties has not been thoroughly investigated. This review summarizes textile technology development and highlights its application in tissue engineering to facilitate the broader application of textile technology, especially various textile patterns in tissue engineering. The potential of using different textile methods such as weaving, knitting, and braiding to mimic properties of human tissues is discussed, and the effect of process parameters in these methods on fabric properties is summarized. Finally, perspectives on future directions for explorations are presented. STATEMENT OF SIGNIFICANCE: Recently, biomedical engineers have applied textile technology to fabricate scaffolds for tissue engineering applications. Various textile methods, especially weaving, knitting, and braiding, enables engineers to customize the physical, mechanical, and biological properties of scaffolds. However, most textile-based scaffolds only use simple textile patterns, and the effect of different textile patterns on scaffold properties has not been thoroughly investigated. In this review, we cover for the first time the effect of process parameters in different textile methods on fabric properties, exploring the potential of using different textile methods to mimic properties of human tissues. Previous advances in textile technology are presented, and future directions for explorations are presented, hoping to facilitate new breakthroughs of textile-based tissue engineering.
Collapse
Affiliation(s)
- Chen Jiang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States; Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Yi Liu
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; H. Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Ben Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States; Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; H. Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
10
|
Serrano-Aroca Á, Pous-Serrano S. Prosthetic meshes for hernia repair: State of art, classification, biomaterials, antimicrobial approaches, and fabrication methods. J Biomed Mater Res A 2021; 109:2695-2719. [PMID: 34021705 DOI: 10.1002/jbm.a.37238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Worldwide, hernia repair represents one of the most frequent surgical procedures encompassing a global market valued at several billion dollars. This type of surgery usually requires the implantation of a mesh that needs the appropriate chemical, physical and biological properties for the type of repair. This review thus presents a description of the types of hernias, current hernia repair methods, and the state of the art of prosthetic meshes for hernia repair providing the most important meshes used in clinical practice by surgeons working in this area classified according to their biological or chemical nature, morphology and whether bioabsorbable or not. We emphasise the importance of surgical site infection in herniatology, how to deal with this microbial problem, and we go further into the future research lines on the production of advanced antimicrobial meshes to improve hernia repair and prevent microbial infections, including multidrug-resistant strains. A great deal of progress has been made in this biomedical field in the last decade. However, we are still far from an ideal antimicrobial mesh that can also provide excellent integration to the abdominal wall, mechanical performance, low visceral adhesion and minimal inflammatory or foreign body reactions, among many other problems.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Salvador Pous-Serrano
- Surgical Unit of Abdominal Wall, Department of General and Digestive Surgery, La Fe University Hospital, Valencia, Spain
| |
Collapse
|
11
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
12
|
da Silva HN, da Silva MC, dos Santos FSF, da Silva Júnior JAC, Barbosa RC, Fook MVL. Chitosan Woven Meshes: Influence of Threads Configuration on Mechanical, Morphological, and Physiological Properties. Polymers (Basel) 2020; 13:polym13010047. [PMID: 33375542 PMCID: PMC7795709 DOI: 10.3390/polym13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop meshes from the weaving of mono- and multifilament wet-spun chitosan (CS), for possible biomedical applications. In the wet-spinning process, CS solution (4% w/v) was extruded in a coagulation bath containing 70% sodium hydroxide solution (0.5 M), and 30% methanol was used. The multifilament thread was prepared by twisted of two and three monofilaments. CS threads obtained were characterized by tensile tests and scanning electron microscopy (SEM). Moreover, it was verified from the morphological tests that threads preserve the characteristics of the individual filaments and present typical “skin-core” microstructure obtained by wet spinning. CS woven meshes obtained were evaluated by optical microscopy (OM), tensile test, swelling degree, and in vitro enzymatic biodegradation. Mechanical properties, biodegradation rate, and amount of fluid absorbed of CS woven meshes were influenced by thread configuration. Hydrated CS meshes showed a larger elastic zone than the dry state. Therefore, CS woven meshes were obtained with modular properties from thread configuration used in weaving, suggesting potential applications in the biomedical field, like dressings, controlled drug delivery systems, or mechanical support.
Collapse
Affiliation(s)
- Henrique Nunes da Silva
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - Milena Costa da Silva
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - Flavia Suzany Ferreira dos Santos
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - José Alberto Campos da Silva Júnior
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil; (H.N.d.S.); (M.C.d.S.); (F.S.F.d.S.); (J.A.C.d.S.J.)
| | - Rossemberg Cardoso Barbosa
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil;
| | - Marcus Vinícius Lia Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil;
- Correspondence: ; Tel.: +55-(83)-2101-1841
| |
Collapse
|
13
|
Aghaei-Ghareh-Bolagh B, Mukherjee S, Lockley KM, Mithieux SM, Wang Z, Emmerson S, Darzi S, Gargett CE, Weiss AS. A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Mater Today Bio 2020; 8:100081. [PMID: 33210083 PMCID: PMC7658716 DOI: 10.1016/j.mtbio.2020.100081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/03/2022] Open
Abstract
Pelvic organ prolapse is a common condition that affects 1 in 4 women across all age groups. It is mainly caused by vaginal birth injury and can be exacerbated by obesity and increased age. Until recently, treatment strategies often used non-degradable synthetic meshes for reconstructive surgery. However, owing to their frequent, unacceptable rate of adverse events such as mesh erosion, transvaginal meshes have been banned in many countries. Recent reports have highlighted the urgent need for biocompatible design of meshes for a safe and effective treatment in the long term. This study reports the design and evaluation of a novel, elastin based degradable mesh using an ovine model of POP as a potential surgical treatment. Elastin is a protein component of the ECM and provides elasticity to tissues throughout the body. Tropoelastin, the monomer subunit of elastin, has been used with success in electrospun constructs as it is a naturally cell interactive polymer. Biomaterials that incorporate tropoelastin support cell attachment and proliferation, and have been proven to encourage elastogenesis and angiogenesis in vitro and in vivo. The biological properties of tropoelastin were combined with the physical properties of PCL, a degradable synthetic polymer, with the aim of producing, characterizing and assessing the performance of continuous tropoelastin:PCL electrospun yarns. Using a modified spinneret electrospinning system and adjusting settings based on relative humidity, four blends of tropoelastin:PCL yarns were fabricated with concentration ratios of 75:25, 50:50, 25:75 and 0:100. Yarns were assessed for ease of manufacture, fibrous architecture, protein/polymer content, yarn stability - including initial tropoelastin release, mechanical strength, and ability to support cell growth. Based on overall favorable properties, a mesh woven from the 50:50 tropoelastin:PCL yarn was implanted into the vagina of a parous ewe with vaginal wall weakness as a model of pelvic organ prolapse. This mesh showed excellent integration with new collagen deposition by SEM and a predominant M2 macrophage response with few pro-inflammatory M1 macrophages after 30 days. The woven tropoelastin:PCL electrospun mesh shows potential as an alternative to non-degradable, synthetic pelvic organ prolapse mesh products.
Collapse
Affiliation(s)
- B Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - K M Lockley
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S M Mithieux
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - Z Wang
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Emmerson
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - S Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia
| | - C E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - A S Weiss
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
14
|
Li D, Tao L, Shen Y, Sun B, Xie X, Ke Q, Mo X, Deng B. Fabrication of Multilayered Nanofiber Scaffolds with a Highly Aligned Nanofiber Yarn for Anisotropic Tissue Regeneration. ACS OMEGA 2020; 5:24340-24350. [PMID: 33015450 PMCID: PMC7528211 DOI: 10.1021/acsomega.0c02554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 05/18/2023]
Abstract
Nanofibrous scaffolds were widely studied to construct scaffold for various fields of tissue engineering due to their ability to mimic a native extracellular matrix (ECM). However, generally, an electrospun nanofiber exhibited a two-dimensional (2D) membrane form with a densely packed structure, which inhibited the formation of a bulk tissue in a three-dimensional (3D) structure. The appearance of a nanofiber yarn (NFY) made it possible to further process the electrospun nanofiber into the desired fabric for specific tissue regeneration. Here, poly(l-lactic acid) (PLLA) NFYs composed of a highly aligned nanofiber were prepared via a dual-nozzle electrospinning setup. Afterward, a noobing technique was applied to fabricate multilayered scaffolds with three orthogonal sets of PLLA NFYs, without interlacing them. Thus the constituent NFYs of the fabric were free of any crimp, apart from the binding yarn, which was used to maintain the integrity of the noobing scaffold. Remarkably, the highly aligned PLLA NFY expressed strengthened mechanical properties than that of a random film, which also promoted the cell adhesion on the NFY scaffold with unidirectional topography and less spreading bodies. In vitro experiments indicated that cells cultured on a noobing NFY scaffold showed a higher proliferation rate during long culture period. The controllable pore structure formed by the vertically arrayed NFY could allow the cell to penetrate through the thickness of the 3D scaffold, distributed uniformly in each layer. The topographic clues guided the orientation of H9C2 cells, forming tissues on different layers in two perpendicular directions. With NFY as the building blocks, noobing and/or 3D weaving methods could be applied in the fabrication of more complex 3D scaffolds applied in anisotropic tissues or organs regeneration.
Collapse
Affiliation(s)
- Dawei Li
- Key
Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
- Engineering
Research Center of Technical Textiles, Ministry of Education, College
of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Ling Tao
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Ying Shen
- Key
Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Binbin Sun
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Xianrui Xie
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Qinfei Ke
- Engineering
Research Center of Technical Textiles, Ministry of Education, College
of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
- Shanghai
Institute of Technology, No. 100 Haiquan Road, Fengxian, Shanghai 201416, China
| | - Xiumei Mo
- State
Key Lab for Modification of Chemical Fibers & Polymer Materials,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620, China
| | - Bingyao Deng
- Key
Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
Wang Y, Armato U, Wu J. Targeting Tunable Physical Properties of Materials for Chronic Wound Care. Front Bioeng Biotechnol 2020; 8:584. [PMID: 32596229 PMCID: PMC7300298 DOI: 10.3389/fbioe.2020.00584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds caused by infections, diabetes, and radiation exposures are becoming a worldwide growing medical burden. Recent progress highlighted the physical signals determining stem cell fates and bacterial resistance, which holds potential to achieve a better wound regeneration in situ. Nanoparticles (NPs) would benefit chronic wound healing. However, the cytotoxicity of the silver NPs (AgNPs) has aroused many concerns. This review targets the tunable physical properties (i.e., mechanical-, structural-, and size-related properties) of either dermal matrixes or wound dressings for chronic wound care. Firstly, we discuss the recent discoveries about the mechanical- and structural-related regulation of stem cells. Specially, we point out the currently undocumented influence of tunable mechanical and structural properties on either the fate of each cell type or the whole wound healing process. Secondly, we highlight novel dermal matrixes based on either natural tropoelastin or synthetic elastin-like recombinamers (ELRs) for providing elastic recoil and resilience to the wounded dermis. Thirdly, we discuss the application of wound dressings in terms of size-related properties (i.e., metal NPs, lipid NPs, polymeric NPs). Moreover, we highlight the cytotoxicity of AgNPs and propose the size-, dose-, and time-dependent solutions for reducing their cytotoxicity in wound care. This review will hopefully inspire the advanced design strategies of either dermal matrixes or wound dressings and their potential therapeutic benefits for chronic wounds.
Collapse
Affiliation(s)
- Yuzhen Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, China
- Department of Burn and Plastic Surgery, Air Force Hospital of PLA Central Theater Command, Datong, China
| | - Ubaldo Armato
- Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona Medical School Verona, Verona, Italy
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904511. [PMID: 31814177 DOI: 10.1002/adma.201904511] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Engineering synthetic scaffolds to repair and regenerate ruptured native tendon and ligament (T/L) tissues is a significant engineering challenge due to the need to satisfy both the unique biological and biomechanical properties of these tissues. Long-term clinical outcomes of synthetic scaffolds relying solely on high uniaxial tensile strength are poor with high rates of implant rupture and synovitis. Ideal biomaterials for T/L repair and regeneration need to possess the appropriate biological and biomechanical properties necessary for the successful repair and regeneration of ruptured tendon and ligament tissues.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|