1
|
Wang W, Ma Q, Li D, Zhang W, Yang Z, Tian W, Huang N. Engineered endothelium-mimicking antithrombotic surfaces via combination of nitric oxide-generation with fibrinolysis strategies. Bioact Mater 2025; 43:319-329. [PMID: 39415940 PMCID: PMC11480950 DOI: 10.1016/j.bioactmat.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
Thrombosis associated with implants can severely impact therapeutic outcomes and lead to increased morbidity and mortality. Thus, developing blood-contacting materials with superior anticoagulant properties is essential to prevent and mitigate device-related thrombosis. Herein, we propose a novel single-molecule multi-functional strategy for creating blood-compatible surfaces. The synthesized azide-modified Cu-DOTA-(Lys)3 molecule, which possesses both NO release and fibrinolysis functions, was immobilized on material surfaces via click chemistry. Due to the specificity, rapidity, and completeness of click chemistry, the firmly grafted Cu-DOTA-(Lys)3 endows the modified material with excellent antithrombotic properties of vascular endothelium and thrombolytic properties of fibrinolytic system. This surface effectively prevented thrombus formation in both in vitro and in vivo experiments, owing to the synergistic effect of anticoagulation and thrombolysis. Moreover, the modified material maintained its functional efficacy after one month of PBS immersion, demonstrating excellent stability. Overall, this single-molecule multifunctional strategy may become a promising surface engineering technique for blood-contacting materials.
Collapse
Affiliation(s)
- Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qing Ma
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Da Li
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Wenjie Tian
- Cardiology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Nan Huang
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- GuangZhou Nanchuang Mount Everest Company for Medical Science and Technology, Guangzhou, Guangdong, 510670, China
| |
Collapse
|
2
|
Hasan ML, Lee JR, Rahaman KA, Yang DH, Joung YK. Versatile effects of galectin-1 protein-containing lipid bilayer coating for cardiovascular applications. Bioact Mater 2024; 42:207-225. [PMID: 39285911 PMCID: PMC11403261 DOI: 10.1016/j.bioactmat.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices. Inspired by the role of galectin-1 (Gal-1) in selective functions on multiple cells and immunomodulatory processes, we prepared a biologically target-specific surface coated with the lipid bilayer containing Gal-1 (Gal-1-SLB) and investigate the proof of the biological effects. First, lipoamido-dPEG-acid was deposited on a gold-coated substrate to form a self-assembled monolayer and then conjugated dioleoylphosphatidylethanolamine (DOPE) onto that to produce a lower leaflet of the supported lipid bilayer (SLB) before fusing membrane-derived vesicles extracted from B16-F10 cells. The Gal-1-SLB showed the expected anti-fouling activity by revealing the resistance to protein adsorption and bacterial adhesion. In vitro studies showed that the Gal-1-SLB can promote endothelial function and inhibit smooth muscle cell proliferation. Moreover, Gal-1- SLB presents potential function for endothelial cell migration and angiogenic activities. In vitro macrophage culture studies showed that the Gal-1-SLB attenuated the LPS-induced inflammation and the production of macrophage-secreted inflammatory cytokines. Finally, the implanted Gal-1-SLB reduced the infiltration of immune cells at the tissue-implant interface and increased markers for M2 polarization and blood vessel formation in vivo. This straightforward surface coating with Gal-1 can be a useful strategy for modulating the vascular and immune cells around a blood-contacting device.
Collapse
Affiliation(s)
- Md Lemon Hasan
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ju Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Khandoker Asiqur Rahaman
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Conversing Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wang C, Jiang D, Ge H, Ning J, Li X, Liao M, Xiao X. Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2469-2483. [PMID: 39082937 DOI: 10.1080/09205063.2024.2384275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024]
Abstract
Anticoagulation treatment for patients with high bleeding risk during hemodialysis is challenging. Contact between the dialysis membrane and the blood leads to protein adsorption and activation of the coagulation cascade reaction. Activated coagulation Factor X (FXa) plays a central role in thrombogenesis, but anticoagulant modification of the dialysis membrane is rarely targeted at FXa. In this study, we constructed an anticoagulant membrane using the polydopamine coating method to graft FXa inhibitors (apixaban and rivaroxaban) on the membrane surface. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the membranes. The apixaban- and rivaroxaban-modified membranes showed lower water contact angles, decreased albumin protein adsorption, and suppressed platelet adhesion and activation compared to the unmodified PES membranes. Moreover, the modified membranes prolonged the blood clotting times in both the intrinsic and extrinsic coagulation pathways and inhibited FXa generation and complement activation, which suggested that the modified membrane enhanced biocompatibility and antithrombotic properties through the inhibition of FXa. Targeting FXa to design antithrombotic HD membranes or other blood contact materials might have great application potential.
Collapse
Affiliation(s)
- Chengzhi Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dayang Jiang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianping Ning
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Goh T, Gao L, Singh J, Totaro R, Carey R, Yang K, Cartwright B, Dennis M, Ju LA, Waterhouse A. Platelet Adhesion and Activation in an ECMO Thrombosis-on-a-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401524. [PMID: 38757670 PMCID: PMC11321669 DOI: 10.1002/advs.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Indexed: 05/18/2024]
Abstract
Use of extracorporeal membrane oxygenation (ECMO) for cardiorespiratory failure remains complicated by blood clot formation (thrombosis), triggered by biomaterial surfaces and flow conditions. Thrombosis may result in ECMO circuit changes, cause red blood cell hemolysis, and thromboembolic events. Medical device thrombosis is potentiated by the interplay between biomaterial properties, hemodynamic flow conditions and patient pathology, however, the contribution and importance of these factors are poorly understood because many in vitro models lack the capability to customize material and flow conditions to investigate thrombosis under clinically relevant medical device conditions. Therefore, an ECMO thrombosis-on-a-chip model is developed that enables highly customizable biomaterial and flow combinations to evaluate ECMO thrombosis in real-time with low blood volume. It is observed that low flow rates, decelerating conditions, and flow stasis significantly increased platelet adhesion, correlating with clinical thrombus formation. For the first time, it is found that tubing material, polyvinyl chloride, caused increased platelet P-selectin activation compared to connector material, polycarbonate. This ECMO thrombosis-on-a-chip model can be used to guide ECMO operation, inform medical device design, investigate embolism, occlusion and platelet activation mechanisms, and develop anti-thrombotic biomaterials to ultimately reduce medical device thrombosis, anti-thrombotic drug use and therefore bleeding complications, leading to safer blood-contacting medical devices.
Collapse
Affiliation(s)
- Tiffany Goh
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| | - Lingzi Gao
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| | - Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| | - Richard Totaro
- Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Intensive Care DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Ruaidhri Carey
- Intensive Care DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Kevin Yang
- Intensive Care DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Bruce Cartwright
- Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Anaesthetics DepartmentRoyal Prince Alfred HospitalCamperdownSydneyNSW2050Australia
| | - Mark Dennis
- Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Cardiology DepartmentRoyal Prince Alfred HospitalMissenden Road, CamperdownSydneyNSW2050Australia
| | - Lining Arnold Ju
- Heart Research InstituteNewtownNSW2042Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
- School of Biomedical EngineeringFaculty of EngineeringThe University of SydneyDarlingtonNSW2008Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSW2006Australia
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
5
|
Wang X, Yin Y, Wang J, Yu H, Tang Q, Chen Z, Fu G, Ren K, Ji J, Yu L. UV-Triggered Hydrogel Coating of the Double Network Polyelectrolytes for Enhanced Endothelialization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401301. [PMID: 38544484 PMCID: PMC11187865 DOI: 10.1002/advs.202401301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/05/2024] [Indexed: 06/20/2024]
Abstract
The left atrial appendage (LAA) occluder is an important medical device for closing the LAA and preventing stroke. The device-related thrombus (DRT) prevents the implantation of the occluder in exerting the desired therapeutic effect, which is primarily caused by the delayed endothelialization of the occluder. Functional coatings are an effective strategy for accelerating the endothelialization of occluders. However, the occluder surface area is particularly large and structurally complex, and the device is subjected to a large shear friction in the sheath during implantation, which poses a significant challenge to the coating. Herein, a hydrogel coating by the in situ UV-triggered polymerization of double-network polyelectrolytes is reported. The findings reveal that the double network and electrostatic interactions between the networks resulted in excellent mechanical properties of the hydrogel coating. The sulfonate and Arg-Gly-Asp (RGD) groups in the coating promoted hemocompatibility and endothelial growth of the occluder, respectively. The coating significantly accelerated the endothelialization of the LAA occluder in a canine model is further demonstrated. This study has potential clinical benefits in reducing both the incidence of DRT and the postoperative anticoagulant course for LAA closure.
Collapse
Affiliation(s)
- Xing‐wang Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Yi‐jing Yin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Jing Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Hong‐mei Yu
- Department of Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Qian Tang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang ProvinceHangzhou310016China
| | - Zhao‐yang Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Guo‐sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang ProvinceHangzhou310016China
| | - Ke‐feng Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang ProvinceHangzhou310016China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Lu Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang ProvinceHangzhou310016China
| |
Collapse
|
6
|
Tan M, Wang F, Yang J, Zhong Z, Chen G, Chen Z. Hydroxyl silicone oil grafting onto a rough thermoplastic polyurethane surface created durable super-hydrophobicity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1359-1378. [PMID: 38490948 DOI: 10.1080/09205063.2024.2329453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Indwelling medical catheters are frequently utilized in medical procedures, but they are highly susceptible to infection, posing a vital challenge for both health workers and patients. In this study, the superhydrophobic micro-nanostructure surface was constructed on the surface of thermoplastic polyurethane (TPU) membrane using heavy calcium carbonate (CaCO3) template. To decrease the surface free energy, hydroxyl silicone oil was grafted onto the surface, forming a super-hydrophobic surface. The water contact angle (WCA) increased from 91.1° to 143 ± 3° when the concentration of heavy calcium CaCO3 was 20% (weight-to-volume (w/v)). However, the increased WCA was unstable and tended to decrease over time. After grafting hydroxyl silicone oil, the WCA rose to 152.05 ± 1.62° and remained consistently high for a period of 30 min. Attenuated total reflection infrared spectroscopy (ATR-FTIR) analysis revealed a chemical crosslinking between silicone oil and the surface of TPU. Furthermore, Scanning electron microscope (SEM) image showed the presence of numerous nanoparticles on the micro surface. Atomic force microscope (AFM) testing indicated a significant improvement in surface roughness. This method of creating a hydrophobic surface demonstrated several advantages, including resistance to cell, bacterial, protein, and platelet adhesion and good biosecurity. Therefore, it holds promising potential for application in the development of TPU-based medical catheters with antibacterial properties.
Collapse
Affiliation(s)
- Miaomiao Tan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jinlan Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhengpeng Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
7
|
Zhang W, Zhang J, Hu F, Wang W, Du Z, Ke Y, Ma Q, Mou X, Lu J, Yang Z. Active Dual-Protein Coating Assisted by Stepwise Protein-Protein Interactions Assembly Reduces Thrombosis and Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310259. [PMID: 38424734 PMCID: PMC11077678 DOI: 10.1002/advs.202310259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Indexed: 03/02/2024]
Abstract
Universal protein coatings have recently gained wide interest in medical applications due to their biocompatibility and ease of fabrication. However, the challenge persists in protein activity preservation, significantly complicating the functional design of these coatings. Herein, an active dual-protein surface engineering strategy assisted by a facile stepwise protein-protein interactions assembly (SPPIA) method for catheters to reduce clot formation and infection is proposed. This strategy is realized first by the partial oxidation of bovine serum albumin (BSA) and lysozyme (LZM) for creating stable nucleation platforms via hydrophobic interaction, followed by the assembly of nonoxidized BSA (pI, the isoelectric point, ≈4.7) and LZM (pI ≈11) through electrostatic interaction owing to their opposite charge under neutral conditions. The SPPIA method effectively preserves the conformation and functionality of both BSA and LZM, thus endowing the resultant coating with potent antithrombotic and bactericidal properties. Furthermore, the stable nucleation platform ensures the adhesion and durability of the coating, resisting thrombosis and bacterial proliferation even after 15 days of PBS immersion. Overall, the SPPIA approach not only provides a new strategy for the fabrication of active protein coatings but also shows promise for the surface engineering technology of catheters.
Collapse
Affiliation(s)
- Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523000China
| | - Jiangling Zhang
- School of Materials Science and EngineeringKey Lab of Advanced Technology for Materials of Education MinistrySouthwest Jiaotong UniversityChengdu610031China
| | - Fangkun Hu
- School of Materials Science and EngineeringKey Lab of Advanced Technology for Materials of Education MinistrySouthwest Jiaotong UniversityChengdu610031China
| | - Wenxuan Wang
- School of Materials Science and EngineeringKey Lab of Advanced Technology for Materials of Education MinistrySouthwest Jiaotong UniversityChengdu610031China
| | - Zeyu Du
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523000China
- School of Materials Science and EngineeringKey Lab of Advanced Technology for Materials of Education MinistrySouthwest Jiaotong UniversityChengdu610031China
| | - You Ke
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523000China
- School of Materials Science and EngineeringKey Lab of Advanced Technology for Materials of Education MinistrySouthwest Jiaotong UniversityChengdu610031China
| | - Qing Ma
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523000China
- School of Materials Science and EngineeringKey Lab of Advanced Technology for Materials of Education MinistrySouthwest Jiaotong UniversityChengdu610031China
| | - Xiaohui Mou
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523000China
- School of Materials Science and EngineeringKey Lab of Advanced Technology for Materials of Education MinistrySouthwest Jiaotong UniversityChengdu610031China
| | - Jing Lu
- Department of AnesthesiologySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative MedicineThe Tenth Affiliated HospitalSouthern Medical UniversityDongguanGuangdong523000China
| |
Collapse
|
8
|
Helmecke T, Hahn D, Ruland A, Tsurkan MV, Maitz MF, Werner C. Adsorbed polymer conjugates to adaptively inhibit blood coagulation activation by medical membranes. J Control Release 2024; 368:344-354. [PMID: 38417559 DOI: 10.1016/j.jconrel.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Adaptive drug release can combat coagulation and inflammation activation at the blood-material interface with minimized side effects. For that purpose, poly(styrene-alt-maleic-anhydride) copolymers were conjugated to heparin via coagulation-responsive linker peptides and shown to tightly adsorb onto poly(ethersulfone) (PES)-surfaces from aqueous solutions as monolayers. Coagulation-responsive release of unfractionated as well as low molecular weight heparins from the respective coatings was demonstrated to be functionally beneficial in human plasma and whole blood incubation with faster release kinetics resulting in stronger anticoagulant effects. Coated poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) flat membranes proved the technology to offer an easy, effective and robust anticoagulant interfacial functionalization of hemodialysis membranes. In perspective, the modularity of the adaptive release system will be used for inhibiting multiple activation processes.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany; Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, Fetscherstraße 105, 01307 Dresden, Germany.
| |
Collapse
|
9
|
Bhattacharjee A, Savargaonkar AV, Tahir M, Sionkowska A, Popat KC. Surface modification strategies for improved hemocompatibility of polymeric materials: a comprehensive review. RSC Adv 2024; 14:7440-7458. [PMID: 38433935 PMCID: PMC10906639 DOI: 10.1039/d3ra08738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Polymeric biomaterials are a widely used class of materials due to their versatile properties. However, as with all other types of materials used for biomaterials, polymers also have to interact with blood. When blood comes into contact with any foreign body, it initiates a cascade which leads to platelet activation and blood coagulation. The implant surface also has to encounter a thromboinflammatory response which makes the implant integrity vulnerable, this leads to blood coagulation on the implant and obstructs it from performing its function. Hence, the surface plays a pivotal role in the design and application of biomaterials. In particular, the surface properties of biomaterials are responsible for biocompatibility with biological systems and hemocompatibility. This review provides a report on recent advances in the field of surface modification approaches for improved hemocompatibility. We focus on the surface properties of polysaccharides, proteins, and synthetic polymers. The blood coagulation cascade has been discussed and blood - material surface interactions have also been explained. The interactions of blood proteins and cells with polymeric material surfaces have been discussed. Moreover, the benefits as well as drawbacks of blood coagulation on the implant surface for wound healing purposes have also been studied. Surface modifications implemented by other researchers to enhance as well as prevent blood coagulation have also been analyzed.
Collapse
Affiliation(s)
- Abhishek Bhattacharjee
- School of Advanced Material Discovery, Colorado State University Fort Collins CO 80523 USA
| | | | - Muhammad Tahir
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University Gagarina 7 87-100 Torun Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University Gagarina 7 87-100 Torun Poland
| | - Ketul C Popat
- School of Advanced Material Discovery, Colorado State University Fort Collins CO 80523 USA
- Department of Mechanical Engineering, Colorado State University Fort Collins CO 80523 USA
- Department of Bioengineering, George Mason University Fairfax VA 22030 USA
| |
Collapse
|
10
|
Mou X, Miao W, Zhang W, Wang W, Ma Q, Du Z, Li X, Huang N, Yang Z. Zwitterionic polymers-armored amyloid-like protein surface combats thrombosis and biofouling. Bioact Mater 2024; 32:37-51. [PMID: 37810990 PMCID: PMC10556425 DOI: 10.1016/j.bioactmat.2023.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Proteins, cells and bacteria adhering to the surface of medical devices can lead to thrombosis and infection, resulting in significant clinical mortality. Here, we report a zwitterionic polymers-armored amyloid-like protein surface engineering strategy we called as "armored-tank" strategy for dual functionalization of medical devices. The "armored-tank" strategy is realized by decoration of partially conformational transformed LZM (PCTL) assembly through oxidant-mediated process, followed by armoring with super-hydrophilic poly-2-methacryloyloxyethyl phosphorylcholine (pMPC). The outer armor of the "armored-tank" shows potent and durable zone defense against fibrinogen, platelet and bacteria adhesion, leading to long-term antithrombogenic properties over 14 days in vivo without anticoagulation. Additionally, the "fired" PCTL from "armored-tank" actively and effectively kills both Gram-positive and Gram-negative bacterial over 30 days as a supplement to the lacking bactericidal functions of passive outer armor. Overall, this "armored-tank" surface engineering strategy serves as a promising solution for preventing biofouling and thrombotic occlusion of medical devices.
Collapse
Affiliation(s)
- Xiaohui Mou
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Wan Miao
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qing Ma
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Zeyu Du
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan 610072, China
| | - Nan Huang
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan 610072, China
| |
Collapse
|
11
|
Witzdam L, Vosberg B, Große-Berkenbusch K, Stoppelkamp S, Wendel HP, Rodriguez-Emmenegger C. Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting. Macromol Biosci 2024; 24:e2300321. [PMID: 37742317 DOI: 10.1002/mabi.202300321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Berlind Vosberg
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Katharina Große-Berkenbusch
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Sandra Stoppelkamp
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Hans Peter Wendel
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Barcelona, Madrid, 28029, Spain
| |
Collapse
|
12
|
He G, Dong T, Yang Z, Stokke BT, Jiang Z. Surface Oxygen Deficiency Enabled Spontaneous Antiprotein Fouling in WO 3 Nanosheets for Biosensing in Biological Fluids. Anal Chem 2024; 96:839-846. [PMID: 38174654 PMCID: PMC10794997 DOI: 10.1021/acs.analchem.3c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Biofouling deteriorates the performance of sensors operated in biofluids. Protein adsorption is believed to be the first step of biofouling, which also reduces biocompatibility by further inducing cell adhesion, platelet activation, and even inflammation. Current studies of antifouling coatings are focused on polymers and hydrogels, which have succeeded in remaining resistant to protein adsorption, but their application on sensor electrodes is limited due to low conductivity and biocompatibility. Here, we report a spontaneous antibiofouling strategy for sensor electrodes by controlling oxygen vacancies in WO3 nanosheets. Irreversible adsorption of proteins was reduced by 76% in unprocessed human plasma when electrodes were coated with WO3 rich in surface oxygen vacancy. These electrodes maintained 91% of the initial current density after 1 month of incubation in human plasma.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Department
of Microsystems (IMS), Faculty of Technology, Natural Sciences and
Maritime Sciences, University of South-Eastern
Norway, Postboks 235, Kongsberg 3603, Norway
- Sensovann
AS, Raveien 215, Borre 3184, Norway
| | - Tao Dong
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Department
of Microsystems (IMS), Faculty of Technology, Natural Sciences and
Maritime Sciences, University of South-Eastern
Norway, Postboks 235, Kongsberg 3603, Norway
| | - Zhaochu Yang
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Sensovann
AS, Raveien 215, Borre 3184, Norway
| | - Bjo̷rn Torger Stokke
- Department
of Microsystems (IMS), Faculty of Technology, Natural Sciences and
Maritime Sciences, University of South-Eastern
Norway, Postboks 235, Kongsberg 3603, Norway
- Biophysics
and Medical Technology, Department of Physics, Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Zhuangde Jiang
- Chongqing
Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing
Key Laboratory of Colleges and Universities on Micro-Nano Systems
Technology and Smart Transducing, Collaborative Innovation Center
on Micro-Nano Transduction and Intelligent Eco-Internet of Things,
Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan’an District, Chongqing 400067, China
- Xi’an
Jiaotong University, Xi’an 710049, China
| |
Collapse
|
13
|
Zhang W, Cui L, Xie C, Du Z, Mou X, Ke Y, Ma Q, Tian W, Yang Z. Glycocalyx-inspired dynamic antifouling surfaces for temporary intravascular devices. Biomaterials 2024; 304:122427. [PMID: 38100906 DOI: 10.1016/j.biomaterials.2023.122427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Protein and cell adhesion on temporary intravascular devices can lead to thrombosis and tissue embedment, significantly increasing complications and device retrieval difficulties. Here, we propose an endothelial glycocalyx-inspired dynamic antifouling surface strategy for indwelling catheters and retrievable vascular filters to prevent thrombosis and suppress intimal embedment. This strategy is realized on the surfaces of substrates by the intensely dense grafting of hydrolyzable endothelial polysaccharide hyaluronic acid (HA), assisted by an amine-rich phenol-polyamine universal platform. The resultant super-hydrophilic surface exhibits potent antifouling property against proteins and cells. Additionally, the HA hydrolysis induces continuous degradation of the coating, enabling removal of inevitable biofouling on the surface. Moreover, the dense grafting of HA also ensures the medium-term effectiveness of this dynamic antifouling surface. The coated catheters maintain a superior anti-thrombosis capacity in ex vivo blood circulation after 30 days immersion. In the abdominal veins of rats, the coated implants show inhibitory effects on intimal embedment up to 2 months. Overall, we envision that this glycocalyx-inspired dynamic antifouling surface strategy could be a promising surface engineering technology for temporary intravascular devices.
Collapse
Affiliation(s)
- Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Linxian Cui
- Cardiology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610072, China
| | - Zeyu Du
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xiaohui Mou
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - You Ke
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Qing Ma
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Wenjie Tian
- Cardiology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, Department of Cardiology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China; Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
14
|
Lingel MP, Haus M, Paschke L, Foltan M, Lubnow M, Gruber M, Krenkel L, Lehle K. Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation. Artif Organs 2023; 47:1720-1731. [PMID: 37525949 DOI: 10.1111/aor.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis.
Collapse
Affiliation(s)
- Maximilian P Lingel
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Moritz Haus
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Paschke
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Maik Foltan
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Lars Krenkel
- Regensburg Center of Biomedical Engineering, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Sandell M, Ericsson A, Al-Saadi J, Södervall B, Södergren E, Grass S, Sanchez J, Holmin S. A novel noble metal stent coating reduces in vitro platelet activation and acute in vivo thrombosis formation: a blinded study. Sci Rep 2023; 13:17225. [PMID: 37821529 PMCID: PMC10567768 DOI: 10.1038/s41598-023-44364-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Inherent to any stenting procedure is the prescription of dual antiplatelet therapy (DAPT) to reduce the platelet response. Clinical guidelines recommend 6-12 months of DAPT, depending on stent type, clinical picture and patient factors. Our hypothesis is that a nanostructured noble metal coating has the potential to reduce protein deposition and platelet activation. These effects would reduce subsequent thrombo-inflammatory reactions, potentially mitigating the need for an extensive DAPT in the acute phase. Here, a noble metal nanostructure coating on stents is investigated. Twelve pigs underwent endovascular implantation of coated and non-coated stents for paired comparisons in a blinded study design. The non-coated control stent was placed at the contralateral corresponding artery. Volumetric analysis of angiographic data, performed by a treatment blinded assessor, demonstrated a significant thrombus reduction for one of the coatings compared to control. This effect was already seen one hour after implantation. This finding was supported by in vitro data showing a significant reduction of coagulation activation in the coated group. This novel coating shows promise as an implant material addition and could potentially decrease the need for DAPT in the early phases of stent implementation.
Collapse
Affiliation(s)
- Mikael Sandell
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 114 28, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 77, Stockholm, Sweden
- MedTechLabs, Stockholm, Sweden
| | - Anna Ericsson
- Bactiguard AB, Alfred Nobels allé 150, 146 48, Tullinge, Sweden
| | - Jonathan Al-Saadi
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 77, Stockholm, Sweden
| | - Billy Södervall
- Bactiguard AB, Alfred Nobels allé 150, 146 48, Tullinge, Sweden
| | - Erika Södergren
- Bactiguard AB, Alfred Nobels allé 150, 146 48, Tullinge, Sweden
| | - Stefan Grass
- Bactiguard AB, Alfred Nobels allé 150, 146 48, Tullinge, Sweden
| | - Javier Sanchez
- Bactiguard AB, Alfred Nobels allé 150, 146 48, Tullinge, Sweden
- Department of Clinical Sciences, Danderyd Hospital, 182 88, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institute, Tomtebodavägen 18A, 171 77, Stockholm, Sweden.
| |
Collapse
|
16
|
Sperling C, Maitz MF, Körber V, Hänsel S, Werner C. Advanced in vitro hemocompatibility assessment of biomaterials using a new flow incubation system. BIOMATERIALS ADVANCES 2023; 153:213555. [PMID: 37478769 DOI: 10.1016/j.bioadv.2023.213555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Physiologically relevant in vitro hemocompatibility assessment of biomaterials remains challenging. We present a new setup that enables standardized whole blood incubation of biomedical materials under flow. A blood volume of 2 mL is recirculated over test surfaces in a custom-made parallel plate incubation system to determine the activation of hemostasis and inflammation. Controlled physiological shear rates between 125 s-1 and 1250 s-1 and minimized contact to air are combined with a natural-like pumping process. A unique feature of this setup allows tracing adhesion of blood cells to test surfaces microscopically in situ. Validation testing was performed in comparison to previously applied whole blood incubation methodologies. Experiments with the newly developed setup showed that even small obstacles to blood flow activate blood (independent of materials-induced blood activation levels); that adhesion of blood cells to biomaterials equilibrates within 5 to 10 min; that high shear rates (1250 compared to 375 s-1) induce platelet activation; and that hemolysis, platelet factor 4 (PF4) release and platelet loss - but not thrombin formation - depend on shear rate (within the range investigated, 125 to 1250 s-1).
Collapse
Affiliation(s)
- Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Vincent Körber
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Stefanie Hänsel
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
17
|
Wang W, Liu S, Zhang S, Zhang J, Tang Y, Zhang W. Incorporating Anticoagulant and Antiplatelet Dual Functional Groups into Thermosetting Polymer Chain for Enhancing Antithrombogenicity. Adv Healthc Mater 2023; 12:e2300680. [PMID: 37515824 DOI: 10.1002/adhm.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/05/2023] [Indexed: 07/31/2023]
Abstract
In clinical practice, high-effective antithrombosis remains a challenge for blood-contacting medical devices. Inspired by the enhanced antithrombogenicity of anticoagulant and antiplatelet combination therapy, a strategy is proposed to synthesize dual-pathway antithrombotic polymers by incorporating anticoagulant and antiplatelet dual functional groups into a single thermosetting polymer chain. The synthesized polymer shows increased antithrombogenicity in vitro, with prolonged activated partial thromboplastin time (APTT) and decreased platelet adhesion. Additionally, it downregulates the expression of coagulation- and inflammation-related factors in rabbit plasma after ex vivo arteriovenous shunt assay and maintains patency of small vascular grafts for at least 6 months without thrombosis on the luminal surface after in vivo replacement of rabbit carotid artery. This work provides a new approach to producing novel antithrombotic polymers for blood-contacting medical devices.
Collapse
Affiliation(s)
- Weizhong Wang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Shaowen Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Shan Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Jingjing Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Yuyi Tang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Weijia Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
- The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200240, China
- Department of Physiology and Pathophysiology, the Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai, 200240, China
| |
Collapse
|
18
|
McKiel LA, Ballantyne LL, Negri GL, Woodhouse KA, Fitzpatrick LE. MyD88-dependent Toll-like receptor 2 signaling modulates macrophage activation on lysate-adsorbed Teflon™ AF surfaces in an in vitro biomaterial host response model. Front Immunol 2023; 14:1232586. [PMID: 37691934 PMCID: PMC10491479 DOI: 10.3389/fimmu.2023.1232586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
The adsorbed protein layer on an implanted biomaterial surface is known to mediate downstream cell-material interactions that drive the host response. While the adsorption of plasma-derived proteins has been studied extensively, the adsorption of damage-associated molecular patterns (DAMPs) derived from damaged cells and matrix surrounding the implant remains poorly understood. Previously, our group developed a DAMP-adsorption model in which 3T3 fibroblast lysates were used as a complex source of cell-derived DAMPs and we demonstrated that biomaterials with adsorbed lysate potently activated RAW-Blue macrophages via Toll-like receptor 2 (TLR2). In the present study, we characterized the response of mouse bone marrow derived macrophages (BMDM) from wildtype (WT), TLR2-/- and MyD88-/- mice on Teflon™ AF surfaces pre-adsorbed with 10% plasma or lysate-spiked plasma (10% w/w total protein from 3T3 fibroblast lysate) for 24 hours. WT BMDM cultured on adsorbates derived from 10% lysate in plasma had significantly higher gene and protein expression of IL-1β, IL-6, TNF-α, IL-10, RANTES/CCL5 and CXCL1/KC, compared to 10% plasma-adsorbed surfaces. Furthermore, the upregulation of pro-inflammatory cytokine and chemokine expression in the 10% lysate in plasma condition was attenuated in TLR2-/- and MyD88-/- BMDM. Proteomic analysis of the adsorbed protein layers showed that even this relatively small addition of lysate-derived proteins within plasma (10% w/w) caused a significant change to the adsorbed protein profile. The 10% plasma condition had fibrinogen, albumin, apolipoproteins, complement, and fibronectin among the top 25 most abundant proteins. While proteins layers generated from 10% lysate in plasma retained fibrinogen and fibronectin among the top 25 proteins, there was a disproportionate increase in intracellular proteins, including histones, tubulins, actins, and vimentin. Furthermore, we identified 7 DAMPs or DAMP-related proteins enriched in the 10% plasma condition (fibrinogen, apolipoproteins), compared to 39 DAMPs enriched in the 10% lysate in plasma condition, including high mobility group box 1 and histones. Together, these findings indicate that DAMPs and other intracellular proteins readily adsorb to biomaterial surfaces in competition with plasma proteins, and that adsorbed DAMPs induce an inflammatory response in adherent macrophages that is mediated by the MyD88-dependent TLR2 signaling pathway.
Collapse
Affiliation(s)
- Laura A. McKiel
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Laurel L. Ballantyne
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
| | | | - Kimberly A. Woodhouse
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Lindsay E. Fitzpatrick
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
19
|
Han X, Lu B, Zou D, Luo X, Liu L, Maitz MF, Yang P, Huang N, Zhao A, Chen J. Allicin-Loaded Intelligent Hydrogel Coating Improving Vascular Implant Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38247-38263. [PMID: 37549059 DOI: 10.1021/acsami.3c05984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Coronary atherosclerosis is closely related to inflammation and oxidative stress. Owing to poor biocompatibility, lack of personalized treatment, and late toxic side effects, traditional drug-eluting stent intervention, releasing antiproliferative drugs, can delay endothelial repair and cause late thrombosis. The inflammation caused by atherosclerosis results in an acidic microenvironment and oxidative stress, which can be considered as triggers for precise and intelligent treatment. Here, we used catechol hyaluronic acid (C-HA) and cystamine (Cys) to prepare C-HA-Cys hydrogel coatings by amide reaction. The H2S-releasing donor allicin was loaded in the hydrogel to form an intelligent biomimetic coating. The disulfide bond of Cys made the cross-linked network redox-responsive to the inflammation and oxidative stress in the microenvironment by releasing the drug and H2S intelligently to combat the side effects of stent implantation. This study evaluated the hemocompatibility, anti-inflammatory capacity, vascular wall cytocompatibility, and in vivo histocompatibility of this intelligent hydrogel coating. Furthermore, the effect of H2S released from the coating on atherosclerosis-related signaling pathways such as CD31 and cystathionine γ-lyase (CSE), CD36, and ACAT-1 was investigated. Our results indicate that the C-HA-Cys-Allicin hydrogel coating could be manufactured on the surface of vascular interventional devices to achieve a precise response to the microenvironment of the lesion to release drug, which can attain the purpose of prevention of in-stent restenosis and ensure the effectiveness and safety of the application of interventional devices.
Collapse
Affiliation(s)
- Xiao Han
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Bingyang Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Dan Zou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- School of Health Management, Xihua University, Chengdu 610039, Sichuan, China
| | - Xiao Luo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Li Liu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Manfred F Maitz
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, Dresden 01069, Germany
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Nan Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ansha Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiang Chen
- The department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| |
Collapse
|
20
|
Xu T, Ji H, Xu L, Cheng S, Liu X, Li Y, Zhong R, Zhao W, Kizhakkedathu JN, Zhao C. Self-anticoagulant sponge for whole blood auto-transfusion and its mechanism of coagulation factor inactivation. Nat Commun 2023; 14:4875. [PMID: 37573353 PMCID: PMC10423252 DOI: 10.1038/s41467-023-40646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Clinical use of intraoperative auto-transfusion requires the removal of platelets and plasma proteins due to pump-based suction and water-soluble anticoagulant administration, which causes dilutional coagulopathy. Herein, we develop a carboxylated and sulfonated heparin-mimetic polymer-modified sponge with spontaneous blood adsorption and instantaneous anticoagulation. We find that intrinsic coagulation factors, especially XI, are inactivated by adsorption to the sponge surface, while inactivation of thrombin in the sponge-treated plasma effectively inhibits the common coagulation pathway. We show whole blood auto-transfusion in trauma-induced hemorrhage, benefiting from the multiple inhibitory effects of the sponge on coagulation enzymes and calcium depletion. We demonstrate that the transfusion of collected blood favors faster recovery of hemostasis compared to traditional heparinized blood in a rabbit model. Our work not only develops a safe and convenient approach for whole blood auto-transfusion, but also provides the mechanism of action of self-anticoagulant heparin-mimetic polymer-modified surfaces.
Collapse
Affiliation(s)
- Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
- Department of Pathology and Lab Medicine & Centre for Blood Research & Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada.
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, 610052, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Lab Medicine & Centre for Blood Research & Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada
- School of Biomedical Engineering, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, V6T 1Z3, BC, Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
21
|
Nguyen L, Xu LC, Yeager E, Weiss WJ, Siedlecki CA. In vitro evaluation of blood plasma coagulation responses to four medical-grade polyurethane polymers. J Biomater Appl 2023; 38:302-310. [PMID: 37470381 PMCID: PMC10408244 DOI: 10.1177/08853282231191410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Segmented polyurethane (PU) block copolymers are widely used in implantable cardiovascular medical devices due to their good biocompatibility and excellent mechanical properties. More specifically, PU Biospan MS/0.4 was used in ventricular assist devices over the past decades. However, this product is being discontinued and it has become necessary to find an alternative PU biomaterial for application in cardiovascular devices. One important criterion for assessing cardiac biomaterials is blood compatibility. In this study, we characterized the surface properties of four medical-grade PU biomaterials: Biospan MS/0.4, BioSpan S, BioSpan 2F, and CarboSil 20 80A, including surface chemistry, topography, microphase separation structure and wettability, and then measured the blood plasma coagulation responses using bovine and human blood plasma. Results showed that BioSpan 2F contains high amounts of fluorine and has the lowest surface free energy while the other materials have surfaces with silicone present. An in vitro coagulation assay shows that these materials demonstrated improved blood coagulation responses compared to the polystyrene control and there were no significant differences in coagulation time among all PU biomaterials. The chromogenic assay showed all PU materials led to low FXII contact activation, and there were no significant differences in FXII contact activation, consistent with plasma coagulation responses.
Collapse
Affiliation(s)
- Lan Nguyen
- Department of Biochemistry and Molecular Biology, Gettysburg College, Gettysburg, PA, USA
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Eric Yeager
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - William J Weiss
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
22
|
Yan H, Cheng Q, Si J, Wang S, Wan Y, Kong X, Wang T, Zheng W, Rafique M, Li X, He J, Midgley AC, Zhu Y, Wang K, Kong D. Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration. Bioact Mater 2023; 26:292-305. [PMID: 36950151 PMCID: PMC10027480 DOI: 10.1016/j.bioactmat.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
Vascular regeneration and patency maintenance, without anticoagulant administration, represent key developmental trends to enhance small-diameter vascular grafts (SDVG) performance. In vivo engineered autologous biotubes have emerged as SDVG candidates with pro-regenerative properties. However, mechanical failure coupled with thrombus formation hinder translational prospects of biotubes as SDVGs. Previously fabricated poly(ε-caprolactone) skeleton-reinforced biotubes (PBs) circumvented mechanical issues and achieved vascular regeneration, but orally administered anticoagulants were required. Here, highly efficient and biocompatible functional modifications were introduced to living cells on PB lumens. The 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-methoxy (DMPE)-PEG-conjugated anti-coagulant bivalirudin (DPB) and DMPE-PEG-conjugated endothelial progenitor cell (EPC)-binding TPS-peptide (DPT) modifications possessed functionality conducive to promoting vascular graft patency. Co-modification of DPB and DPT swiftly attained luminal saturation without influencing cell viability. DPB repellent of non-specific proteins, DPB inhibition of thrombus formation, and DPB protection against functional masking of DPT's EPC-capture by blood components, which promoted patency and rapid endothelialization in rat and canine artery implantation models without anticoagulant administration. This strategy offers a safe, facile, and fast technical approach to convey additional functionalization to living cells within tissue-engineered constructs.
Collapse
Affiliation(s)
- Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ye Wan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Li
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
23
|
Lopes VR, Birgersson U, Manivel VA, Hulsart-Billström G, Gallinetti S, Aparicio C, Hong J. Human Whole Blood Interactions with Craniomaxillofacial Reconstruction Materials: Exploring In Vitro the Role of Blood Cascades and Leukocytes in Early Healing Events. J Funct Biomater 2023; 14:361. [PMID: 37504856 PMCID: PMC10381968 DOI: 10.3390/jfb14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
The present study investigated early interactions between three alloplastic materials (calcium phosphate (CaP), titanium alloy (Ti), and polyetheretherketone (PEEK) with human whole blood using an established in vitro slide chamber model. After 60 min of contact with blood, coagulation (thrombin-antithrombin complexes, TAT) was initiated on all test materials (Ti > PEEK > CaP), with a significant increase only for Ti. All materials showed increased contact activation, with the KK-AT complex significantly increasing for CaP (p < 0.001), Ti (p < 0.01), and PEEK (p < 0.01) while only CaP demonstrated a notable rise in KK-C1INH production (p < 0.01). The complement system had significant activation across all materials, with CaP (p < 0.0001, p < 0.0001) generating the most pronounced levels of C3a and sC5b-9, followed by Ti (p < 0.001, p < 0.001) and lastly, PEEK (p < 0.001, p < 0.01). This activation correlated with leukocyte stimulation, particularly myeloperoxidase release. Consequently, the complement system may assume a more significant role in the early stages post implantation in response to CaP materials than previously recognized. Activation of the complement system and the inevitable activation of leukocytes might provide a more favorable environment for tissue remodeling and repair than has been traditionally acknowledged. While these findings are limited to the early blood response, complement and leukocyte activation suggest improved healing outcomes, which may impact long-term clinical outcomes.
Collapse
Affiliation(s)
- Viviana R Lopes
- OssDsign AB, SE-754 50 Uppsala, Sweden
- Department of Medicinal Chemistry, Translational Imaging, Uppsala University, SE-751 83 Uppsala, Sweden
| | - Ulrik Birgersson
- Department of Clinical Science, Intervention and Technology, Division of Imaging and Technology, Karolinska Institute, SE-141 52 Huddinge, Sweden
- Department of Clinical Neuroscience, Neurosurgical Section, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Vivek Anand Manivel
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE-751 85 Uppsala, Sweden
| | - Gry Hulsart-Billström
- Department of Medicinal Chemistry, Translational Imaging, Uppsala University, SE-751 83 Uppsala, Sweden
| | - Sara Gallinetti
- OssDsign AB, SE-754 50 Uppsala, Sweden
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, SE-751 03 Uppsala, Sweden
| | - Conrado Aparicio
- Faculty of Odontology, UIC Barcelona-International University of Catalonia, 08195 Barcelona, Spain
- IBEC-Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Jaan Hong
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
24
|
Crago M, Winlaw DS, Farajikhah S, Dehghani F, Naficy S. Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioeng Transl Med 2023; 8:e10501. [PMID: 37476058 PMCID: PMC10354783 DOI: 10.1002/btm2.10501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023] Open
Abstract
Congenital heart diseases (CHDs) frequently impact the right ventricular outflow tract, resulting in a significant incidence of pulmonary valve replacement in the pediatric population. While contemporary pediatric pulmonary valve replacements (PPVRs) allow satisfactory patient survival, their biocompatibility and durability remain suboptimal and repeat operations are commonplace, especially for very young patients. This places enormous physical, financial, and psychological burdens on patients and their parents, highlighting an urgent clinical need for better PPVRs. An important reason for the clinical failure of PPVRs is biofouling, which instigates various adverse biological responses such as thrombosis and infection, promoting research into various antifouling chemistries that may find utility in PPVR materials. Another significant contributor is the inevitability of somatic growth in pediatric patients, causing structural discrepancies between the patient and PPVR, stimulating the development of various growth-accommodating heart valve prototypes. This review offers an interdisciplinary perspective on these challenges by exploring clinical experiences, physiological understandings, and bioengineering technologies that may contribute to device development. It thus aims to provide an insight into the design requirements of next-generation PPVRs to advance clinical outcomes and promote patient quality of life.
Collapse
Affiliation(s)
- Matthew Crago
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - David S. Winlaw
- Department of Cardiothoracic SurgeryHeart Institute, Cincinnati Children's HospitalCincinnatiOHUSA
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| |
Collapse
|
25
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
26
|
Dittfeld C, Welzel C, König U, Jannasch A, Alexiou K, Blum E, Bronder S, Sperling C, Maitz MF, Tugtekin SM. Hemocompatibility tuning of an innovative glutaraldehyde-free preparation strategy using riboflavin/UV crosslinking and electron irradiation of bovine pericardium for cardiac substitutes. BIOMATERIALS ADVANCES 2023; 147:213328. [PMID: 36764200 DOI: 10.1016/j.bioadv.2023.213328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Hemocompatibility tuning was adopted to explore and refine an innovative, GA-free preparation strategy combining decellularization, riboflavin/UV crosslinking, and low-energy electron irradiation (SULEEI) procedure. A SULEEI-protocol was established to avoid GA-dependent deterioration that results in insufficient long-term aortic valve bioprosthesis durability. Final SULEEI-pericardium, intermediate steps and GA-fixed reference pericardium were exposed in vitro to fresh human whole blood to elucidate effects of preparation parameters on coagulation and inflammation activation and tissue histology. The riboflavin/UV crosslinking step showed to be less efficient in inactivating extracellular matrix (ECM) protein activity than the GA fixation, leading to tissue-factor mediated blood clotting. Intensifying the riboflavin/UV crosslinking with elevated riboflavin concentration and dextran caused an enhanced activation of the complement system. Yet activation processes induced by the previous protocol steps were quenched with the final electron beam treatment step. An optimized SULEEI protocol was developed using an intense and extended, trypsin-containing decellularization step to inactivate tissue factor and a dextran-free, low riboflavin, high UV crosslinking step. The innovative and improved GA-free SULEEI-preparation protocol results in low coagulant and low inflammatory bovine pericardium for surgical application.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany.
| | - Cindy Welzel
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Ulla König
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Konstantin Alexiou
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| | - Ekaterina Blum
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Saskia Bronder
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Dresden, Germany
| | - Claudia Sperling
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Biofunctional Polymer Materials, Dresden, Germany
| | - Manfred F Maitz
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute Biofunctional Polymer Materials, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Germany
| |
Collapse
|
27
|
Helmecke T, Hahn D, Matzke N, Ferdinand L, Franke L, Kühn S, Fischer G, Werner C, Maitz MF. Inflammation-Controlled Anti-Inflammatory Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206412. [PMID: 36581490 PMCID: PMC9982591 DOI: 10.1002/advs.202206412] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
While autoregulative adaptation is a common feature of living tissues, only a few feedback-controlled adaptive biomaterials are available so far. This paper herein reports a new polymer hydrogel platform designed to release anti-inflammatory molecules in response to the inflammatory activation of human blood. In this system, anti-inflammatory peptide drugs, targeting either the complement cascade, a complement receptor, or cyclophilin A, are conjugated to the hydrogel by a peptide sequence that is cleaved by elastase released from activated granulocytes. As a proof of concept, the adaptive drug delivery from the gel triggered by activated granulocytes and the effect of the released drug on the respective inflammatory pathways are demonstrated. Adjusting the gel functionalization degree is shown to allow for tuning the drug release profiles to effective doses within a micromolar range. Feedback-controlled delivery of covalently conjugated drugs from a hydrogel matrix is concluded to provide valuable safety features suitable to equip medical devices with highly active anti-inflammatory agents without suppressing the general immunosurveillance.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Nadine Matzke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lisa Ferdinand
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lars Franke
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Sebastian Kühn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Gunter Fischer
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
- Technische Universität DresdenCluster of Excellence Physics of LifeCenter for Regenerative Therapies Dresden and Faculty of Chemistry and Food ChemistryFetscherstraße 10501307DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| |
Collapse
|
28
|
Extended Cellular Deposits on Gas Exchange Capillaries are Not an Indicator of Clot Formation: Analysis of Different Membrane Oxygenators. ASAIO J 2023; 69:e134-e141. [PMID: 36780695 DOI: 10.1097/mat.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Antithrombogenic coatings of artificial surfaces within extracorporeal membrane oxygenation (ECMO) circuits improved its bio- and hemocompatibility. However, there is still a risk of thrombus formation in particular within the membrane oxygenator (MO). Since inflammatory cells are essential components within clots, the aim was to identify the extent of cellular accumulations on gas exchange capillaries from different ECMO systems. Thirty-four MOs (PLS, n = 27, Getinge; Hilite 7000 LT, n = 7, Fresenius Medical Care, Germany) were collected from adult patients. The extent of cellular deposits on gas exchange capillaries was classified using nuclear 4',6-diamidino-2-phenylindole staining and fluorescence microscopy. All Hilite oxygenators exhibited small cellular deposits. In contrast, the cellular distribution was heterogeneous on capillaries from PLS oxygenators: small deposits (34%), clusters (44%) and membrane-spanning cell structures (pseudomembranes) (22%). Overall, the median fluorescence intensity was significantly higher in the PLS group. Nevertheless, within 3 days before MO removal, there was no alteration in critical parameters (d-dimer and fibrinogen levels, platelet counts, and pressure drop across the MO). In conclusion, despite the histological differences on the gas capillaries from different types of oxygenators, there was no further evidence of increased inflammation and coagulation parameters that indicate clot formation within oxygenators.
Collapse
|
29
|
Popov S, Paderin N, Chistiakova E, Ptashkin D. Serosal Adhesion Ex Vivo of Hydrogels Prepared from Apple Pectin Cross-Linked with Fe 3+ Ions. Int J Mol Sci 2023; 24:ijms24021248. [PMID: 36674765 PMCID: PMC9861213 DOI: 10.3390/ijms24021248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The study aims to investigate the adhesion of a hydrogel made of cross-linked low-methyl esterified pectin to rat intestinal serosa ex vivo. The adhesivity of the FeP hydrogel, which was cross-linked by Fe3+ cations, exceeded that of hydrogels cross-linked by Ca2+, Zn2+, and Al3+ cations. The concentration of the cross-linking cation failed to influence the adhesion of the pectin hydrogel to the serosa. The mechanical properties and surface microrelief of the pectin hydrogel were influenced by the type and concentration of the cross-linking cations. Fe3+ cations form a harder and more elastic gel than Ca2+ cations. Scanning electron microscopy analysis revealed the characteristic surface pattern of FeP hydrogel and its denser internal structure compared to Ca2+ cross-linked hydrogel. The effect of the salt composition of the adhesion medium was shown since the FeP hydrogel's adhesion to the serosa was lower in physiological solutions than in water, and adhesion in Hanks' solution was higher than in phosphate buffered saline. Serum proteins and peritoneal leukocytes did not interfere with the serosal adhesion of the FeP hydrogel. Pre-incubation in Hanks' solution for 24 h significantly reduced the adhesion of the FeP hydrogel to the serosa, regardless of the pH of the incubation. Thus, serosal adhesion combined with excellent stability and mechanical properties in physiological environments appeared to be advantages of the FeP hydrogel, demonstrating it to be a promising bioadhesive for tissue engineering.
Collapse
|
30
|
Schimper CB, Pachschwöll P, Maitz MF, Werner C, Rosenau T, Liebner F. Hemocompatibility of cellulose phosphate aerogel membranes with potential use in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1152577. [PMID: 37152648 PMCID: PMC10154571 DOI: 10.3389/fbioe.2023.1152577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Cellulose is an appealing material for tissue engineering. In an attempt to overcome some obstacles with cellulose II cell scaffolding materials related to insufficient biomineralization, lack of micron-size porosity, and deficiency in surface charge, respective solutions have been proposed. These included covalent phosphorylation of different cellulose materials targeting relatively low degrees of substitution (DS 0.18-0.23) and processing these cellulose derivatives into scaffolding materials by a dissolution/coagulation approach employing the hitherto rarely used TBAF/DMSO/H2O system for cellulose dissolution. Here, we report bioactivity and preliminary hemocompatibility testing of dual-porous cellulose phosphate aerogels (contrasted with the phosphate-free reference) obtained via coagulation (water/ethanol), solvent exchange and scCO2 drying. Deposition of hydroxyapatite from simulated body fluid (7 days of immersion) revealed good bioactivity (1.5-2.2 mg Ca2+ per mg scaffold). Incubation of the scCO2-dried and rehydrated scaffolding materials in heparin anticoagulated human whole blood was conducted to study selected parameters of hemostasis (prothrombin F1+2 fragment, PF4, count of thrombocyte-leukocyte conjugates) and inflammatory response (C5a fragment, leukocyte activation marker CD11b). Adhesion of leukocytes on the surface of the incubated substrates was assessed by scanning electron and fluorescence microscopy (DAPI staining). The results suggest that phosphorylation at low DS does not increase platelet activation. However, a significant increase in platelet activation and thrombin formation was observed after a certain fraction of the negative surface charges had been compensated by Ca2+ ions. The combination of both phosphorylation and calcification turned out to be a potent means for controlling the inflammatory response, which was close to baseline level for some of the studied samples.
Collapse
Affiliation(s)
- Christian B. Schimper
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Paul Pachschwöll
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Falk Liebner
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- *Correspondence: Falk Liebner,
| |
Collapse
|
31
|
Effect of Cross-Linking Cations on In Vitro Biocompatibility of Apple Pectin Gel Beads. Int J Mol Sci 2022; 23:ijms232314789. [PMID: 36499122 PMCID: PMC9741146 DOI: 10.3390/ijms232314789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to compare the in vitro biocompatibility of pectin gels formed by different cross-linking cations. Hydrogel beads named CaPG, ZnPG, FePG, and AlPG were prepared from 4% solutions of apple pectin using ionotropic gelling with CaCl2, ZnCl2, FeCl3, and AlCl3, respectively. Cations influenced the gel strength of the wet gel beads in the following order (least strong) Ca2+ < Zn2+ < Fe3+~Al3+ (most strong). The swelling degree of the CaPG beads after 24 h of incubation in the RPMI-1640 medium was 104%, whereas the ZnPG, FePG, and AlPG beads swelled by 76, 108, and 134%, respectively. The strength of the pectin gel decreased significantly after incubation in the RPMI-1640 medium for 24 h, regardless of the cross-linking cation, although the FePG beads remained the strongest. All the pectin beads adsorbed serum proteins to a low degree, however the serum protein adsorption by the ZnPG and FePG beads (1.46 ± 0.87 and 1.35 ± 0.19 µg/mm2) was more than the CaPG and AlPG beads (0.31 ± 0.36 and 0.44 ± 0.25 µg/mm2). All the pectin beads reduced the production of TNF-α and IL-10 by hPBMCs in response to LPS stimulation. The IL-1β response of cells to LPS was significantly reduced by the CaPG, ZnPG, and FePG beads, whereas the AlPG beads enhanced it twofold. The CaPG, FePG, and AlPG beads had no cytotoxicity. The viability of hPBMCs and human fibroblasts incubated with ZnPG beads was 5.3 and 7.2%, respectively. Thus, the use of different cross-linking cations changed the properties of the pectin gel, which is important for biocompatibility.
Collapse
|
32
|
Riedelová Z, de Los Santos Pereira A, Svoboda J, Pop-Georgievski O, Májek P, Pečánková K, Dyčka F, Rodriguez-Emmenegger C, Riedel T. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes. Macromol Biosci 2022; 22:e2200247. [PMID: 35917216 DOI: 10.1002/mabi.202200247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.
Collapse
Affiliation(s)
- Zuzana Riedelová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Klára Pečánková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074, Aachen, Germany
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| |
Collapse
|
33
|
Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices. Nat Commun 2022; 13:5339. [PMID: 36096894 PMCID: PMC9468150 DOI: 10.1038/s41467-022-33081-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractZwitterionic hydrogels exhibit eminent nonfouling and hemocompatibility. Several key challenges hinder their application as coating materials for blood-contacting biomedical devices, including weak mechanical strength and low adhesion to the substrate. Here, we report a poly(carboxybetaine) microgel reinforced poly(sulfobetaine) (pCBM/pSB) pure zwitterionic hydrogel with excellent mechanical robustness and anti-swelling properties. The pCBM/pSB hydrogel coating was bonded to the PVC substrate via the entanglement network between the pSB and PVC chain. Moreover, the pCBM/pSB hydrogel coating can maintain favorable stability even after 21 d PBS shearing, 0.5 h strong water flushing, 1000 underwater bends, and 100 sandpaper abrasions. Notably, the pCBM/pSB hydrogel coated PVC tubing can not only mitigate the foreign body response but also prevent thrombus formation ex vivo in rats and rabbits blood circulation without anticoagulants. This work provides new insights to guide the design of pure zwitterionic hydrogel coatings for biomedical devices.
Collapse
|
34
|
Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med 2022; 7:e10300. [PMID: 36176611 PMCID: PMC9472022 DOI: 10.1002/btm2.10300] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Mitigating the foreign body response (FBR) to implantable medical devices (IMDs) is critical for successful long-term clinical deployment. The FBR is an inevitable immunological reaction to IMDs, resulting in inflammation and subsequent fibrotic encapsulation. Excessive fibrosis may impair IMDs function, eventually necessitating retrieval or replacement for continued therapy. Therefore, understanding the implant design parameters and their degree of influence on FBR is pivotal to effective and long lasting IMDs. This review gives an overview of FBR as well as anti-FBR strategies. Furthermore, we highlight recent advances in biomimetic approaches to resist FBR, focusing on their characteristics and potential biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | - Gulsah Malgir
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
35
|
Chen C, Lu T, Wu Z, Xie X, Liu Y, Huang C, Liu Y. A proteomics analysis of neointima formation on decellularized vascular grafts reveals regenerative alterations in protein signature running head: Proteomics analysis of neointima formation. Front Bioeng Biotechnol 2022; 10:894956. [PMID: 36406232 PMCID: PMC9673820 DOI: 10.3389/fbioe.2022.894956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Neointima formation contributes to vascular grafts stenosis and thrombosis. It is a complex reaction that plays a significant role in the performance of vascular grafts. Despite its critical implications, little is known about the mechanisms underlying neointima formation. This study compares neointima proteome in different stages and plasma samples. Methods: Heterogenous acellular native arteries were implanted as abdominal aortic interposition grafts in a rabbit model. Grafts were harvested at 0.5, 1, 4, 6, 7, 14, 21, and 28 days post-surgery for histological and proteomic analysis of the neointima. Results: Histological examination showed a transformed morphological pattern and components, including serum proteins, inflammatory cells, and regenerative cells. Proteomics analysis of the neointima showed distinct characteristics after 14 days of implantation compared to early implantation. Early changes in the neointima samples were proteins involved in acute inflammation and thrombosis, followed by the accumulation of extracellular matrix (ECM) proteins. A total of 110 proteins were found to be differentially expressed in later samples of neointima compared to early controls. The enriched pathways were mainly protein digestion and adsorption, focal adhesion, PI3K-Akt signaling pathway, and ECM-receptor interaction in the late stage. All distributions of proteins in the neointima are different compared to plasma. Conclusion: The biological processes of neointima formation at different stages identified with proteome found developmental characteristics of vascular structure on a decellularized small vascular graft, and significant differences were identified by proteomics in the neointima of early-stage and late-stage after implantation. In the acute unstable phase, the loose and uniform neointima was mainly composed of plasma proteins and inflammatory cells. However, in the relatively stable later stage, the most notable results were an up-regulation of ECM components. The present study demonstrates an interaction between biological matter and vascular graft, provides insights into biological process changes of neointima and facilitates the construction of a functional bioengineered small vascular graft for future clinical applications.
Collapse
Affiliation(s)
- Chunyang Chen
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Ting Lu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Zhongshi Wu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Xinlong Xie
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yalin Liu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Can Huang
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular surgery, Second Xiangya Hospital of Central South University, Changsha, China
- Engineering Laboratory of Hunan Province for Cardiovascular Biomaterials, Changsha, China
| |
Collapse
|
36
|
Borges-Vilches J, Aguayo C, Fernández K. The Effect on Hemostasis of Gelatin-Graphene Oxide Aerogels Loaded with Grape Skin Proanthocyanidins: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:pharmaceutics14091772. [PMID: 36145521 PMCID: PMC9501273 DOI: 10.3390/pharmaceutics14091772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Using in vitro and in vivo models, this study investigated the hemostatic potential to control bleeding of both unloaded gelatin-graphene oxide aerogels and the same loaded with proanthocyanidins (PAs) from Vitis vinifera grape skin extract. Our results showed that the physicochemical and mechanical properties of the aerogels were not affected by PA inclusion. In vitro studies showed that PA-loaded aerogels increased the surface charge, blood absorption capacity and cell viability compared to unloaded ones. These results are relevant for hemostasis, since a greater accumulation of blood cells on the aerogel surface favors aerogel–blood cell interactions. Although PAs alone were not able to promote hemostasis through extrinsic and intrinsic pathways, their incorporation into aerogels did not affect the in vitro hemostatic activity of these composites. In vivo studies demonstrated that both aerogels had significantly increased hemostatic performance compared to SpongostanTM and gauze sponge, and no noticeable effects of PA alone on the in vivo hemostatic performance of aerogels were observed; this may have been related to its poor diffusion from the aerogel matrix. Thus, PAs have a positive effect on hemostasis when incorporated into aerogels, although further studies should be conducted to elucidate the role of this extract in the different stages of hemostasis.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence:
| |
Collapse
|
37
|
Borges-Vilches J, Figueroa T, Guajardo S, Carmona S, Mellado C, Meléndrez M, Aguayo C, Fernández K. Novel and effective hemostats based on graphene oxide-polymer aerogels: In vitro and in vivo evaluation. BIOMATERIALS ADVANCES 2022; 139:213007. [PMID: 35891602 DOI: 10.1016/j.bioadv.2022.213007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
In this study, graphene oxide (GO)-based aerogels cross-linked with chitosan (CS), gelatin (GEL), and polyvinyl alcohol (PVA) were characterized and their hemostatic efficiencies both in vitro and in vivo were investigated and compared to commercial materials (ChitoGauze®XR and Spongostan™). All aerogels exhibited highly porous structures and a negative surface charge density favorable to their interaction with blood cells. The in vitro studies showed that all aerogels coagulated >60 % of the blood contained in their structures after 240 s of the whole-blood clotting assay, the GO-CS aerogel being the one with the highest blood clotting. All aerogels showed high hemocompatibility, with hemolytic rates <5 %, indicating their use as biomaterials. Among them, the GO-GEL aerogel exhibited the lowest hemolytic activity, due possibly to its high GEL content compared to the GO amount. According to their blood clotting activity, aerogels did not promote coagulation through extrinsic and intrinsic pathways. However, their surfaces are suitable for accelerating hemostasis by promoting alternative routes. All aerogels adhered platelets and gathered RBCs on their surfaces, and in addition the GO-CS aerogel surface also promoted the formation of filamentous fibrin networks adhered on its structure. Furthermore, in vivo evaluations revealed that all aerogels significantly shortened the hemostatic times and reduced the blood loss amounts compared both to the Spongostan™ and ChitoGauze®XR commercial materials and to the gauze sponge (control group). The hemostatic performance in vitro and in vivo of these aerogels suggests that they could be used as hemostats for controlling profuse bleedings.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Toribio Figueroa
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Sebastián Guajardo
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Satchary Carmona
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Constanza Mellado
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Manuel Meléndrez
- Department of Materials Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
38
|
Cao H, Dauben TJ, Helbing C, Jia Z, Zhang Y, Huang M, Müller L, Gu S, Zhang X, Qin H, Martin K, Bossert J, Jandt KD. The antimicrobial effect of calcium-doped titanium is activated by fibrinogen adsorption. MATERIALS HORIZONS 2022; 9:1962-1968. [PMID: 35583079 DOI: 10.1039/d1mh02009a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directly targeting bacterial cells is the present paradigm for designing antimicrobial biomaterial surfaces and minimizing device-associated infections (DAIs); however, such pathways may create problems in tissue integration because materials that are toxic to bacteria can also be harmful to mammalian cells. Herein, we report an unexpected antimicrobial effect of calcium-doped titanium, which itself has no apparent killing effect on the growth of pathogenic bacteria (Pseudomonas aeruginosa, Pa, ATCC 27853) while presenting strong inhibition efficiency on bacterial colonization after fibrinogen adsorption onto the material. Fine X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses reported calcium-dependent shifts of the binding energy in nitrogen and oxygen involved groups and wavenumbers in the amide I and II bands of the adsorbent fibrinogen, demonstrating that locally delivered calcium can react with the carboxy-terminal regions of the Aα chains and influence their interaction with the N-termini of the Bβ chains in fibrinogen. These reactions facilitate the exposure of the antimicrobial motifs of the protein, indicating the reason for the surprising antimicrobial efficacy of calcium-doped titanium. Since protein adsorption is an immediate intrinsic step during the implantation surgery, this finding may shift the present paradigm on the design of implantable antibacterial biomaterial surfaces.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Thomas J Dauben
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Christian Helbing
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Zhichao Jia
- Interfacial Electrochemistry and Biomaterials, Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Yuechao Zhang
- Interfacial Electrochemistry and Biomaterials, Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Moran Huang
- Department of Orthopedics, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China.
| | - Lenka Müller
- Colloids, Surfaces and Interfaces, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Song Gu
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Xiaoyuan Zhang
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Karin Martin
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
39
|
Kenny M, Stamboroski S, Taher R, Brüggemann D, Schoen I. Nanofiber Topographies Enhance Platelet-Fibrinogen Scaffold Interactions. Adv Healthc Mater 2022; 11:e2200249. [PMID: 35526111 PMCID: PMC11469041 DOI: 10.1002/adhm.202200249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
The initial contact with blood and its components, including plasma proteins and platelets, directs the body's response to foreign materials. Natural scaffolds of extracellular matrix or fibrin contain fibrils with nanoscale dimensions, but how platelets specifically respond to the topography and architecture of fibrous materials is still incompletely understood. Here, planar and nanofiber scaffolds are fabricated from native fibrinogen to characterize the morphology of adherent platelets and activation markers for phosphatidylserine exposure and α-granule secretion by confocal fluorescence microscopy and scanning electron microscopy. Different fibrinogen topographies equally support the spreading and α-granule secretion of washed platelets. In contrast, preincubation of the scaffolds with plasma diminishes platelet spreading on planar fibrinogen surfaces but not on nanofibers. The data show that the enhanced interactions of platelets with nanofibers result from a higher locally accessible surface area, effectively increasing the ligand density for integrin-mediated responses. Overall, fibrinogen nanofibers direct platelets toward robust adhesion formation and α-granule secretion while minimizing their procoagulant activity. Similar results on fibrinogen-coated polydimethylsiloxane substrates with micrometer-sized 3D features suggest that surface topography could be used more generally to steer blood-materials interactions on different length scales for enhancing the initial wound healing steps.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Stephani Stamboroski
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)Wiener Strasse 12Bremen28359Germany
| | - Reem Taher
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Dorothea Brüggemann
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- MAPEX Center for Materials and ProcessesUniversity of BremenBremen28359Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| |
Collapse
|
40
|
Drozd NN, Lunkov AP, Shagdarova BT, Zhuikova YV, Il’ina AV, Varlamov VP. Thromboresistance of Polyurethane Plates Modified with Quaternized Chitosan and Heparin. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Blood compatibility of widely used central venous catheters; an experimental study. Sci Rep 2022; 12:8600. [PMID: 35597879 PMCID: PMC9124179 DOI: 10.1038/s41598-022-12564-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 12/16/2022] Open
Abstract
An inserted central venous catheter (CVC) is considered foreign material by the inert host defence systems and induce inflammation and thrombus formation. The objective of this study was to evaluate blood compatibility of six commonly used CVCs. Three coated and three uncoated CVC materials were tested in a modified Chandler loop model. Each catheter material circulated in blood from ten different healthy volunteers for 1 h. Blood cell counts and measurements of the inert host defence systems were performed on blood samples from the loop. All the tested catheters demonstrated impact on blood cells, contact coagulation, the complement system, or inflammatory markers, although the impact varied significantly. Of the catheters we evaluated, the most unfavourable blood compatibility profile was found for the polyurethane CVC coated with chlorohexidine and silver sulfadiazine. The greatest variation in blood compatibility between test runs was noted for the silicone dialysis catheter. Poor blood compatibility should be taken seriously but given the experimental design of the current study the clinical significance remains to be evaluated.
Collapse
|
42
|
Palarasah Y, Pham STD, Gram JB, Graversen JH, Pilely K, Sidelmann JJ. Plasma Kallikrein Cleaved H-kininogen: An End-Point Marker for Contact Activation in vitro and ex vivo. Front Cardiovasc Med 2022; 9:873975. [PMID: 35669477 PMCID: PMC9163357 DOI: 10.3389/fcvm.2022.873975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives The contact system consists of coagulation factor XII (FXII), prekallikrein, and H-kininogen (HK) and plays important roles in many diseases. Plasma kallikrein (PKa) cleaved HK (cHK) is a marker of contact activation. Presently, we developed a specific and precise enzyme-linked immunosorbent assay (ELISA) for determination of cHK in vitro and ex vivo. Methods Cleaved HK specific mouse monoclonal antibodies (mAbs) were generated using a peptide corresponding to the PKa cleavage site on HK as immunogen. ELISA, surface plasmon resonance analysis, and immunoprecipitation established the specificity of the antibody, which subsequently was used in a sandwich ELISA. The analytical imprecision and the concentration of cHK in a reference population and in women receiving oral contraceptives (OC) were determined. cHK was assessed in vitro in plasma exposed to polytetrafluoroethylene, silicone, and glass tubes. Results The selected mAb showed excellent specificity towards cHK. The intra-assay and inter-assay CV of the ELISA were 3.6 and 6.0%, respectively. The reference population (60 women, 60 men) displayed a median cHK plasma concentration of 1.38 μg/mL and a reference interval of 0.82 – 2.56 μg/mL. Women receiving OC had significantly higher concentrations, p < 0.001. cHK was significantly elevated in plasma exposed to polytetrafluoroethylene, p = 0.001, and glass, p < 0.0001. Conclusion The ELISA showed excellent precision and specificity. cHK assessment ex vivo demonstrated ongoing contact activation in healthy individuals, augmented by OC. The cHK antibody and the ELISA could be promising tools in contact activation related diseases and in vitro investigations of the plasma compatibility of blood contacting biomaterials.
Collapse
Affiliation(s)
- Yaseelan Palarasah
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
- Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- *Correspondence: Yaseelan Palarasah,
| | - Stephanie Thuy Duong Pham
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jørgen Brodersen Gram
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
- Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Jonas Heilskov Graversen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Katrine Pilely
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Johannes Jakobsen Sidelmann
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
- Department of Clinical Biochemistry, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
43
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
44
|
Lv J, Zhang L, Du W, Ling G, Zhang P. Functional gold nanoparticles for diagnosis, treatment and prevention of thrombus. J Control Release 2022; 345:572-585. [DOI: 10.1016/j.jconrel.2022.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
45
|
Bonomini M, Piscitani L, Di Liberato L, Sirolli V. Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy. Biomedicines 2022; 10:biomedicines10040844. [PMID: 35453594 PMCID: PMC9025662 DOI: 10.3390/biomedicines10040844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Hemodialysis is a life-sustaining therapy for millions of people worldwide. However, despite considerable technical and scientific improvements, results are still not fully satisfactory in terms of morbidity and mortality. The membrane contained in the hemodialyzer is undoubtedly the main determinant of the success and quality of hemodialysis therapy. Membrane properties influence solute removal and the interactions with blood components that define the membrane’s biocompatibility. Bioincompatibility is considered a potential contributor to several uremic complications. Thus, the development of more biocompatible polymers used as hemodialyzer membrane is of utmost importance for improving results and clinical patient outcomes. Many different surface-modified membranes for hemodialysis have been manufactured over recent years by varying approaches in the attempt to minimize blood incompatibility. Their main characteristics and clinical results in hemodialysis patients were reviewed in the present article.
Collapse
Affiliation(s)
- Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.D.L.); (V.S.)
- Correspondence:
| | - Luca Piscitani
- Nephrology and Dialysis Unit, Department of Medicine, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy;
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.D.L.); (V.S.)
| | - Vittorio Sirolli
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (L.D.L.); (V.S.)
| |
Collapse
|
46
|
Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022; 23:ijms23063388. [PMID: 35328806 PMCID: PMC8954847 DOI: 10.3390/ijms23063388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The study aims to develop gel beads with improved functional properties and biocompatibility from hogweed (HS) pectin. HS4 and AP4 gel beads were prepared from the HS pectin and apple pectin (AP) using gelling with calcium ions. HS4 and AP4 gel beads swelled in PBS in dependence on pH. The swelling degree of HS4 and AP4 gel beads was 191 and 136%, respectively, in PBS at pH 7.4. The hardness of HS4 and AP4 gel beads reduced 8.2 and 60 times, respectively, compared with the initial value after 24 h incubation. Both pectin gel beads swelled less in Hanks’ solution than in PBS and swelled less in Hanks’ solution containing peritoneal macrophages than in cell-free Hanks’ solution. Serum protein adsorption by HS4 and AP4 gel beads was 118 ± 44 and 196 ± 68 μg/cm2 after 24 h of incubation. Both pectin gel beads demonstrated low rates of hemolysis and complement activation. However, HS4 gel beads inhibited the LPS-stimulated secretion of TNF-α and the expression of TLR4 and NF-κB by macrophages, whereas AP4 gel beads stimulated the inflammatory response of macrophages. HS4 gel beads adsorbed 1.3 times more LPS and adhered to 1.6 times more macrophages than AP4 gel beads. Thus, HS pectin gel has advantages over AP gel concerning swelling behavior, protein adsorption, and biocompatibility.
Collapse
|
47
|
Söhling N, Ondreka M, Kontradowitz K, Reichel T, Marzi I, Henrich D. Early Immune Response in Foreign Body Reaction Is Implant/Material Specific. MATERIALS 2022; 15:ma15062195. [PMID: 35329646 PMCID: PMC8950904 DOI: 10.3390/ma15062195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The design of novel biomaterials should directly influence the host-immune system and steer it towards high biocompatibility. To date, new implants/materials have been tested for biocompatibility in vitro in cell cultures and in vivo in animal models. The current methods do not reflect reality (cell cultures) or are very time-consuming and deliver results only after weeks (animal model). In this proof-of-concept study, the suitability of a Whole Blood Stimulation Assay (WBSA) in combination with a Protein Profiler Array (PPA), as a readily available and cost-effective screening tool, was investigated. Three different biomaterials based on poly(lactic-co-glycolic acid (PLGA), calcium sulphate/-carbonate (CS) and poly(methyl methacrylate) (PMMA) were exposed to native whole blood from three volunteers and subsequently screened with a PPA. Individual reproducible protein profiles could be detected for all three materials after 24 h of incubation. The most intense reaction resulted from the use of PLGA, followed by CS. If even marginal differences in implants can be reflected in protein profiles, the combination of WBSA and PPA could serve as an early biocompatibility screening tool in the development of novel biomaterials. This may also lead to a reduction in costs and the amount of animal testing required.
Collapse
Affiliation(s)
- Nicolas Söhling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
- Correspondence: ; Tel.: +49-69-6301-7110
| | - Muriel Ondreka
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| | - Kerstin Kontradowitz
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| | | | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (M.O.); (K.K.); (I.M.); (D.H.)
| |
Collapse
|
48
|
Zhang Y, Zhang L, Duan S, Hu Y, Ding X, Zhang Y, Li Y, Wu Y, Ding X, Xu FJ. Heparinized anticoagulant coatings based on polyphenol-amine inspired chemistry for blood-contacting catheters. J Mater Chem B 2022; 10:1795-1804. [PMID: 35244123 DOI: 10.1039/d1tb02582a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Blood-contacting catheters occupy a vital position in modern clinical treatment including but not limited to cardiovascular diseases, but catheter-related thrombosis associated with high morbidity and mortality remains a major health concern. Hence, there is an urgent need for functionalized catheter surfaces with superior hemocompatibility that prevent protein adsorption and thrombus formation. In this work, we developed a strategy for constructing a kind of polyphenol-amine coating on the TPU surface (TLA) with tannic acid and lysine via simple dip-coating, inspired by dopamine adhesion. Based on the long-term stability and modifiable properties of TLA coatings, heparin was introduced by an amide reaction to provide anticoagulant activity (TLH). X-ray photoelectron spectroscopy and surface zeta potential measurements fully indicated the successful immobilization of heparin. Water contact angle measurements demonstrated good hydrophilicity and stability for 15 days of TLH coatings. Furthermore, the TLH coatings exhibited significant hemocompatibility and no cytotoxicity. The good antithrombotic properties of the functionalized surfaces were confirmed by an ex vivo blood circulation model. The present work is supposed to find potential clinical applications for preventing surface-induced thrombosis of blood-contacting catheters.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lujiao Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaocheng Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Li
- Key Laboratory for Medical Polymer Materials Technology and Application of Henan Province, ChangYuan, Henan Province, 453400, China
| | - Yongzhen Wu
- Key Laboratory for Medical Polymer Materials Technology and Application of Henan Province, ChangYuan, Henan Province, 453400, China
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
49
|
Wang Y, Wu H, Zhou Z, Maitz MF, Liu K, Zhang B, Yang L, Luo R, Wang Y. A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants. SCIENCE ADVANCES 2022; 8:eabm3378. [PMID: 35245113 PMCID: PMC8896797 DOI: 10.1126/sciadv.abm3378] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
Interrelated coagulation and inflammation are impediments to endothelialization, a prerequisite for the long-term function of cardiovascular materials. Here, we proposed a self-regulating anticoagulant coating strategy combined with anti-inflammatory capacity, which consisted of thrombin-responsive nanogels with anticoagulant and anti-inflammatory components. As an anticoagulant, rivaroxaban was encapsulated in nanogels cross-linked by thrombin-cleavable peptide and released upon the trigger of environmental thrombin, blocking the further coagulation cascade. The superoxide dismutase mimetic Tempol imparted the antioxidant property. Polyphenol epigallocatechin gallate (EGCG), in addition to its anti-inflammatory function in synergy with Tempol, also acted as a weak cross-linker to stabilize the coating. The effectiveness and versatility of this coating were validated using two typical cardiovascular devices as models, biological valves and vascular stents. It was demonstrated that the coating worked as a precise strategy to resist coagulation and inflammation, escorted reendothelialization on the cardiovascular devices, and provided a new perspective for designing endothelium-like functional coatings.
Collapse
Affiliation(s)
- Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhongyi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden 01069, Germany
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kunpeng Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Corresponding author. (R.L.); (Yunbing Wang)
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Corresponding author. (R.L.); (Yunbing Wang)
| |
Collapse
|
50
|
Zhang J, Li G, Qu Y, Guo Z, Zhang S, Li D. Fabrication and Hemocompatibility Evaluation of a Robust Honeycomb Nanostructure on Medical Pure Titanium Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9807-9823. [PMID: 35084192 DOI: 10.1021/acsami.1c22818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombosis induced by blood-contacting medical devices is still a major clinical problem, resulting in some serious complications such as infarction, irreversible tissue damage, and even death. Therefore, seeking an effective and safe surface modification approach to improve the hemocompatibility of the material is still urgent. In this research, a novel and facile approach was proposed to fabricate a robust honeycomb nanostructure on medical pure titanium surface by two-step anodic oxidation, which effectively enhanced the physicochemical performance and hemocompatibility of the material. Especially, the honeycomb nanostructure that underwent annealing treatment at 500 °C (HN-Ti-500 °C) presented significant performance to suppress the coagulation cascade in the in vitro tests, the reason mainly ascribed to an overall repulsive interaction between the protein molecule related to thrombosis and material surface based on an extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory analysis. Furthermore, a vessel stent fabricated by HN-Ti-500 °C was implanted into the left carotid artery of rabbits for 1 month. The antithrombotic mechanism and biocompatibility of the modified surface were further verified. The results presented that no thrombus generated and adhered onto the inner surface of the modified stent, and no obvious disorder hyperplasia and inflammation were observed in the intima tissue of the vessel at the implantation site, which indicated that the modified surface could effectively decrease the risk of in-stent restenosis and thrombosis. This work offers a promising strategy for surface modification of blood-contacting medical titanium material to address the clinical complications associated with restenosis and thrombosis.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Guiling Li
- Advanced Medical Research Institute, Shandong University, Jinan 250012, P. R. China
| | - Yifei Qu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Ziyu Guo
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Song Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Donghai Li
- Advanced Medical Research Institute, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|