1
|
Islam MM, Saha A, Trisha FA, Gonzalez-Andrades M, Patra HK, Griffith M, Chodosh J, Rajaiya J. An in vitro 3-dimensional Collagen-based Corneal Construct with Innervation Using Human Corneal Cell Lines. OPHTHALMOLOGY SCIENCE 2024; 4:100544. [PMID: 39139547 PMCID: PMC11321308 DOI: 10.1016/j.xops.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 08/15/2024]
Abstract
Purpose To develop a 3-dimensional corneal construct suitable for in vitro studies of disease conditions and therapies. Design In vitro human corneal constructs were created using chemically crosslinked collagen and chondroitin sulfate extracellular matrix and seeded with 3 human corneal cell types (epithelial, stromal, and endothelial) together with neural cells. The neural cells were derived from hybrid neuroblastoma cells and the other cells used from immortalized human corneal cell lines. To check the feasibility and characterize the constructs, cytotoxicity, cell proliferation, histology, and protein expression studies were performed. Results Optimized culture condition permitted synchronized viability across the cell types within the construct. The construct showed a typical appearance for different cellular layers, including healthy appearing, phenotypically differentiated neurons. The expected protein expression profiles for specific cell types within the construct were confirmed with western blotting. Conclusions An in vitro corneal construct was successfully developed with maintenance of individual cell phenotypes with anatomically correct cellular loci. The construct may be useful in evaluation of specific corneal disorders and in developing different corneal disease models. Additionally, the construct can be used in evaluating drug targeting and/or penetration to individual corneal layers, testing novel therapeutics for corneal diseases, and potentially reducing the necessity for animals in corneal research at the early stages of investigation. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Amrita Saha
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Farzana Afrose Trisha
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
| | - Miguel Gonzalez-Andrades
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Hirak K. Patra
- UCL Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, UK
| | - May Griffith
- Department of Ophthalmology, Université de Montréal and Centre de recherche de l'Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - James Chodosh
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jaya Rajaiya
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
2
|
Hashimoto Y, Negishi J, Funamoto S, Kimura T, Kobayashi H, Oshika T, Kishida A. Preparation, physico-biochemical characterization, and proteomic analysis of highly transparent corneal extracellular matrices for lamellar keratoplasty and tissue-engineered cornea construction. Mater Today Bio 2024; 28:101241. [PMID: 39328788 PMCID: PMC11426139 DOI: 10.1016/j.mtbio.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Corneal opacity and deformation, which often require corneal transplantation for treatment, are among the leading causes of monocular blindness. To restore corneal clarity and integrity, there is a need for an artificial stroma that not only matches the transparency of donated human cornea but also effectively integrates to the corneal tissue. In this study, a transparent decellularized cornea was successfully developed using the high hydrostatic pressure method with processing conditions optimized for corneal decellularization. Biochemical analyses demonstrated the effective removal of cellular components from the transparent decellularized corneas, while preserving collagen and glycosaminoglycans. Proteome analysis also revealed that core matrisome and matrisome-associated proteins remained following decellularization, similar to the composition observed in untreated corneas. The light transmittance of the transparent decellularized corneas was 86.4 ± 1.5 % in the visible region, comparable to that of donated human corneas. No complications, such as angiogenesis, were observed following interlamellar corneal transplantation in rabbits. The grafts were almost imperceptible immediately following surgery and achieved complete transparency within a few days, becoming indistinguishable even under a microscope. The transparent decellularized cornea presented here has promising potential as a material for application in lamellar keratoplasty.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Jun Negishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Biomedical Engineering, Faculty of Life Science, Toyo University, 48-1 Oka, Asaka-shi, Saitama, 351-8510, Japan
| | - Hisatoshi Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
3
|
Li Q, Sun Y, Zhao H, Zhang F, Guo Y, Chen X, Zhao G. Structure and properties of the acellular porcine cornea irradiated with 60Co-γ and electron beam and its histocompatibility. J Biomed Mater Res A 2024; 112:825-840. [PMID: 38158889 DOI: 10.1002/jbm.a.37663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Acellular porcine cornea (APC) has been used in corneal transplantation and treatment of the corneal diseases. Sterilization is a key step before the application of graft, and irradiation is one of the most commonly used methods. In this paper, APC was prepared by the physical freeze-thawing combined with biological enzymes, and the effects of the electron beam (E-beam) and cobalt 60 (60Co-γ) at the dose of 15 kGy on the physicochemical properties, structure, immunogenicity, and biocompatibility of the APC were investigated. After decellularization, the residual DNA was 20.86 ± 1.02 ng/mg, and the α-Gal clearance rate was more than 99%. Irradiation, especially the 60Co-γ, reduced the cornea's transmittance, elastic modulus, enzymatic hydrolysis rate, swelling ratio, and cross-linking degree. Meanwhile, the diameter and spacing of the collagen fibers increased. In the rat subcutaneous implantation, many inflammatory cells appeared in the unirradiated APC, while the irradiated had good histocompatibility, but the degradation was faster. The lamellar keratoplasty in rabbits indicated that compared to the E-beam, the 60Co-γ damaged the chemical bond of collagen to a larger extent, reduced the content of GAGs, and prolonged the complete epithelization of the grafts. The corneal edema was more serious within 1 month after the surgery. After 2 months, the thickness of the APC with the two irradiation methods tended to be stable, but that in the 60Co-γ group became thinner. The pathological results showed that the collagen structure was looser and the pores were larger, indicating the 60Co-γ had a more extensive effect on the APC than the E-beam at 15 kGy.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Yajun Sun
- Qingdao Chunghao Tissue Engineering Co., Ltd., Qingdao, Shandong, China
| | - Haibin Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Xin Chen
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Procházková A, Poláchová M, Dítě J, Netuková M, Studený P. Chemical, Physical, and Biological Corneal Decellularization Methods: A Review of Literature. J Ophthalmol 2024; 2024:1191462. [PMID: 38567029 PMCID: PMC10985644 DOI: 10.1155/2024/1191462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The cornea is one of the most commonly transplanted tissues worldwide. It is used to restore vision when severe visual impairment or blindness occurs in patients with corneal diseases or after trauma. Due to the global shortage of healthy donor corneas, decellularized corneal tissue has significant potential as an alternative to corneal transplantation. It preserves the native and biological ultrastructure of the cornea and, therefore, represents the most promising scaffold. This article discusses different methods of corneal decellularization based on the current literature. We searched PubMed.gov for articles from January 2009 to December 2023 using the following keywords: corneal decellularization, decellularization methods, and corneal transplantation. Although several methods of decellularization of corneal tissue have been reported, a universal standardised protocol of corneal decellularization has not yet been introduced. In general, a combination of decellularization methods has been used for efficient decellularization while preserving the optimal properties of the corneal tissue.
Collapse
Affiliation(s)
- Alexandra Procházková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Martina Poláchová
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Jakub Dítě
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Magdaléna Netuková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| |
Collapse
|
5
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Chan JS, Han E, Lim CHL, Kurz AC, Shuman J, Liu YC, Riau AK, Mehta JS. Incisional surface quality of electron-beam irradiated cornea-extracted lenticule for stromal keratophakia: high nJ-energy vs. low nJ-energy femtosecond laser. Front Med (Lausanne) 2023; 10:1289528. [PMID: 38162883 PMCID: PMC10754972 DOI: 10.3389/fmed.2023.1289528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Corneal lenticules can be utilized as an additive material for stromal keratophakia. However, following extraction, they must be reimplanted almost immediately or cryopreserved in lenticule banks. Electron-beam (E-beam) irradiated corneas permit room-temperature storage for up to 2 years, enabling keratophakia to be performed on demand. This study aims to compare the performance of high nano Joule (nJ)-energy (VisuMax) and low nJ-energy (FEMTO LDV) femtosecond laser systems on the thickness consistency and surface quality and collagen morphology of lenticules produced from fresh and E-beamed corneas. Methods A total of 24 lenticules with -6.00 dioptre power were cut in fresh human donor corneas and E-beamed corneas with VisuMax and FEMTO LDV. Before extraction, the thickness of the lenticules was measured with anterior segment-optical coherence tomography (AS-OCT). The incisional surface roughness of extracted lenticules was analyzed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Multiphoton microscopy was then used to assess the surface collagen morphometry. Results The E-beamed lenticules that were cut using FEMTO LDV were significantly thicker than the fresh specimens as opposed to those created with VisuMax, which had a similar thickness as the fresh lenticules. On the vertex, they were ∼11% thicker than the fresh lenticules. The surface roughness (Rq) of E-beamed lenticules incised with FEMTO LDV did not differ significantly from the fresh lenticules. This contrasted with the VisuMax-fashioned lenticules, which showed notably smoother surfaces (∼36 and ∼20% lower Rq on anterior and posterior surfaces, respectively) on the E-beamed than the fresh lenticules. The FEMTO LDV induced less cumulative changes to the collagen morphology on the surfaces of both fresh and E-beamed lenticules than the VisuMax. Conclusion It has been previously demonstrated that the low nJ-energy FEMTO LDV produced a smoother cutting surface compared to high nJ-energy VisuMax in fresh lenticules. Here, we showed that this effect was also seen in the E-beamed lenticules. In addition, lower laser energy conferred fewer changes to the lenticular surface collagen morphology. The smaller disparity in surface cutting quality and collagen disturbances on the E-beamed lenticules could be beneficial for the early visual recovery of patients who undergo stromal keratophakia.
Collapse
Affiliation(s)
- Jian S. Chan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Ophthalmology, National University Health System, Singapore, Singapore
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chris H. L. Lim
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Ophthalmology, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Jeremy Shuman
- Lions World Vision Institute, Tampa, FL, United States
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
7
|
Yuan S, Yang X, Wang X, Chen J, Tian W, Yang B. Injectable Xenogeneic Dental Pulp Decellularized Extracellular Matrix Hydrogel Promotes Functional Dental Pulp Regeneration. Int J Mol Sci 2023; 24:17483. [PMID: 38139310 PMCID: PMC10743504 DOI: 10.3390/ijms242417483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The present challenge in dental pulp tissue engineering scaffold materials lies in the development of tissue-specific scaffolds that are conducive to an optimal regenerative microenvironment and capable of accommodating intricate root canal systems. This study utilized porcine dental pulp to derive the decellularized extracellular matrix (dECM) via appropriate decellularization protocols. The resultant dECM was dissolved in an acid pepsin solution to form dECM hydrogels. The analysis encompassed evaluating the microstructure and rheological properties of dECM hydrogels and evaluated their biological properties, including in vitro cell viability, proliferation, migration, tube formation, odontogenic, and neurogenic differentiation. Gelatin methacrylate (GelMA) hydrogel served as the control. Subsequently, hydrogels were injected into treated dentin matrix tubes and transplanted subcutaneously into nude mice to regenerate dental pulp tissue in vivo. The results showed that dECM hydrogels exhibited exceptional injectability and responsiveness to physiological temperature. It supported the survival, odontogenic, and neurogenic differentiation of dental pulp stem cells in a 3D culture setting. Moreover, it exhibited a superior ability to promote cell migration and angiogenesis compared to GelMA hydrogel in vitro. Additionally, the dECM hydrogel demonstrated the capability to regenerate pulp-like tissue with abundant blood vessels and a fully formed odontoblast-like cell layer in vivo. These findings highlight the potential of porcine dental pulp dECM hydrogel as a specialized scaffold material for dental pulp regeneration.
Collapse
Affiliation(s)
- Shengmeng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinlong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Thirunavukarasu AJ, Han E, Nedumaran AM, Kurz AC, Shuman J, Yusoff NZBM, Liu YC, Foo V, Czarny B, Riau AK, Mehta JS. Electron beam-irradiated donor cornea for on-demand lenticule implantation to treat corneal diseases and refractive error. Acta Biomater 2023; 169:334-347. [PMID: 37532130 DOI: 10.1016/j.actbio.2023.07.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The cornea is the major contributor to the refractive power of the eye, and corneal diseases are a leading cause of reversible blindness. The main treatment for advanced corneal disease is keratoplasty: allograft transplantation of the cornea. Examples include lenticule implantation to treat corneal disorders (e.g. keratoconus) or correct refractive errors. These procedures are limited by the shelf-life of the corneal tissue, which must be discarded within 2-4 weeks. Electron-beam irradiation is an emerging sterilisation technique, which extends this shelf life to 2 years. Here, we produced lenticules from fresh and electron-beam (E-beam) irradiated corneas to establish a new source of tissue for lenticule implantation. In vitro, in vivo, and ex vivo experiments were conducted to compare fresh and E-beam-irradiated lenticules. Results were similar in terms of cutting accuracy, ultrastructure, optical transparency, ease of extraction and transplantation, resilience to mechanical handling, biocompatibility, and post-transplant wound healing process. Two main differences were noted. First, ∼59% reduction of glycosaminoglycans resulted in greater compression of E-beam-irradiated lenticules post-transplant, likely due to reduced corneal hydration-this appeared to affect keratometry after implantation. Cutting a thicker lenticule would be required to ameliorate the difference in refraction. Second, E-beam-sterilised lenticules exhibited lower Young's modulus which may indicate greater care with handling, although no damage or perforation was caused in our procedures. In summary, E-beam-irradiated corneas are a viable source of tissue for stromal lenticules, and may facilitate on-demand lenticule implantation to treat a wide range of corneal diseases. Our study suggested that its applications in human patients are warranted. STATEMENT OF SIGNIFICANCE: Corneal blindness affects over six million patients worldwide. For patients requiring corneal transplantation, current cadaver-based procedures are limited by the short shelf-life of donor tissue. Electron-beam (E-beam) sterilisation extends this shelf-life from weeks to years but there are few published studies of its use. We demonstrated that E-beam-irradiated corneas are a viable source of lenticules for implantation. We conducted in vitro, in vivo, and ex vivo comparisons of E-beam and fresh corneal lenticules. The only differences exhibited by E-beam-treated lenticules were reduced expression of glycosaminoglycans, resulting in greater tissue compression and lower refraction suggesting that a thicker cut is required to achieve the same optical and refractive outcome; and lower Young's modulus indicating extra care with handling.
Collapse
Affiliation(s)
- Arun J Thirunavukarasu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | | | | | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Valencia Foo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Singapore National Eye Centre, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; School of Materials Science and Engineering, Nanyang Technological University, Singapore; Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| |
Collapse
|
9
|
Wang X, Elbahrawi RT, Abdukadir AM, Ali ZM, Chan V, Corridon PR. A proposed model of xeno-keratoplasty using 3D printing and decellularization. Front Pharmacol 2023; 14:1193606. [PMID: 37799970 PMCID: PMC10548234 DOI: 10.3389/fphar.2023.1193606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Corneal opacity is a leading cause of vision impairment and suffering worldwide. Transplantation can effectively restore vision and reduce chronic discomfort. However, there is a considerable shortage of viable corneal graft tissues. Tissue engineering may address this issue by advancing xeno-keratoplasty as a viable alternative to conventional keratoplasty. In particular, livestock decellularization strategies offer the potential to generate bioartificial ocular prosthetics in sufficient supply to match existing and projected needs. To this end, we have examined the best practices and characterizations that have supported the current state-of-the-art driving preclinical and clinical applications. Identifying the challenges that delimit activities to supplement the donor corneal pool derived from acellular scaffolds allowed us to hypothesize a model for keratoprosthesis applications derived from livestock combining 3D printing and decellularization.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Zehara Mohammed Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Hleathcare, Engineering and Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Farzamfar S, Elia E, Richer M, Chabaud S, Naji M, Bolduc S. Extracellular Matrix-Based and Electrospun Scaffolding Systems for Vaginal Reconstruction. Bioengineering (Basel) 2023; 10:790. [PMID: 37508817 PMCID: PMC10376078 DOI: 10.3390/bioengineering10070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Congenital vaginal anomalies and pelvic organ prolapse affect different age groups of women and both have significant negative impacts on patients' psychological well-being and quality of life. While surgical and non-surgical treatments are available for vaginal defects, their efficacy is limited, and they often result in long-term complications. Therefore, alternative treatment options are urgently needed. Fortunately, tissue-engineered scaffolds are promising new treatment modalities that provide an extracellular matrix (ECM)-like environment for vaginal cells to adhere, secrete ECM, and be remodeled by host cells. To this end, ECM-based scaffolds or the constructs that resemble ECM, generated by self-assembly, decellularization, or electrospinning techniques, have gained attention from both clinicians and researchers. These biomimetic scaffolds are highly similar to the native vaginal ECM and have great potential for clinical translation. This review article aims to discuss recent applications, challenges, and future perspectives of these scaffolds in vaginal reconstruction or repair strategies.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1666677951, Iran
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Yun HW, Jin YJ, Shin DI, Noh S, Kim KM, Park JY, Lim S, Park DY. Fibrocartilage extracellular matrix augmented demineralized bone matrix graft repairs tendon-to-bone interface in a rabbit tendon reconstruction model. BIOMATERIALS ADVANCES 2023; 152:213522. [PMID: 37343332 DOI: 10.1016/j.bioadv.2023.213522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Current tendon/ligament reconstructions integrate via scar tissue rather than proper bone-tendon interface regeneration, which affects graft longevity, changes in bone tunnel size, and functional outcomes. The purpose of this study was to develop a functional demineralized bone matrix (DBM) + fibrocartilage extracellular matrix (FCECM) composite scaffold, characterize its physicochemical properties, and evaluate its efficacy in repairing tendon-bone interface in a rabbit tendon reconstruction model. Solubilized FCECM was loaded and crosslinked on to DBM scaffolds via gamma-irradiation to create DBM + FCECM scaffolds. The resulting scaffold showed interconnected pores coated with FCECM and protein cargo similar to FCECM. The addition of FCECM modified the physicochemical properties of the DBM scaffold, including microstructure, biochemical composition, mechanical strength, thermodynamic properties, and degradation period. The DBM + FCECM scaffold was biocompatible for mesenchymal stem cells (MSCs) and resulted in elevation of fibrochondrogenic gene markers compared to DBM scaffolds in vitro. In vivo implantation of DBM + FCECM scaffold resulted in neofibrocartilage formation, better pullout strength, and less bone tunnel widening compared to DBM only group in a rabbit tendon reconstruction model. In conclusion, the FCECM augmented DBM scaffold repairs the tendon-bone interface with osseous-fibrocartilage tissue, which may be utilized to improve current tendon reconstruction surgeries.
Collapse
Affiliation(s)
- Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sujin Noh
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Kyu Min Kim
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Jae-Young Park
- Department of Orthopedic Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, Pocheon 13496, Gyeonggi-do, Republic of Korea
| | - Sumin Lim
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
12
|
Li S, Ma X, Zhang Y, Qu Y, Wang L, Ye L. Applications of hydrogel materials in different types of corneal wounds. Surv Ophthalmol 2023:S0039-6257(23)00040-1. [PMID: 36854372 DOI: 10.1016/j.survophthal.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Severe corneal injury can lead to a decrease in light transmission and even blindness. Currently, corneal transplantation has been applied as the primary treatment for corneal blindness; however, the worldwide shortage of suitable corneal donor tissue means that a large proportion of patients have no access to corneal transplants. This situation has contributed to the rapid development of various corneal substitutes. The development and optimization of novel hydrogels that aim to replace partial or full-thickness pathological corneas have advanced in the last decade. Meanwhile, with the help of 3D bioprinting technology, hydrogel materials can be molded to a refined and controllable shape, attracting many scientists to the field of corneal reconstruction research. Although hydrogels are not yet available as a substitute for traditional clinical methods of corneal diseases, their rapid development makes us confident that they will be in the near future. We summarize the application of hydrogel materials for various types of corneal injuries frequently encountered in clinical practice, especially focusing on animal experiments and preclinical studies. Finally, we discuss the development and achievements of 3D bioprinting in the treatment of corneal injury.
Collapse
Affiliation(s)
- Shixu Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Xudai Ma
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Yongxin Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Yunhao Qu
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China
| | - Ling Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China.
| | - Lin Ye
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
13
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Sauer K, Zizak I, Forien JB, Rack A, Scoppola E, Zaslansky P. Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nat Commun 2022; 13:7829. [PMID: 36539409 PMCID: PMC9768145 DOI: 10.1038/s41467-022-34247-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
X-rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in-situ collagen backbone degradation in dry bones using second-harmonic-generation and X-ray diffraction. Collagen breaks down by cascades of photon-electron excitations, enhanced by the presence of mineral nanoparticles. We observe protein disintegration with increasing exposure, detected as residual strain relaxation in pre-stressed apatite nanocrystals. Damage rapidly grows from the onset of irradiation, suggesting that there is no minimal 'safe' dose that bone collagen can sustain. Ionization of calcium and phosphorous in the nanocrystals yields fluorescence and high energy electrons giving rise to structural damage that spreads beyond regions directly illuminated by the incident radiation. Our findings highlight photoelectrons as major agents of damage to bone collagen with implications to all situations where bones are irradiated by hard X-rays and in particular for small-beam mineralized collagen fiber investigations.
Collapse
Affiliation(s)
- Katrein Sauer
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, Department for Operative, Preventive and Pediatric Dentistry, Aßmannshauser Straße 4-6, 14197 Berlin, Germany
| | - Ivo Zizak
- grid.424048.e0000 0001 1090 3682Helmholtz-Zentrum Berlin, Department for Structure and Dynamics of Energy Materials (SE-ASD), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Jean-Baptiste Forien
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Materials Science Division, 7000 East Ave, Livermore, CA 94550 USA
| | - Alexander Rack
- grid.5398.70000 0004 0641 6373ESRF - The European Synchrotron, Structure of Materials Group - ID19, CS 40220, F-38043, Grenoble, Cedex 9 France
| | - Ernesto Scoppola
- grid.461615.10000 0000 8925 2562Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Brandenburg Germany
| | - Paul Zaslansky
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, Department for Operative, Preventive and Pediatric Dentistry, Aßmannshauser Straße 4-6, 14197 Berlin, Germany
| |
Collapse
|
15
|
Abstract
Despite rigorous investigations, the hydrogels currently available to replace damaged tissues, such as the cornea, cannot fulfill mechanical and structural requirements and, more importantly, cannot be sutured into host tissues due to the lack of hierarchical structures to dissipate exerted stress. In this report, solution electrospinning of polycaprolactone (PCL), protein-based hydrogel perfusion, and layer-by-layer stacking are used to generate a hydrogel-microfiber composite with varying PCL fiber diameters and hydrogel concentrations. Integrating PCL microfibers into the hydrogel synergistically improves the mechanical properties and suturability of the construct up to 10-fold and 50-fold, respectively, compared to the hydrogel and microfiber scaffolds alone, approaching those of the corneal tissue. Human corneal cells cultured on composites are viable and can spread, proliferate, and retain phenotypic characteristics. Moreover, corneal stromal cells migrate into the scaffold, degrade it, and regenerate the extracellular matrix. The current hydrogel reinforcing system paves the way for producing suturable and, therefore, transplantable tissue constructs with desired mechanical properties.
Collapse
Affiliation(s)
- Sina Sharifi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts02114, United States
| | - Hannah Sharifi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts02114, United States
| |
Collapse
|
16
|
Wang Z, Wang Y, Ge Z, Tian Y, Ai M, Cao S, Wang M, Wang S, Ma J. Color-phase readout radiochromic photonic crystal dosimeter. MATTER 2022; 5:4060-4075. [DOI: 10.1016/j.matt.2022.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
17
|
Lacombe J, Zenhausern F. Effect of mechanical forces on cellular response to radiation. Radiother Oncol 2022; 176:187-198. [PMID: 36228760 DOI: 10.1016/j.radonc.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/β-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| |
Collapse
|
18
|
Nicholls DL, Rostami S, Karoubi G, Haykal S. Perfusion decellularization for vascularized composite allotransplantation. SAGE Open Med 2022; 10:20503121221123893. [PMID: 36120388 PMCID: PMC9478687 DOI: 10.1177/20503121221123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
Vascularized composite allotransplantation is becoming the emerging standard for reconstructive surgery treatment for patients with limb trauma and facial injuries involving soft tissue loss. Due to the complex immunogenicity of composite grafts, patients who undergo vascularized composite allotransplantation are reliant on lifelong immunosuppressive therapy. Decellularization of donor grafts to create an extracellular matrix bio-scaffold provides an immunomodulatory graft that preserves the structural and bioactive function of the extracellular matrix. Retention of extracellular matrix proteins, growth factors, and signaling cascades allow for cell adhesion, migration, proliferation, and tissue regeneration. Perfusion decellularization of detergents through the graft vasculature allows for increased regent access to all tissue layers, and removal of cellular debris through the venous system. Grafts can subsequently be repopulated with appropriate cells through the vasculature to facilitate tissue regeneration. The present work reviews methods of decellularization, process parameters, evaluation of adequate cellular and nuclear removal, successful applications of perfusion decellularization for use in vascularized composite allotransplantation, and current limitations.
Collapse
Affiliation(s)
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Departments of Mechanical and Industrial Engineering and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Wang Y, Xu L, Zhao J, Liang J, Zhang Z, Li Q, Zhang J, Wan P, Wu Z. Reconstructing auto tissue engineering lamellar cornea with aspartic acid modified acellular porcine corneal stroma and preconditioned limbal stem cell for corneal regeneration. Biomaterials 2022; 289:121745. [DOI: 10.1016/j.biomaterials.2022.121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
|
20
|
Islam MM, Chivu A, AbuSamra DB, Saha A, Chowdhuri S, Pramanik B, Dohlman CH, Das D, Argüeso P, Rajaiya J, Patra HK, Chodosh J. Crosslinker-free collagen gelation for corneal regeneration. Sci Rep 2022; 12:9108. [PMID: 35650270 PMCID: PMC9160259 DOI: 10.1038/s41598-022-13146-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Development of an artificial cornea can potentially fulfil the demand of donor corneas for transplantation as the number of donors is far less than needed to treat corneal blindness. Collagen-based artificial corneas stand out as a regenerative option, having promising clinical outcomes. Collagen crosslinked with chemical crosslinkers which modify the parent functional groups of collagen. However, crosslinkers are usually cytotoxic, so crosslinkers need to be removed from implants completely before application in humans. In addition, crosslinked products are mechanically weak and susceptible to enzymatic degradation. We developed a crosslinker free supramolecular gelation strategy using pyrene conjugated dipeptide amphiphile (PyKC) consisting of lysine and cysteine; in which collagen molecules are intertwined inside the PyKC network without any functional group modification of the collagen. The newly developed collagen implants (Coll-PyKC) are optically transparent and can effectively block UV light, are mechanically and enzymatically stable, and can be sutured. The Coll-PyKC implants support the growth and function of all corneal cells, trigger anti-inflammatory differentiation while suppressing the pro-inflammatory differentiation of human monocytes. Coll-PyKC implants can restrict human adenovirus propagation. Therefore, this crosslinker-free strategy can be used for the repair, healing, and regeneration of the cornea, and potentially other damaged organs of the body.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Alexandru Chivu
- Department of Surgical Biotechnology, University College London, London, NW3 2PF, UK
| | - Dina B AbuSamra
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Amrita Saha
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Sumit Chowdhuri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bapan Pramanik
- Department of Chemistry, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Claes H Dohlman
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pablo Argüeso
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, NW3 2PF, UK.
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front Bioeng Biotechnol 2022; 10:805299. [PMID: 35547166 PMCID: PMC9081537 DOI: 10.3389/fbioe.2022.805299] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Reproduction of different tissues using scaffolds and materials is a major element in regenerative medicine. The regeneration of whole organs with decellularized extracellular matrix (dECM) has remained a goal despite the use of these materials for different purposes. Recently, decellularization techniques have been widely used in producing scaffolds that are appropriate for regenerating damaged organs and may be able to overcome the shortage of donor organs. Decellularized ECM offers several advantages over synthetic compounds, including the preserved natural microenvironment features. Different decellularization methods have been developed, each of which is appropriate for removing cells from specific tissues under certain conditions. A variety of methods have been advanced for evaluating the decellularization process in terms of cell removal efficiency, tissue ultrastructure preservation, toxicity, biocompatibility, biodegradability, and mechanical resistance in order to enhance the efficacy of decellularization methods. Modification techniques improve the characteristics of decellularized scaffolds, making them available for the regeneration of damaged tissues. Moreover, modification of scaffolds makes them appropriate options for drug delivery, disease modeling, and improving stem cells growth and proliferation. However, considering different challenges in the way of decellularization methods and application of decellularized scaffolds, this field is constantly developing and progressively moving forward. This review has outlined recent decellularization and sterilization strategies, evaluation tests for efficient decellularization, materials processing, application, and challenges and future outlooks of decellularization in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Afarin Neishabouri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Daghigh
- Department of Physiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| |
Collapse
|
22
|
da Mata Martins TM, de Carvalho JL, da Silva Cunha P, Gomes DA, de Goes AM. Induction of Corneal Epithelial Differentiation of Induced Pluripotent and Orbital Fat-Derived Stem Cells Seeded on Decellularized Human Corneas. Stem Cell Rev Rep 2022; 18:2522-2534. [PMID: 35247143 DOI: 10.1007/s12015-022-10356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Up to 40% of donor corneas are deemed unsuitable for transplantation, aggravating the shortage of graft tissue. In most cases, the corneal extracellular matrix is intact. Therefore, their decellularization followed by repopulation with autologous cells may constitute an efficient alternative to reduce the amount of discarded tissue and the risk of immune rejection after transplantation. Although induced pluripotent (hiPSCs) and orbital fat-derived stem cells (OFSCs) hold great promise for corneal epithelial (CE) reconstruction, no study to date has evaluated the capacity of decellularized corneas (DCs) to support the attachment and differentiation of these cells into CE-like cells. Here, we recellularize DCs with hiPSCs and OFSCs and evaluate their differentiation potential into CE-like cells using animal serum-free culture conditions. Cell viability and adhesion on DCs were assessed by calcein-AM staining and scanning electron microscopy. Cell differentiation was evaluated by RT-qPCR and immunofluorescence analyses. DCs successfully supported the adhesion and survival of hiPSCs and OFSCs. The OFSCs cultured under differentiation conditions could not express the CE markers, TP63, KRT3, PAX6, and KRT12, while the hiPSCs gave rise to cells expressing high levels of these markers. RT-qPCR data suggested that the DCs provided an inductive environment for CE differentiation of hiPSCs, supporting the expression of PAX6 and KRT12 without the need for any soluble induction factors. Our results open the avenue for future studies regarding the in vivo effects of DCs as carriers for autologous cell transplantation for ocular surface reconstruction.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal, 71966-700, Brazil.,Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70910-900, Brazil
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.,Department of Biology, Minas Gerais State University, Avenida Olegário Maciel, 1427, Ubá, Minas Gerais, 36502-002, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
23
|
Preservation of corneal stromal lenticule: review. Cell Tissue Bank 2022; 23:627-639. [DOI: 10.1007/s10561-021-09990-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
|
24
|
Sharifi S, Sharifi H, Akbari A, Lei F, Dohlman CH, Gonzalez-Andrades M, Guild C, Paschalis EI, Chodosh J. Critical media attributes in E-beam sterilization of corneal tissue. Acta Biomater 2022; 138:218-227. [PMID: 34755604 PMCID: PMC8738149 DOI: 10.1016/j.actbio.2021.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023]
Abstract
When ionizing irradiation interacts with a media, it can form reactive species that can react with the constituents of the system, leading to eradication of bioburden and sterilization of the tissue. Understanding the media's properties such as polarity is important to control and direct those reactive species to perform desired reactions. Using ethanol as a polarity modifier of water, we herein generated a series of media with varying relative polarities for electron beam (E-beam) irradiation of cornea at 25 kGy and studied how the irradiation media's polarity impacts properties of the cornea. After irradiation of corneal tissues, mechanical (tensile strength and modulus, elongation at break, and compression modulus), chemical, optical, structural, degradation, and biological properties of the corneal tissues were evaluated. Our study showed that irradiation in lower relative polarity media improved structural properties of the tissues yet reduced optical transmission; higher relative polarity reduced structural and optical properties of the cornea; and intermediate relative polarity (ethanol concentrations = 20-30% (v/v)) improved the structural properties, without compromising optical characteristics. Regardless of media polarity, irradiation did not negatively impact the biocompatibility of the corneal tissue. Our data shows that the absorbed ethanol can be flushed from the irradiated cornea to levels that are nontoxic to corneal and retinal cells. These findings suggest that the relative polarity of the irradiation media can be tuned to generate sterilized tissues, including corneal grafts, with engineered properties that are required for specific biomedical applications. STATEMENT OF SIGNIFICANCE: Extending the shelf-life of corneal tissue can improve general accessibility of cornea grafts for transplantation. Irradiation of donor corneas with E-beam is an emerging technology to sterilize the corneal tissues and enable their long-term storage at room temperature. Despite recent applications in clinical medicine, little is known about the effect of irradiation and preservation media's characteristics, such as polarity on the properties of irradiated corneas. Here, we have showed that the polarity of the media can be a valuable tool to change and control the properties of the irradiated tissue for transplantation.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Corresponding authors: James Chodosh, MD MPH, Massachusetts Eye and Ear, Boston, MA, 02114, USA. , Sina Sharifi, PhD, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fengyang Lei
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Claes H. Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | | | - Eleftherios I. Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA,Corresponding authors: James Chodosh, MD MPH, Massachusetts Eye and Ear, Boston, MA, 02114, USA. , Sina Sharifi, PhD, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
| |
Collapse
|
25
|
Sharifi S, Sharifi H, Akbari A, Dohlman CH, Paschalis EI, Gonzalez-Andrades M, Kong J, Chodosh J. Graphene-Lined Porous Gelatin Glycidyl Methacrylate Hydrogels: Implications for Tissue Engineering. ACS APPLIED NANO MATERIALS 2021; 4:12650-12662. [PMID: 35252778 PMCID: PMC8897984 DOI: 10.1021/acsanm.1c03201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite rigorous research, inferior mechanical properties and structural homogeneity are the main challenges constraining hydrogel's suturability to host tissue and limiting its clinical applications. To tackle those, we developed a reverse solvent interface trapping method, in which organized, graphene-coated microspherical cavities were introduced into a hydrogel to create heterogeneity and make it suturable. To generate those cavities, (i) graphite exfoliates to graphene sheets, which spread at the water/ heptane interfaces of the microemulsion, (ii) heptane fills the microspheres coated by graphene, and (iii) a cross-linkable hydrogel dissolved in water fills the voids. Cross-linking solidifies such microemulsion to a strong, suturable, permanent hybrid architecture, which has better mechanical properties, yet it is biocompatible and supports cell adhesion and proliferation. These properties along with the ease and biosafety of fabrication suggest the potential of this strategy to enhance tissue engineering outcomes by generating various suturable scaffolds for biomedical applications, such as donor cornea carriers for Boston keratoprosthesis (BK).
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba 14004, Spain
| | - Jing Kong
- Department of Electrical Engineering andComputer Science, Massachusetts Institute of Technology,Cambridge, Massachusetts 02139, United States
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
26
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
27
|
Guo T, Oztug NAK, Han P, Ivanovski S, Gulati K. Influence of sterilization on the performance of anodized nanoporous titanium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112429. [PMID: 34702514 DOI: 10.1016/j.msec.2021.112429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022]
Abstract
Towards clinical translation of bioactive nano-engineered titanium implants, achieving appropriate sterilization and understanding its influence on the modified implant characteristics is essential. With limited studies exploring the influence of sterilization techniques on electrochemically anodized titanium with TiO2 nanostructures, we aimed to advance this domain by performing an in-depth evaluation of the influence of common sterilization techniques (ethanol immersion, various UV irradiation times, gamma irradiation, and dry/wet autoclaving) on TiO2 nanopores fabricated on micro-rough Ti surfaces (dual micro-nano) via single step anodization. Various sterilized surfaces were systematically compared in terms of topographical, chemical, crystalline, wettability and mechanical characteristics. Next, we investigated the protein adhesion capacity and functions of primary gingival fibroblasts (proliferation, adhesion/alignment and spreading morphology) to compare the bioactivity of the sterilized nanopores. Ethanol immersion, gamma irradiation and UV irradiation conserved the topography of the fabricated nanopores, while autoclave sterilization (both dry and wet) compromised the nanoporous structures. Various duration of UV-sterilization resulted in no significant changes in the surface topography and chemistry of the fabricated TNPs. Our findings revealed that UV irradiation is the most appropriate technique to sterilize nano-engineered titanium implants for appropriate wettability, protein adhesion capacity and enhanced metabolism and proliferation of human gingival fibroblasts (hGFs). This study systematically investigated the influence of sterilization on anodized nano-engineered titanium implants towards achieving reproducible outcomes (in terms of topography, chemistry and bioactivity), and found that UV irradiation holds great promise for application across different nano-engineered metal surfaces.
Collapse
Affiliation(s)
- Tianqi Guo
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Necla Asli Kocak Oztug
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Istanbul University, Faculty of Dentistry, Department of Periodontology, Istanbul 34116, Turkey
| | - Pingping Han
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| | - Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| |
Collapse
|
28
|
杨 彩, 郭 继, 王 景, 范 佳, 邢 彦, 张 利, 安 美. [Effects of two common acellular methods on the physicochemical properties of dermal acellular matrix]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:911-918. [PMID: 34713659 PMCID: PMC9927432 DOI: 10.7507/1001-5515.202103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/29/2021] [Indexed: 11/03/2022]
Abstract
At present, acellular matrix is an effective replacement material for the treatment of skin damage, but there are few systematic evaluation studies on its performance. The experimental group of this study used two decellularization methods to prepare the matrix: one was the acellular matrix which sterilized with peracetic acid first (0.2% PAA/4% ethanol solution) and then treated with hypertonic saline (group A), the other was 0.05% trypsin/EDTA decellularization after γ irradiation (group B); and the control group was soaked in PBS (Group C). Then physical properties and chemical composition of the three groups were detected. Hematoxylin eosin (HE) staining showed that the acellular effect of group B was good. The porosity of group A and B were both above 84.9%. In group A, the compressive modulus of elasticity was (9.94 ± 3.81) MPa, and the compressive modulus of elasticity was (12.59 ± 5.50) MPa in group B. There was no significant difference between group A or B and group C. The total content of collagen in acellular matrix of group A and B was significantly lower than that of group C (1. 662 ± 0.229) mg/g, but there was no significant difference in the ratio of collagen Ⅰ/Ⅲ between group B and group C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that there was no significant difference in microstructure. Qualitative detection of fibronectin and elastin in each group was basically consistent with that in group C. Therefore, acellular matrix of group B had better performance as scaffold material. The experimental results show that the acellular matrix prepared by γ-ray sterilization and decellularization of 0.05% Trypsin enzyme/EDTA could be used for the construction of tissue-engineered skin. It could also provide reference for the preparation and mounting of heterogeneous dermal acellular matrix. It was also could be used for electrostatic spinning or three-dimensional printed tissue engineered skin scaffold which could provide physical and chemical parameters for it.
Collapse
Affiliation(s)
- 彩仙 杨
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - 继强 郭
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
- 山西白求恩医院(太原 030032)Shanxi Bethune Hospital, Taiyuan 030032, P.R.China
| | - 景辉 王
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - 佳玉 范
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - 彦雪 邢
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - 利 张
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| | - 美文 安
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R.China
| |
Collapse
|
29
|
Sharifi S, Sharifi H, Akbari A, Koza D, Dohlman CH, Paschalis EI, Chodosh J. Photo-cross-linked Gelatin Glycidyl Methacrylate/N-Vinylpyrrolidone Copolymeric Hydrogel with Tunable Mechanical Properties for Ocular Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:7682-7691. [PMID: 35006715 DOI: 10.1021/acsabm.1c00905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is currently the primary treatment for corneal blindness. However, severe global scarcity of donor corneas is driving the scientific community to find novel solutions. One potential solution is to replace the damaged tissue with a biocompatible artificial cornea. Here, gelatin glycidyl methacrylate (GM) and N-vinylpyrrolidone (VP) were cocrosslinked to afford a hybrid bicomponent copolymeric hydrogel with excellent mechanical, structural, and biological properties. Our studies showed that the GM/VP ratio can be adjusted to generate a construct with high tensile modulus and strength of 1.6 and 1.0 MPa, respectively, compared to 14 and 7.5 MPa for human cornea. The construct can tolerate up to 22.4 kPa pressure before retention sutures can tear through it. Due to the presence of a synthetic component, it has a significantly higher stability against collagenase induced degradation, yet it is biocompatible and promotes cellular adhesion, proliferation, and migration under in vitro settings.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, 57147, Urmia, Iran
| | - Darrell Koza
- Department of Physical Sciences, Eastern Connecticut State University, Willimantic, Connecticut 06226, United States
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
30
|
Abstract
PURPOSE To evaluate the antifungal properties of topical antibiotics (already being used successfully to prevent bacterial endophthalmitis) and some promising antiseptics for antifungal prophylaxis in the setting of artificial corneal implantation. METHODS Several commonly used antibiotics for antimicrobial prophylaxis after artificial corneal implantation, in addition to antiseptics [benzalkonium chloride (BAK), povidone-iodine (PI), and some ionic liquids (ILs)], were tested in vitro against Candida albicans, Fusarium solani, and Aspergillus fumigatus. The time-kill activity was determined. Toxicity was assayed in vitro on human corneal epithelial cultures using trypan blue. Adhesion and tissue invasion experiments were also carried out on porcine corneas and commonly used contact lenses, with or without gamma irradiation, and by analysis with fluorescence microscopy. RESULTS Polymyxin B (PMB)/trimethoprim/BAK (Polytrim), PMB alone, gatifloxacin with BAK (Zymaxid), and same-concentration BAK alone exhibited antifungal activity in vitro. Moxifloxacin (MOX) or gatifloxacin without BAK-as well as trimethoprim, vancomycin, and chloramphenicol-had no effect. 1% PI and ILs had the highest efficacy/toxicity ratios (>1), and Polytrim was species dependent. Subfungicidal concentrations of Polytrim reduced adhesion of C. albicans to Kontur contact lenses. Gamma-irradiated corneas showed enhanced resistance to fungal invasion. CONCLUSIONS Of antibiotic preparations already in use for bacterial prophylaxis after KPro surgery, Polytrim is a commonly used antibiotic with antifungal effects mediated by both PMB and BAK and may be sufficient for prophylaxis. PI as a 1% solution seems to be promising as a long-term antifungal agent. Choline-undecanoate IL is effective and virtually nontoxic and warrants further development.
Collapse
|
31
|
Optimization of Collagen Chemical Crosslinking to Restore Biocompatibility of Tissue-Engineered Scaffolds. Pharmaceutics 2021; 13:pharmaceutics13060832. [PMID: 34204956 PMCID: PMC8229326 DOI: 10.3390/pharmaceutics13060832] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen scaffolds, one of the most used biomaterials in corneal tissue engineering, are frequently crosslinked to improve mechanical properties, enzyme tolerance, and thermal stability. Crosslinkers such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) are compatible with tissues but provide low crosslinking density and reduced mechanical properties. Conversely, crosslinkers such as glutaraldehyde (GTA) can generate mechanically more robust scaffolds; however, they can also induce greater toxicity. Herein, we evaluated the effectivity of double-crosslinking with both EDC and GTA together with the capability of sodium metabisulfite (SM) and sodium borohydride (SB) to neutralize the toxicity and restore biocompatibility after crosslinking. The EDC-crosslinked collagen scaffolds were treated with different concentrations of GTA. To neutralize the free unreacted aldehyde groups, scaffolds were treated with SM or SB. The chemistry involved in these reactions together with the mechanical and functional properties of the collagen scaffolds was evaluated. The viability of the cells grown on the scaffolds was studied using different corneal cell types. The effect of each type of scaffold treatment on human monocyte differentiation was evaluated. One-way ANOVA was used for statistical analysis. The addition of GTA as a double-crosslinking agent significantly improved the mechanical properties and enzymatic stability of the EDC crosslinked collagen scaffold. GTA decreased cell biocompatibility but this effect was reversed by treatment with SB or SM. These agents did not affect the mechanical properties, enzymatic stability, or transparency of the double-crosslinked scaffold. Contact of monocytes with the different scaffolds did not trigger their differentiation into activated macrophages. Our results demonstrate that GTA improves the mechanical properties of EDC crosslinked scaffolds in a dose-dependent manner, and that subsequent treatment with SB or SM partially restores biocompatibility. This novel manufacturing approach would facilitate the translation of collagen-based artificial corneas to the clinical setting.
Collapse
|
32
|
Islam R, Islam MM, Nilsson PH, Mohlin C, Hagen KT, Paschalis EI, Woods RL, Bhowmick SC, Dohlman CH, Espevik T, Chodosh J, Gonzalez-Andrades M, Mollnes TE. Combined blockade of complement C5 and TLR co-receptor CD14 synergistically inhibits pig-to-human corneal xenograft induced innate inflammatory responses. Acta Biomater 2021; 127:169-179. [PMID: 33785451 DOI: 10.1016/j.actbio.2021.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Inadequate supplies of donor corneas have evoked an escalating interest in corneal xenotransplantation. However, innate immune responses contribute significantly to the mechanism of xenograft rejection. We hypothesized that complement component C5 and TLR co-receptor CD14 inhibition would inhibit porcine cornea induced innate immune responses. Therefore, we measured cytokine release in human blood, induced by three forms of corneal xenografts with or without inhibitors. Native porcine cornea (NPC) induced interleukins (IL-1β, IL-2, IL-6, IL-8, IL-1ra), chemokines (MCP-1, MIP-1α, MIP-1β) and other cytokines (TNF, G-CSF, INF-γ, FGF-basic). Decellularized (DPC) and gamma-irradiated cornea (g-DPC) elevated the release of those cytokines. C5-blockade by eculizumab inhibited all the cytokines except G-CSF when induced by NPC. However, C5-blockade failed to reduce DPC and g-DPC induced cytokines. Blockade of CD14 inhibited DPC-induced cytokines except for IL-8, MCP-1, MIP-1α, and G-CSF, while it inhibited all of them when induced by g-DPC. Combined blockade of C5 and CD14 inhibited the maximum number of cytokines regardless of the xenograft type. Finally, by using the TLR4 specific inhibitor Eritoran, we showed that TLR4 activation was the basis for the CD14 effect. Thus, blockade of C5, when combined with TLR4 inhibition, may have therapeutic potential in pig-to-human corneal xenotransplantation. STATEMENT OF SIGNIFICANCE: Bio-engineered corneal xenografts are on the verge of becoming a viable alternative to allogenic human-donor-cornea, but the host's innate immune response is still a critical barrier for graft acceptance. By overruling this barrier, limited graft availability would no longer be an issue for treating corneal diseases. We showed that the xenograft induced inflammation is initiated by the complement system and toll-like receptor activation. Intriguingly, the inflammatory response was efficiently blocked by simultaneously targeting bottleneck molecules in the complement system (C5) and the TLR co-receptor CD14 with pharmaceutical inhibitors. We postulate that a combination of C5 and CD14 inhibition could have a great therapeutic potential to overcome the immunologic barrier in pig-to-human corneal xenotransplantation.
Collapse
|
33
|
Collagen analogs with phosphorylcholine are inflammation-suppressing scaffolds for corneal regeneration from alkali burns in mini-pigs. Commun Biol 2021; 4:608. [PMID: 34021240 PMCID: PMC8140136 DOI: 10.1038/s42003-021-02108-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas.
Collapse
|
34
|
Sharifi S, Islam MM, Sharifi H, Islam R, Koza D, Reyes-Ortega F, Alba-Molina D, Nilsson PH, Dohlman CH, Mollnes TE, Chodosh J, Gonzalez-Andrades M. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact Mater 2021; 6:3947-3961. [PMID: 33937594 PMCID: PMC8080056 DOI: 10.1016/j.bioactmat.2021.03.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gelatin based adhesives have been used in the last decades in different biomedical applications due to the excellent biocompatibility, easy processability, transparency, non-toxicity, and reasonable mechanical properties to mimic the extracellular matrix (ECM). Gelatin adhesives can be easily tuned to gain different viscoelastic and mechanical properties that facilitate its ocular application. We herein grafted glycidyl methacrylate on the gelatin backbone with a simple chemical modification of the precursor, utilizing epoxide ring-opening reactions and visible light-crosslinking. This chemical modification allows the obtaining of an elastic protein-based hydrogel (GELGYM) with excellent biomimetic properties, approaching those of the native tissue. GELGYM can be modulated to be stretched up to 4 times its initial length and withstand high tensile stresses up to 1.95 MPa with compressive strains as high as 80% compared to Gelatin-methacryloyl (GeIMA), the most studied derivative of gelatin used as a bioadhesive. GELGYM is also highly biocompatible and supports cellular adhesion, proliferation, and migration in both 2 and 3-dimensional cell-cultures. These characteristics along with its super adhesion to biological tissues such as cornea, aorta, heart, muscle, kidney, liver, and spleen suggest widespread applications of this hydrogel in many biomedical areas such as transplantation, tissue adhesive, wound dressing, bioprinting, and drug and cell delivery.
Collapse
Affiliation(s)
- Sina Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mohammad Mirazul Islam
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Darrell Koza
- Department of Physical Sciences, Eastern Connecticut State University, Willimantic, CT, USA
| | - Felisa Reyes-Ortega
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - David Alba-Molina
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Claes H Dohlman
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Norway
| | - James Chodosh
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| |
Collapse
|
35
|
Sharifi S, Islam MM, Sharifi H, Islam R, Huq TN, Nilsson PH, Mollnes TE, Tran KD, Patzer C, Dohlman CH, Patra HK, Paschalis EI, Gonzalez-Andrades M, Chodosh J. Electron Beam Sterilization of Poly(Methyl Methacrylate)-Physicochemical and Biological Aspects. Macromol Biosci 2021; 21:e2000379. [PMID: 33624923 PMCID: PMC8147572 DOI: 10.1002/mabi.202000379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Electron beam (E-beam) irradiation is an attractive and efficient method for sterilizing clinically implantable medical devices made of natural and/or synthetic materials such as poly(methyl methacrylate) (PMMA). As ionizing irradiation can affect the physicochemical properties of PMMA, understanding the consequences of E-beam sterilization on the intrinsic properties of PMMA is vital for clinical implementation. A detailed assessment of the chemical, optical, mechanical, morphological, and biological properties of medical-grade PMMA after E-beam sterilization at 25 and 50 kiloGray (kGy) is reported. Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry studies indicate that E-beam irradiation has minimal effect on the chemical properties of the PMMA at these doses. While 25 kGy irradiation does not alter the mechanical and optical properties of the PMMA, 50 kGy reduces the flexural strength and transparency by 10% and 2%, respectively. Atomic force microscopy demonstrates that E-beam irradiation reduces the surface roughness of PMMA in a dose dependent manner. Live-Dead, AlamarBlue, immunocytochemistry, and complement activation studies show that E-beam irradiation up to 50 kGy has no adverse effect on the biocompatibility of the PMMA. These findings suggest that E-beam irradiation at 25 kGy may be a safe and efficient alternative for PMMA sterilization.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Mohammad Mirazul Islam
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, 0424, Norway
| | - Tahmida N Huq
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, 0424, Norway
- Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, 45027, Sweden
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, 0424, Norway
- Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, 9019, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Khoa D Tran
- Vision Research Laboratory, Lions VisionGift, Portland, OR, 97214, USA
| | - Corrina Patzer
- Vision Research Laboratory, Lions VisionGift, Portland, OR, 97214, USA
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, CB3 0AS, UK
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, 14004, Spain
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
36
|
Sharifi S, Sharifi H, Guild C, Islam MM, Tran KD, Patzer C, Dohlman CH, Paschalis EI, Gonzalez-Andrades M, Chodosh J. Toward electron-beam sterilization of a pre-assembled Boston keratoprosthesis. Ocul Surf 2021; 20:176-184. [PMID: 33667673 DOI: 10.1016/j.jtos.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To evaluate the effects of electron-beam (E-beam) irradiation on the human cornea and the potential for E-beam sterilization of Boston keratoprosthesis (BK) devices when pre-assembled with a donor cornea prior to sterilization. METHODS Human donor corneas and corneas pre-assembled in BK devices were immersed in recombinant human serum albumin (rHSA) media and E-beam irradiated at 25 kGy. Mechanical (tensile strength and modulus, and compression modulus), chemical, optical, structural, and degradation properties of the corneal tissue after irradiation and after 6 months of preservation were evaluated. RESULTS The mechanical evaluation showed that E-beam irradiation enhanced the tensile and compression moduli of human donor corneas, with no impact on their tensile strength. By chemical and mechanical analysis, E-beam irradiation caused a minor degree of crosslinking between collagen fibrils. No ultrastructural changes due to E-beam irradiation were observed. E-beam irradiation slightly increased the stability of the cornea against collagenase-induced degradation and had no impact on glucose diffusion. The optical evaluation showed transparency of the cornea was maintained. E-beam irradiated corneal tissues and BK-cornea pre-assembled devices were stable for 6 months after room-temperature preservation. CONCLUSIONS E-beam irradiation generated no detrimental effects on the corneal tissues or BK-cornea pre-assembled devices and improved native properties of the corneal tissue, enabling prolonged preservation at room temperature. The pre-assembly of BK in a donor cornea, followed by E-beam irradiation, offers the potential for an off-the-shelf, ready to implant keratoprosthesis device.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Mohammad Mirazul Islam
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Khoa D Tran
- Vision Research Laboratory, Lions VisionGift, Portland, OR, USA
| | - Corrina Patzer
- Vision Research Laboratory, Lions VisionGift, Portland, OR, USA
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain.
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Polisetti N, Schmid A, Schlötzer-Schrehardt U, Maier P, Lang SJ, Steinberg T, Schlunck G, Reinhard T. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Sci Rep 2021; 11:2992. [PMID: 33542377 PMCID: PMC7862698 DOI: 10.1038/s41598-021-82678-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Allogenic transplants of the cornea are prone to rejection, especially in repetitive transplantation and in scarred or highly vascularized recipient sites. Patients with these ailments would particularly benefit from the possibility to use non-immunogenic decellularized tissue scaffolds for transplantation, which may be repopulated by host cells in situ or in vitro. So, the aim of this study was to develop a fast and efficient decellularization method for creating a human corneal extracellular matrix scaffold suitable for repopulation with human cells from the corneal limbus. To decellularize human donor corneas, sodium deoxycholate, deoxyribonuclease I, and dextran were assessed to remove cells and nuclei and to control tissue swelling, respectively. We evaluated the decellularization effects on the ultrastructure, optical, mechanical, and biological properties of the human cornea. Scaffold recellularization was studied using primary human limbal epithelial cells, stromal cells, and melanocytes in vitro and a lamellar transplantation approach ex vivo. Our data strongly suggest that this approach allowed the effective removal of cellular and nuclear material in a very short period of time while preserving extracellular matrix proteins, glycosaminoglycans, tissue structure, and optical transmission properties. In vitro recellularization demonstrated good biocompatibility of the decellularized human cornea and ex vivo transplantation revealed complete epithelialization and stromal repopulation from the host tissue. Thus, the generated decellularized human corneal scaffold could be a promising biological material for anterior corneal reconstruction in the treatment of corneal defects.
Collapse
Affiliation(s)
- Naresh Polisetti
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| | - Anke Schmid
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Philip Maier
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Stefan J Lang
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Operative Dentistry and Periodontology, Division of Oral Biotechnology, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| | - Thomas Reinhard
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| |
Collapse
|
39
|
Hui PC, Pereira LA, Dore R, Chen S, Taniguchi E, Chodosh J, Dohlman CH, Paschalis EI. Intrinsic Optical Properties of Boston Keratoprosthesis. Transl Vis Sci Technol 2020; 9:10. [PMID: 33200051 PMCID: PMC7645245 DOI: 10.1167/tvst.9.12.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose To benchmark the optical performance of Boston Keratoprosthesis (B-KPro). Methods Back focal lengths (BFL) of B-KPros for various eye axial lengths were measured using an optical bench, International Organization for Standardization–certified for intraocular lens characterization, and compared against manufacturer's specification. The modulation transfer function (MTF) and the resolution efficiencies were measured. The theoretical geometry-dependent higher-order aberrations (HOA) were calculated. The devices were characterized with optical profilometry for estimating the surface scattering. Aberration correction and subsequent image quality improvement were simulated in CODE-V. Natural scene-imaging was performed in a mock ocular environment. Retrospective analysis of 15 B-KPro recipient eyes were presented to evaluate the possibility of achieving 20/20 best-corrected visual acuity (BCVA). Results BFL measurements were in excellent agreement with the manufacturer-reported values (r = 0.999). The MTF specification exceeded what is required for achieving 20/20 visual acuity. Astigmatism and field curvature, correctable in simulations, were the primary aberrations limiting imaging performance. Profilometry of the anterior surface revealed nanoscale roughness (root-mean-square amplitude, 30–50 nm), contributing negligibly to optical scattering. Images of natural scenes obtained with a simulated B-KPro eye demonstrated good central vision, with 10/10 visual acuity (equivalent to 20/20). Full restoration of 20/20 BCVA was obtainable for over 9 years in some patients. Conclusions Theoretical and experimental considerations demonstrate that B-KPro has the optical capacity to restore 20/20 BCVA in patients. Further image quality improvement can be anticipated through correction of HOAs. Translational Relevance We establish an objective benchmark to characterize the optics of the B-KPro and other keratoprosthesis and propose design changes to allow improved vision in B-KPro patients.
Collapse
Affiliation(s)
- Pui-Chuen Hui
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Leonardo A Pereira
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Renald Dore
- University of Rochester, Institute of Optics, Rochester, NY, USA
| | - Shengtong Chen
- University of Rochester, Institute of Optics, Rochester, NY, USA
| | - Elise Taniguchi
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Claes H Dohlman
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eleftherios I Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Fan X, Hong J, Xiang J, Cheng J, Xu J. Factors predicting long-term changes in refraction after lamellar keratoscleroplasty in children with limbal dermoids. Eye (Lond) 2020; 35:1659-1665. [PMID: 32839554 DOI: 10.1038/s41433-020-01140-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES The objective of this study is to determine the factors that predict long-term changes in refraction after lamellar keratoscleroplasty in paediatric patients with limbal dermoids. METHODS A retrospective study of 66 children with limbal dermoids who had lamellar keratoscleroplasty correction with more than 1-year follow-up. Univariate and multivariate regression analyses were performed to investigate factors associated with the long term in refractive parameters, including spherical equivalent, astigmatism, and mean keratometry. The change value was defined as the postoperative refractive value minus the preoperative refractive value. The lower the value of changes, the more satisfied the effects on the correction of the preoperative refraction. RESULTS A total of 66 patients (mean surgical age: 3.5 ± 2.1 years) were assessed with at least 1-year follow-up. Amblyopia treatment duration was the only independent factor predicting the long-term changes in spherical equivalent between baseline and last follow-up visit (β = -0.030, P < 0.001). Lesion encroachment on the central and paracentral cornea (β = 0.502, P = 0.024), suture-related complications (β = 1.571, P < 0.001) and graft rejection (β = 0.983, P = 0.035) were significantly correlated with long-term changes in astigmatism. The long-term changes in refraction were not correlated with surgical age, lesion size, lesion depth, steroid-induced high intraocular pressure and changes in mean keratometry. CONCLUSION Suture-related complications and graft rejection should be carefully observed and appropriately treated in order to avoid the possible postoperative increase in astigmatism, especially for patients with lesion encroachment on the central and paracentral cornea. The long-duration amblyopia treatment after surgery appears to have a better correction effect on spherical equivalent in the long term, compared with astigmatism.
Collapse
Affiliation(s)
- Xiangyu Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jun Xiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jingyi Cheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
41
|
Mertsch S, Hasenzahl M, Reichl S, Geerling G, Schrader S. Decellularized human corneal stromal cell sheet as a novel matrix for ocular surface reconstruction. J Tissue Eng Regen Med 2020; 14:1318-1332. [PMID: 32652796 DOI: 10.1002/term.3103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
The shortage of donor corneas as well as the limitations of tissue substitutes leads to the necessity to develop alternative materials for ocular surface reconstruction. Corneal surface substitutes must fulfill specific requirements such as high transparency, low immunogenicity, and mechanical stability combined with elasticity. This in vitro study evaluates a decellularized matrix secreted from human corneal fibroblasts (HCF) as an alternative material for ocular surface reconstruction. HCF from human donors were cultivated with the supplementation of vitamin C to form a stable and thick matrix. Furthermore, due to enhanced cultivation time, a three-dimensional like multilayered construct which partly mimics the complex structure of the corneal stroma could be generated. The formed human cell-based matrices (so-called cell sheets [CS]) were subsequently decellularized. The complete cell removal, collagen content, ultrastructure, and cell toxicity of the decellularized CS (DCS) as well as biomechanical properties were analyzed. Surgical feasibility was tested on enucleated porcine eyes. After decellularization and sterilization, a transparent, thick, cell free, and sterile tissue substitute resulted, which allowed expansion of limbal epithelial stem cells with no signs of cytotoxicity, and good surgical feasibility. DCS seem to be a promising new corneal tissue substitute derived from human cells without the limitation of donor material; however, future in vivo studies are necessary to further elucidate its potential for ocular surface reconstruction.
Collapse
Affiliation(s)
- Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Meike Hasenzahl
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
42
|
da Mata Martins TM, da Silva Cunha P, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, Gomes DA, de Goes AM. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111215. [PMID: 32806330 DOI: 10.1016/j.msec.2020.111215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The ability to decellularize and recellularize the corneas deemed unsuitable for transplantation may increase the number of available grafts. Decellularized corneas (DCs) may provide a natural microenvironment for cell adhesion and differentiation. Despite this, no study to date has evaluated their efficacy as a substrate for the induction of stem cell differentiation into corneal cells. The present study aimed to compare the efficiency of NaCl and NaCl plus nucleases methods to decellularize whole human corneas, and to investigate the effect of epithelial basement membrane (EBM) of whole DCs on the ability of human embryonic stem cells (hESCs) to differentiate into corneal epithelial-like cells when cultured in animal serum-free differentiation medium. As laminin is the major component of EBM, we also investigated its effect on hESCs differentiation. The decellularization efficiency and integrity of the extracellular matrix (ECM) obtained were investigated by histology, electron microscopy, DNA quantification, immunofluorescence, and nuclear staining. The ability of hESCs to differentiate into corneal epithelial-like cells when seeded on the EBM of DCs or laminin-coated wells was evaluated by immunofluorescence and RT-qPCR analyses. NaCl treatment alone, without nucleases, was insufficient to remove cellular components, while NaCl plus nucleases treatment resulted in efficient decellularization and preservation of the ECM. Unlike cells induced to differentiate on laminin, hESCs differentiated on DCs expressed high levels of corneal epithelial-specific markers, keratin 3 and keratin 12. It was demonstrated for the first time that the decellularized matrices had a positive effect on the differentiation of hESCs towards corneal epithelial-like cells. Such a strategy supports the potential applications of human DCs and hESCs in corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal 71966-700, Brazil; Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Joyce Esposito de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Junnia Alvarenga de Carvalho Oliveira
- Department of Microbiology, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
43
|
Griffith M, Poudel BK, Malhotra K, Akla N, González-Andrades M, Courtman D, Hu V, Alarcon EI. Biosynthetic alternatives for corneal transplant surgery. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1754798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- May Griffith
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Bijay Kumar Poudel
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Kamal Malhotra
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Naoufal Akla
- Department of Ophthalmology, University of Montreal and Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| | - Miguel González-Andrades
- Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - David Courtman
- Department of Medicine, University of Ottawa, and Scientist, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Victor Hu
- London School of Hygiene and Tropical Medicine, International Center for Eye Health, London, UK
| | - Emilio I. Alarcon
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
44
|
Ku JK, Kim BJ, Park JY, Lee JH, Yun PY, Kim YM, Um IW. Effects of gamma irradiation on the measurement of hepatitis B virus DNA in dentin harvested from chronically infected patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:314. [PMID: 32355758 PMCID: PMC7186722 DOI: 10.21037/atm.2020.03.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The manufacturing of the demineralized dentin matrix (DDM) has been proven to extensively reduce the presence of human hepatitis B viral DNA (HBV DNA). This study measured and compared HBV DNA in fresh dentin to that in gamma radiation (GR)-sterilized dentin extracted from HBV-infected patients. The application of GR as a means of terminal sterilization is hypothesized to inactivate or eliminate HBV within the dentin matrix. Methods Dentin from 18 HBV-infected patients was collected and divided into three fragments. The first fragment was unaltered and used as the control group; the remaining two fragments were sterilized with gamma radiation doses of 15 or 25 kGy. DNA was extracted and purified from each fresh (control), and the GR-sterilized (experimental) dentin specimen and HBV DNA copy numbers were evaluated on the basis of the real-time polymerase chain reaction. The copy numbers were used to assess GR efficacy as a means of terminal sterilization for HBV inactivation or elimination. Results HBV DNA was detected in 66.67% of the fresh dentin specimens. The differences in HBV DNA levels between the fresh dentin and the GR-sterilized dentin were confirmed by the Wilcoxon signed-rank test for the doses of 15 and 25 kGy with P value of 0.012 and 0.010, respectively. Among the twelve HBV-DNA-positive fresh dentin samples, HBV DNA persisted in eleven after GR sterilization, yet the copy number was reduced to <10 (except for a single sample within each experimental group). Conclusions The results suggest that 15 and 25 kGy of GR significantly reduced the HBV DNA levels in the fresh dentin matrix. Expansion of the possible clinical applications of allogenic grafts with the irradiated DDM will require additional studies, including validation of viral load inactivation to prevent infectious transmission and examination of GR exposure effects on the osteoinductivity of the matrix.
Collapse
Affiliation(s)
- Jeong-Kui Ku
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital, Seongnam, Korea
| | - Bong-Ju Kim
- Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea
| | - Joo-Young Park
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Korea
| | - Jong-Ho Lee
- Clinical Trial Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu-Mi Kim
- R&D Institute, Korea Tooth Bank, Seoul, Korea
| | - In-Woong Um
- R&D Institute, Korea Tooth Bank, Seoul, Korea
| |
Collapse
|
45
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
46
|
Abstract
The corneal stroma comprises 90% of the corneal thickness and is critical for the cornea's transparency and refractive function necessary for vision. When the corneal stroma is altered by disease, injury, or scarring, however, an irreversible loss of transparency can occur. Corneal stromal pathology is the cause of millions of cases of blindness globally, and although corneal transplantation is the standard therapy, a severe global deficit of donor corneal tissue and eye banking infrastructure exists, and is unable to meet the overwhelming need. An alternative approach is to harness the endogenous regenerative ability of the corneal stroma, which exhibits self-renewal of the collagenous extracellular matrix under appropriate conditions. To mimic endogenous stromal regeneration, however, is a challenge. Unlike the corneal epithelium and endothelium, the corneal stroma is an exquisitely organized extracellular matrix containing stromal cells, proteoglycans and corneal nerves that is difficult to recapitulate in vitro. Nevertheless, much progress has recently been made in developing stromal equivalents, and in this review the most recent approaches to stromal regeneration therapy are described and discussed. Novel approaches for stromal regeneration include human or animal corneal and/or non-corneal tissue that is acellular or is decellularized and/or re-cellularized, acellular bioengineered stromal scaffolds, tissue adhesives, 3D bioprinting and stromal stem cell therapy. This review highlights the techniques and advances that have achieved first clinical use or are close to translation for eventual therapeutic application in repairing and regenerating the corneal stroma, while the potential of these novel therapies for achieving effective stromal regeneration is discussed.
Collapse
Affiliation(s)
- Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Medicine, Linköping University, Linköping, Sweden.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| |
Collapse
|