1
|
Zhang L, Zhou J, Kong W. Extracellular matrix in vascular homeostasis and disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01103-0. [PMID: 39743560 DOI: 10.1038/s41569-024-01103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
The extracellular matrix is an essential component and constitutes a dynamic microenvironment of the vessel wall with an indispensable role in vascular homeostasis and disease. From early development through to ageing, the vascular extracellular matrix undergoes various biochemical and biomechanical alterations in response to diverse environmental cues and exerts precise regulatory control over vessel remodelling. Advances in novel technologies that enable the comprehensive evaluation of extracellular matrix components and cell-matrix interactions have led to the emergence of therapeutic strategies that specifically target this fine-tuned network. In this Review, we explore various aspects of extracellular matrix biology in vascular development, disorders and ageing, emphasizing the effect of the extracellular matrix on disease initiation and progression. Additionally, we provide an overview of the potential therapeutic implications of targeting the extracellular matrix microenvironment in vascular diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
2
|
Saemundsson SA, Curry SD, Bower BM, DeBoo EJ, Goodwin AP, Cha JN. Controlling cellular packing and hypoxia in 3D tumor spheroids via DNA interactions. Biomater Sci 2024; 12:4759-4769. [PMID: 39136101 PMCID: PMC11320176 DOI: 10.1039/d4bm00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Tumor spheroids represent valuable in vitro models for studying cancer biology and evaluating therapeutic strategies. In this study, we investigated the impact of varying lengths of DNA-modified cell surfaces on spheroid formation, cellular adhesion molecule expression, and hypoxia levels within 4T1 mouse breast cancer spheroids. Through a series of experiments, we demonstrated that modifying cell surfaces with biotinylated DNA strands of different lengths facilitated spheroid formation without significantly altering the expression of fibronectin and e-cadherin, key cellular adhesion molecules. However, our findings revealed a notable influence of DNA length on hypoxia levels within the spheroids. As DNA length increased, hypoxia levels decreased, indicating enhanced intercellular spacing and porosity within the spheroid structure. These results contribute to a better understanding of how DNA modification of cell surfaces can modulate spheroid architecture and microenvironmental conditions. Such insights may have implications for developing therapeutic interventions targeting the tumor microenvironment to improve cancer treatment efficacy.
Collapse
Affiliation(s)
- Sven A Saemundsson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Bryce M Bower
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Ethan J DeBoo
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA.
- Materials Science and Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA
- Biomedical Engineering Program, University of Colorado, Boulder, 596 UCB, Boulder, CO, 80303, USA
| |
Collapse
|
3
|
Paindelli C, Parietti V, Barrios S, Shepherd P, Pan T, Wang WL, Satcher RL, Logothetis CJ, Navone N, Campbell MT, Mikos AG, Dondossola E. Bone mimetic environments support engineering, propagation, and analysis of therapeutic response of patient-derived cells, ex vivo and in vivo. Acta Biomater 2024; 178:83-92. [PMID: 38387748 DOI: 10.1016/j.actbio.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.
Collapse
Affiliation(s)
- Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Vanessa Parietti
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Sergio Barrios
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Tianhong Pan
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Robert L Satcher
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Nora Navone
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Antonios G Mikos
- Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
4
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
5
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
6
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
7
|
Sandhu V, Bakkalci D, Wei S, Cheema U. Enhanced Biomimetics of Three-Dimensional Osteosarcoma Models: A Scoping Review. Cancers (Basel) 2023; 16:164. [PMID: 38201591 PMCID: PMC10778420 DOI: 10.3390/cancers16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
This scoping review evaluated 3D osteosarcoma (OS) models' biomimicry, examining their ability to mimic the tumour microenvironment (TME) and their drug sensitivity. Adhering to PRISMA-ScR guidelines, the systematic search revealed 293 studies, with 70 selected for final analysis. Overall, 64% of 3D OS models were scaffold-based, compared to self-generated spheroid models. Scaffolds generated using native matrix were most common (42%) with collagen I/hydroxyapatite predominating. Both scaffold-based and scaffold-free models were used equally for drug screening. The sensitivity of cancer cells in 3D was reported to be lower than that of cells in 2D in ~90% of the drug screening studies. This correlates with the observed upregulation of drug resistance. OS cells cultured in extracellular matrix (ECM)-mimetic scaffolds and native biomaterials were more resistant than cells in 2D. Co-cultures of OS and stromal cells in 3D models enhanced osteogenic differentiation, ECM remodelling, mineralisation, and angiogenesis, suggesting that tumour-stroma crosstalk promotes disease progression. Seven studies demonstrated selective toxicity of chemotherapeutics towards OS cells while sparing stromal cells, providing useful evidence for developing biomimetic tumour-stroma models to test selective drug toxicity. In conclusion, this review highlights the need to enhance biomimicry in 3D OS models for TME recapitulation, especially in testing novel therapeutics. Future research should explore innovative 3D biomimetic models, biomaterials, and advancements in personalised medicine.
Collapse
Affiliation(s)
- Vinesh Sandhu
- Division of Medicine, UCL Medical School, University College London (UCL), 74 Huntley Street, London WC1E 6DE, UK;
| | - Deniz Bakkalci
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK;
| | - Siyi Wei
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK;
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK;
| |
Collapse
|
8
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
9
|
Chim LK, Williams IL, Bashor CJ, Mikos AG. Tumor-associated macrophages induce inflammation and drug resistance in a mechanically tunable engineered model of osteosarcoma. Biomaterials 2023; 296:122076. [PMID: 36931102 PMCID: PMC11132719 DOI: 10.1016/j.biomaterials.2023.122076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The tumor microenvironment is a complex and dynamic ecosystem composed of various physical cues and biochemical signals that facilitate cancer progression, and tumor-associated macrophages are especially of interest as a treatable target due to their diverse pro-tumorigenic functions. Engineered three-dimensional models of tumors more effectively mimic the tumor microenvironment than monolayer cultures and can serve as a platform for investigating specific aspects of tumor biology within a controlled setting. To study the combinatorial effects of tumor-associated macrophages and microenvironment mechanical properties on osteosarcoma, we co-cultured human osteosarcoma cells with macrophages within biomaterials-based bone tumor niches with tunable stiffness. In the first 24 h of direct interaction between the two cell types, macrophages induced an inflammatory environment consisting of high concentrations of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 within moderately stiff scaffolds. Expression of Yes-associated protein (YAP), but not its homolog, transcriptional activator with PDZ-binding motif (TAZ), in osteosarcoma cells was significantly higher than in macrophages, and co-culture of the two cells slightly upregulated YAP in both cells, although not to a significant degree. Resistance to doxorubicin treatment in osteosarcoma cells was correlated with inflammation in the microenvironment, and signal transducer and activator of transcription 3 (STAT3) inhibition diminished the inflammation-related differences in drug resistance but ultimately did not improve the efficacy of doxorubicin. This work highlights that the biochemical cues conferred by tumor-associated macrophages in osteosarcoma are highly variable, and signals derived from the immune system should be considered in the development and testing of novel drugs for cancer.
Collapse
Affiliation(s)
- Letitia K Chim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isabelle L Williams
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
10
|
Sathuvan M, Thangam R, Cheong KL, Kang H, Liu Y. κ-Carrageenan-essential oil loaded composite biomaterial film facilitates mechanosensing and tissue regenerative wound healing. Int J Biol Macromol 2023; 241:124490. [PMID: 37076080 DOI: 10.1016/j.ijbiomac.2023.124490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Polysaccharides κ-carrageenan (κ-Car) have become a predominant source in developing bioactive materials. We aimed to develop biopolymer composite materials of κ-Car with coriander essential oil (CEO) (κ-Car-CEO) films for fibroblast-associated wound healing. Initially, we loaded the CEO in to κ-Car and CEO through homogenization and ultrasonication to fabricate composite film bioactive materials. After performing morphological and chemical characterizations, we validated the developed material functionalities in both in vitro and in vivo models. The chemical and morphological analysis with physical structure, swelling ratio, encapsulation efficiency, CEO release, and water barrier properties of films examined and showed the structural interaction of κ-Car and CEO-loaded into the polymer network. Furthermore, the bioactive applications of CEO release showed initial burst release followed by controlled release from the κ-Car composite film with fibroblast (L929) cell adhesive capabilities and mechanosensing. Our results proved that the CEO-loaded into the κ-Car film impacts cell adhesion, F-actin organization, and collagen synthesis, followed by in vitro mechanosensing activation, further promoting wound healing in vivo. Our innovative perspectives of active polysaccharide (κ-Car)-based CEO functional film materials could potentially accomplish regenerative medicine.
Collapse
Affiliation(s)
- Malairaj Sathuvan
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea; Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Kit-Leong Cheong
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
11
|
Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, Li J, Yao H, Chen K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med 2023. [PMID: 36807772 DOI: 10.1002/cam4.5698] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer is now considered a tumor microenvironment (TME) disease, although it was originally thought to be a cell and gene expression disorder. Over the past 20 years, significant advances have been made in understanding the complexity of the TME and its impact on responses to various anticancer therapies, including immunotherapies. Cancer immunotherapy can recognize and kill cancer cells by regulating the body's immune system. It has achieved good therapeutic effects in various solid tumors and hematological malignancies. Recently, blocking of programmed death-1 (PD-1), programmed death-1 ligand-1 (PD-L1), and programmed death Ligand-2 (PD-L2), the construction of antigen chimeric T cells (CAR-T) and tumor vaccines have become popular immunotherapies Tumorigenesis, progression, and metastasis are closely related to TME. Therefore, we review the characteristics of various cells and molecules in the TME, the interaction between PD-1 and TME, and promising cancer immunotherapy therapeutics.
Collapse
Affiliation(s)
- Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xueting Shao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Frederick X C Wang
- The EnMed Program at Houston Methodist Hospital, Texas A&M University College of Medicine and College of Engineering, Houston, Texas, USA
| | - Jianjian Mu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
12
|
Zhang J, Chen B, Li H, Wang Y, Liu X, Wong KY, Chan WN, Chan AK, Cheung AH, Leung KT, Dong Y, Pan Y, Ke H, Liang L, Zhou Z, Xiao J, Wong CC, Wu WK, Cheng AS, Ma BB, Yu J, Lo KW, Kang W. Cancer-associated fibroblasts potentiate colorectal cancer progression by crosstalk of the IGF2-IGF1R and Hippo-YAP1 signaling pathways. J Pathol 2023; 259:205-219. [PMID: 36373776 DOI: 10.1002/path.6033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The tumor microenvironment exerts crucial effects in driving CRC progression. Cancer-associated fibroblasts (CAFs) serve as one of the most important tumor microenvironment components promoting CRC progression. This study aimed to elucidate the novel molecular mechanisms of CAF-secreted insulin-like growth factor (IGF) 2 in colorectal carcinogenesis. Our results indicated that IGF2 was a prominent factor upregulated in CAFs compared with normal fibroblasts. CAF-derived conditioned media (CM) promoted tumor growth, migration, and invasion of HCT 116 and DLD-1 cells. IGF1R expression is significantly increased in CRC, serving as a potent receptor in response to IGF2 stimulation and predicting unfavorable outcomes for CRC patients. Apart from the PI3K-AKT pathway, RNA-seq analysis revealed that the YAP1-target signature serves as a prominent downstream effector to mediate the oncogenic signaling of IGF2-IGF1R. By single-cell RNA sequencing (scRNA-seq) and immunohistochemical validation, IGF2 was found to be predominantly secreted by CAFs, whereas IGF1R was expressed mainly by cancer cells. IGF2 triggers the nuclear accumulation of YAP1 and upregulates YAP1 target signatures; however, these effects were abolished by either IGF1R knockdown or inhibition with picropodophyllin (PPP), an IGF1R inhibitor. Using CRC organoid and in vivo studies, we found that cotargeting IGF1R and YAP1 with PPP and verteporfin (VP), a YAP1 inhibitor, enhanced antitumor effects compared with PPP treatment alone. In conclusion, this study revealed a novel molecular mechanism by which CAFs promote CRC progression. The findings highlight the translational potential of the IGF2-IGF1R-YAP1 axis as a prognostic biomarker and therapeutic target for CRC. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hui Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Aden Ky Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alvin Hk Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yujuan Dong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, China National Center of Gerontology, Bejing Hospital, Beijing, PR China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, PR China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jianyong Xiao
- Department of Biochemistry, School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chi Chun Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - William Kk Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alfred Sl Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Brigette By Ma
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | -
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
13
|
Qian H, He L, Ye Z, Wei Z, Ao J. Decellularized matrix for repairing intervertebral disc degeneration: Fabrication methods, applications and animal models. Mater Today Bio 2022; 18:100523. [PMID: 36590980 PMCID: PMC9800636 DOI: 10.1016/j.mtbio.2022.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Intervertebral disc degeneration (IDD)-induced low back pain significantly influences the quality of life, placing a burden on public health systems worldwide. Currently available therapeutic strategies, such as conservative or operative treatment, cannot effectively restore intervertebral disc (IVD) function. Decellularized matrix (DCM) is a tissue-engineered biomaterial fabricated using physical, chemical, and enzymatic technologies to eliminate cells and antigens. By contrast, the extracellular matrix (ECM), including collagen and glycosaminoglycans, which are well retained, have been extensively studied in IVD regeneration. DCM inherits the native architecture and specific-differentiation induction ability of IVD and has demonstrated effectiveness in IVD regeneration in vitro and in vivo. Moreover, significant improvements have been achieved in the preparation process, mechanistic insights, and application of DCM for IDD repair. Herein, we comprehensively summarize and provide an overview of the roles and applications of DCM for IDD repair based on the existing evidence to shed a novel light on the clinical treatment of IDD.
Collapse
Key Words
- (3D), three-dimensional
- (AF), annular fibers
- (AFSC), AF stem cells
- (APNP), acellular hydrogel descendent from porcine NP
- (DAF-G), decellularized AF hydrogel
- (DAPI), 4,6-diamidino-2-phenylindole
- (DCM), decellularized matrix
- (DET), detergent-enzymatic treatment
- (DWJM), Wharton's jelly matrix
- (ECM), extracellular matrix
- (EVs), extracellular vesicles
- (Exos), exosome
- (IDD), intervertebral disc degeneration
- (IVD), intervertebral disc
- (LBP), Low back pain
- (NP), nucleus pulposus
- (NPCS), NP-based cell delivery system
- (PEGDA/DAFM), polyethylene glycol diacrylate/decellularized AF matrix
- (SD), sodium deoxycholate
- (SDS), sodium dodecyl sulfate
- (SIS), small intestinal submucosa
- (TGF), transforming growth factor
- (bFGF), basic fibroblast growth factor
- (hADSCs), human adipose-derived stem cells
- (hDF), human dermal fibroblast
- (iAF), inner annular fibers
- (oAF), outer annular fibers
- (sGAG), sulfated glycosaminoglycan
- Decellularized matrix
- Intervertebral disc degeneration
- Regenerative medicine
- Tissue engineering
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li He
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Corresponding author. Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410000, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Corresponding author. Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, China.
| |
Collapse
|
14
|
Xu N, Wang X, Wang L, Song Y, Zheng X, Hu H. Comprehensive analysis of potential cellular communication networks in advanced osteosarcoma using single-cell RNA sequencing data. Front Genet 2022; 13:1013737. [PMID: 36303551 PMCID: PMC9592772 DOI: 10.3389/fgene.2022.1013737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Osteosarcoma (OS) is a common bone cancer in children and adolescents, and metastasis and recurrence are the major causes of poor treatment outcomes. A better understanding of the tumor microenvironment is required to develop an effective treatment for OS. In this paper, a single-cell RNA sequencing dataset was taken to a systematic genetic analysis, and potential signaling pathways linked with osteosarcoma development were explored. Our findings revealed 25 clusters across 11 osteosarcoma tissues, with 11 cell types including “Chondroblastic cells”, “Osteoblastic cells”, “Myeloid cells”, “Pericytes”, “Fibroblasts”, “Proliferating osteoblastic cells”, “Osteoclasts”, “TILs”, “Endothelial cells”, “Mesenchymal stem cells”, and “Myoblasts”. The results of Cell communication analysis showed 17 potential cellular communication networks including “COLLAGEN signaling pathway network”, “CD99 signaling pathway network”, “PTN signaling pathway network”, “MIF signaling pathway network”, “SPP1 signaling pathway network”, “FN1 signaling pathway network”, “LAMININ signaling pathway network”, “FGF signaling pathway network”, “VEGF signaling pathway network”, “GALECTIN signaling pathway network”, “PERIOSTIN signaling pathway network”, “VISFATIN signaling pathway network”, “ITGB2 signaling pathway network”, “NOTCH signaling pathway network”, “IGF signaling pathway network”, “VWF signaling pathway network”, “PDGF signaling pathway network”. This research may provide novel insights into the pathophysiology of OS’s molecular processes.
Collapse
Affiliation(s)
- Ning Xu
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Xiaojing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lili Wang
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Yuan Song
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| | - Xianyou Zheng
- Departments of Orthopedics, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| | - Hai Hu
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
- Departments of Orthopedics, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| |
Collapse
|
15
|
Bedell ML, Torres AL, Hogan KJ, Wang Z, Wang B, Melchiorri AJ, Grande-Allen KJ, Mikos AG. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication 2022; 14:10.1088/1758-5090/ac8768. [PMID: 35931060 PMCID: PMC9633045 DOI: 10.1088/1758-5090/ac8768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
Collapse
Affiliation(s)
| | | | - Katie J. Hogan
- Department of Bioengineering, Rice University, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX
| | - Bonnie Wang
- Department of Bioengineering, Rice University, Houston, TX
| | | | | | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX
- NIBIB/NIH Center for Engineering Complex Tissues, USA
| |
Collapse
|
16
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
17
|
Correlation of nuclear pIGF-1R/IGF-1R and YAP/TAZ in a tissue microarray with outcomes in osteosarcoma patients. Oncotarget 2022; 13:521-533. [PMID: 35284040 PMCID: PMC8906536 DOI: 10.18632/oncotarget.28215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is a genetically diverse bone cancer that lacks a consistent targetable mutation. Recent studies suggest the IGF/PI3K/mTOR pathway and YAP/TAZ paralogs regulate cell fate and proliferation in response to biomechanical cues within the tumor microenvironment. How this occurs and their implication upon osteosarcoma survival, remains poorly understood. Here, we show that IGF-1R can translocate into the nucleus, where it may act as part of a transcription factor complex. To explore the relationship between YAP/TAZ and total and nuclear phosphorylated IGF-1R (pIGF-1R), we evaluated sequential tumor sections from a 37-patient tissue microarray by confocal microscopy. Next, we examined the relationship between stained markers, clinical disease characteristics, and patient outcomes. The nuclear to cytoplasmic ratios (N:C ratio) of YAP and TAZ strongly correlated with nuclear pIGF-1R (r = 0.522, p = 0.001 for each pair). Kaplan-Meier analyses indicated that nuclear pIGF-1R predicted poor overall survival, a finding confirmed in the Cox proportional hazards model. Though additional investigation in a larger prospective study will be required to validate the prognostic accuracy of these markers, our results may have broad implications for the new class of YAP, TAZ, AXL, or TEAD inhibitors that have reached early phase clinical trials this year.
Collapse
|
18
|
Matrix Stiffness Contributes to Cancer Progression by Regulating Transcription Factors. Cancers (Basel) 2022; 14:cancers14041049. [PMID: 35205794 PMCID: PMC8870363 DOI: 10.3390/cancers14041049] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Matrix stiffness is recognized as a critical factor in cancer progression. Recent studies have shown that matrix stiffening is caused by the accumulation, contraction, and crosslinking of the extracellular matrix by cancer and stromal cells. Cancer and stromal cells respond to matrix stiffness, which determines the phenotypes of these cells. In addition, matrix stiffness activates and/or inactivates specific transcription factors in cancer and stromal cells to regulate cancer progression. In this review, we discuss the mechanisms of cancer stiffening and progression that are regulated by transcription factors responding to matrix stiffness. Abstract Matrix stiffness is critical for the progression of various types of cancers. In solid cancers such as mammary and pancreatic cancers, tumors often contain abnormally stiff tissues, mainly caused by stiff extracellular matrices due to accumulation, contraction, and crosslinking. Stiff extracellular matrices trigger mechanotransduction, the conversion of mechanical cues such as stiffness of the matrix to biochemical signaling in the cells, and as a result determine the cellular phenotypes of cancer and stromal cells in tumors. Transcription factors are key molecules for these processes, as they respond to matrix stiffness and are crucial for cellular behaviors. The Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) is one of the most studied transcription factors that is regulated by matrix stiffness. The YAP/TAZ are activated by a stiff matrix and promotes malignant phenotypes in cancer and stromal cells, including cancer-associated fibroblasts. In addition, other transcription factors such as β-catenin and nuclear factor kappa B (NF-κB) also play key roles in mechanotransduction in cancer tissues. In this review, the mechanisms of stiffening cancer tissues are introduced, and the transcription factors regulated by matrix stiffness in cancer and stromal cells and their roles in cancer progression are shown.
Collapse
|
19
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. mTOR Signaling Components in Tumor Mechanobiology. Int J Mol Sci 2022; 23:1825. [PMID: 35163745 PMCID: PMC8837098 DOI: 10.3390/ijms23031825] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
- Department of Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (E.K.B.)
| |
Collapse
|
20
|
Truong D, Cherradi-Lamhamedi SE, Ludwig JA. Targeting the IGF/PI3K/mTOR Pathway and AXL/YAP1/TAZ pathways in Primary Bone Cancer. J Bone Oncol 2022; 33:100419. [PMID: 35251924 PMCID: PMC8892134 DOI: 10.1016/j.jbo.2022.100419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Primary bone cancers (PBC) belong to the family of mesenchymal tumors classified based on their cellular origin, extracellular matrix, genetic regulation, and epigenetic modification. The three major PBC types, Ewing sarcoma, osteosarcoma, and chondrosarcoma, are frequently aggressive tumors, highly metastatic, and typically occur in children and young adults. Despite their distinct origins and pathogenesis, these sarcoma subtypes rely upon common signaling pathways to promote tumor progression, metastasis, and survival. The IGF/PI3K/mTOR and AXL/YAP/TAZ pathways, in particular, have gained significant attention recently given their ties to oncogenesis, cell fate and differentiation, metastasis, and drug resistance. Naturally, these pathways – and their protein constituents – have caught the eye of the pharmaceutical industry, and a wide array of small molecule inhibitors and antibody drug-conjugates have emerged. Here, we review how the IGF/PI3K/mTOR and AXL/YAP/TAZ pathways promote PBC and highlight the drug candidates under clinical trial investigation.
Collapse
|
21
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|
22
|
Mo C, Xie L, Chen C, Ma J, Huang Y, Wu Y, Xu Y, Peng H, Chen Z, Mao R. The Clinical Significance and Potential Molecular Mechanism of Upregulated CDC28 Protein Kinase Regulatory Subunit 1B in Osteosarcoma. JOURNAL OF ONCOLOGY 2021; 2021:7228584. [PMID: 34925510 PMCID: PMC8683182 DOI: 10.1155/2021/7228584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND CDC28 Protein Kinase Regulatory Subunit 1B (CKS1B) is a member of cyclin-dependent kinase subfamily and the relationship between CKS1B and osteosarcoma (OS) remains to be explored. METHODS 80 OS and 41 nontumor tissue samples were arranged to conduct immunohistochemistry (IHC) to evaluate CKS1B expression between OS and nontumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays and exterior high-throughput datasets for further verification of CKS1B expression in OS. The effect of CKS1B expression on clinicopathological and overall survival of OS patients was measured through public high-throughput datasets, and analysis of immune infiltration and single-cell RNA-seq was applied to ascertain molecular mechanism of CKS1B in OS. RESULTS A total of 197 OS samples and 83 nontumor samples (including tissue and cell line) were obtained from in-house IHC, microarrays, and exterior high-throughput datasets. The analysis of integrated expression status demonstrated upregulation of CKS1B in OS (SMD = 1.38, 95% CI [0.52-2.25]) and the significant power of CKS1B expression in distinguishing OS samples from nontumor samples (Area under the Curve (AUC) = 0.89, 95% CI [0.86-0.91]). Clinicopathological and prognosis analysis indicated no remarkable significance but inference of immune infiltration and single-cell RNA-seq prompted that OS patients with overexpressed CKS1B were more likely to suffer OS metastasis while MYC Protooncogene may be the upstream regulon of CKS1B in proliferating osteoblastic OS cells. CONCLUSIONS In this study, sufficient evidence was provided for upregulation of CKS1B in OS. The advanced effect of CKS1B on OS progression indicates a foreground of CKS1B as a biomarker for OS.
Collapse
Affiliation(s)
- Chaohua Mo
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Le Xie
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Chang Chen
- Department of Pathology, Wuzhou Res Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543100, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yingxin Huang
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yanxing Wu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yuanyuan Xu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Huizhi Peng
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Zengwei Chen
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Rongjun Mao
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| |
Collapse
|
23
|
Munoz-Garcia J, Jubelin C, Loussouarn A, Goumard M, Griscom L, Renodon-Cornière A, Heymann MF, Heymann D. In vitro three-dimensional cell cultures for bone sarcomas. J Bone Oncol 2021; 30:100379. [PMID: 34307011 PMCID: PMC8287221 DOI: 10.1016/j.jbo.2021.100379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare tumour entities that arise from the mesenchyme most of which are highly heterogeneous at the cellular, genetic and epigenetic levels. The three main types are osteosarcoma, Ewing sarcoma, and chondrosarcoma. These oncological entities are characterised by high morbidity and mortality and an absence of significant therapeutic improvement in the last four decades. In the field of oncology, in vitro cultures of cancer cells have been extensively used for drug screening unfortunately with limited success. Indeed, despite the massive knowledge acquired from conventional 2D culture methods, scientific community has been challenged by the loss of efficacy of drugs when moved to clinical trials. The recent explosion of new 3D culture methods is paving the way to more relevant in vitro models mimicking the in vivo tumour environment (e.g. bone structure) with biological responses close to the in vivo context. The present review gives a brief overview of the latest advances of the 3D culture methods used for studying primary bone sarcomas.
Collapse
Affiliation(s)
- Javier Munoz-Garcia
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Camille Jubelin
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,Atlantic Bone Screen, Saint-Herblain, France
| | | | - Matisse Goumard
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | | | | | - Marie-Françoise Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, Nantes, France.,Institut de Cancérologie de l'Ouest, Tumour Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France.,University of Sheffield, Department of Oncology and Metabolism, Medical School, Sheffield, UK
| |
Collapse
|
24
|
Behmer Hansen RA, Wang X, Kaw G, Pierre V, Senyo SE. Accounting for Material Changes in Decellularized Tissue with Underutilized Methodologies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6696295. [PMID: 34159202 PMCID: PMC8187050 DOI: 10.1155/2021/6696295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Tissue decellularization has rapidly developed to be a practical approach in tissue engineering research; biological tissue is cleared of cells resulting in a protein-rich husk as a natural scaffold for growing transplanted cells as a donor organ therapy. Minimally processed, acellular extracellular matrix reproduces natural interactions with cells in vitro and for tissue engineering applications in animal models. There are many decellularization techniques that achieve preservation of molecular profile (proteins and sugars), microstructure features such as organization of ECM layers (interstitial matrix and basement membrane) and organ level macrofeatures (vasculature and tissue compartments). While structural and molecular cues receive attention, mechanical and material properties of decellularized tissues are not often discussed. The effects of decellularization on an organ depend on the tissue properties, clearing mechanism, chemical interactions, solubility, temperature, and treatment duration. Physical characterization by a few labs including work from the authors provides evidence that decellularization protocols should be tailored to specific research questions. Physical characterization beyond histology and immunohistochemistry of the decellularized matrix (dECM) extends evaluation of retained functional features of the original tissue. We direct our attention to current technologies that can be employed for structure function analysis of dECM using underutilized tools such as atomic force microscopy (AFM), cryogenic electron microscopy (cryo-EM), dynamic mechanical analysis (DMA), Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, and rheometry. Structural imaging and mechanical functional testing combined with high-throughput molecular analyses opens a new approach for a deeper appreciation of how cellular behavior is influenced by the isolated microenvironment (specifically dECM). Additionally, the impact of these features with different decellularization techniques and generation of synthetic material scaffolds with desired attributes are informed. Ultimately, this mechanical profiling provides a new dimension to our understanding of decellularized matrix and its role in new applications.
Collapse
Affiliation(s)
- Ryan A. Behmer Hansen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gitanjali Kaw
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
25
|
Cai X, Wang KC, Meng Z. Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. Front Cell Dev Biol 2021; 9:673599. [PMID: 34109179 PMCID: PMC8182050 DOI: 10.3389/fcell.2021.673599] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Biophysical cues, such as mechanical properties, play a critical role in tissue growth and homeostasis. During organ development and tissue injury repair, compressive and tensional forces generated by cell-extracellular matrix or cell-cell interaction are key factors for cell fate determination. In the vascular system, hemodynamic forces, shear stress, and cyclic stretch modulate vascular cell phenotypes and susceptibility to atherosclerosis. Despite that emerging efforts have been made to investigate how mechanotransduction is involved in tuning cell and tissue functions in various contexts, the regulatory mechanisms remain largely unknown. One of the challenges is to understand the signaling cascades that transmit mechanical cues from the plasma membrane to the cytoplasm and then to the nuclei to generate mechanoresponsive transcriptomes. YAP and its homolog TAZ, the Hippo pathway effectors, have been identified as key mechanotransducers that sense mechanical stimuli and relay the signals to control transcriptional programs for cell proliferation, differentiation, and transformation. However, the upstream mechanosensors for YAP/TAZ signaling and downstream transcriptome responses following YAP/TAZ activation or repression have not been well characterized. Moreover, the mechanoregulation of YAP/TAZ in literature is highly context-dependent. In this review, we summarize the biomechanical cues in the tissue microenvironment and provide an update on the roles of YAP/TAZ in mechanotransduction in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
26
|
Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Transcriptional activators YAP/TAZ and AXL orchestrate dedifferentiation, cell fate, and metastasis in human osteosarcoma. Cancer Gene Ther 2021; 28:1325-1338. [PMID: 33408328 PMCID: PMC8636268 DOI: 10.1038/s41417-020-00281-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is a molecularly heterogeneous, aggressive, poorly differentiated pediatric bone cancer that frequently spreads to the lung. Relatively little is known about phenotypic and epigenetic changes that promote lung metastases. To identify key drivers of metastasis, we studied human CCH-OS-D OS cells within a previously described rat acellular lung (ACL) model that preserves the native lung architecture, extracellular matrix, and capillary network. This system identified a subset of cells—termed derived circulating tumor cells (dCTCs)—that can migrate, intravasate, and spread within a bioreactor-perfused capillary network. Remarkably, dCTCs highly expressed epithelial-to-mesenchymal transition (EMT)-associated transcription factors (EMT-TFs), such as ZEB1, TWIST, and SOX9, which suggests that they undergo cellular reprogramming toward a less differentiated state by coopting the same epigenetic machinery used by carcinomas. Since YAP/TAZ and AXL tightly regulate the fate and plasticity of normal mesenchymal cells in response to microenvironmental cues, we explored whether these proteins contributed to OS metastatic potential using an isogenic pair of human OS cell lines that differ in AXL expression. We show that AXL inhibition significantly reduced the number of MG63.2 pulmonary metastases in murine models. Collectively, we present a laboratory-based method to detect and characterize a pure population of dCTCs, which provides a unique opportunity to study how OS cell fate and differentiation contributes to metastatic potential. Though the important step of clinical validation remains, our identification of AXL, ZEB1, and TWIST upregulation raises the tantalizing prospect that EMT-TF-directed therapies might expand the arsenal of therapies used to combat advanced-stage OS.
Collapse
|
28
|
Ha J, Kang JS, Lee M, Baek A, Kim S, Chung SK, Lee MO, Kim J. Simplified Brain Organoids for Rapid and Robust Modeling of Brain Disease. Front Cell Dev Biol 2020; 8:594090. [PMID: 33195269 PMCID: PMC7655657 DOI: 10.3389/fcell.2020.594090] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
Although brain organoids are an innovative technique for studying human brain development and disease by replicating the structural and functional properties of the developing human brain, some limitations such as heterogeneity and long-term differentiation (over 2 months) impede their application in disease modeling and drug discovery. In this study, we established simplified brain organoids (simBOs), composed of mature neurons and astroglial cells from expandable hPSC-derived primitive neural stem cells (pNSCs). simBOs can be rapidly generated in 2 weeks and have more homogeneous properties. Transcriptome analysis revealed that three-dimensional (3D) environment of simBOs facilitates the conversion of pNSCs to mature neuronal systems compared to a two-dimensional environment in the context of neurotransmitter release, synaptic vesicle formation, ion channels, calcium signaling, axonal guidance, extracellular matrix organization, and cell cycle. This result was correlated with the translocation of YAP1 into the cytoplasm by sensing matrix stiffness on the 3D models. Furthermore, we demonstrated that simBOs could easily be specified into midbrain-like simBOs by treatment with Shh and FGF8. Midbrain-like simBOs from a Parkinson’s disease patient (LRRK2G2019S)-derived pNSCs and gene-corrected (LRRK2WT) control pNSCs represented disease-associated phenotypes in terms of increased LRRK2 activity, decreased dopaminergic neurons, and increased autophagy. Treatment with the LRRK2 inhibitor, PFE-360, relieved the phenotype of Parkinson’s disease in midbrain-like simBOs. Taken together, these approaches could be applied to large-scale disease models and alternative drug-testing platforms.
Collapse
Affiliation(s)
- Jeongmin Ha
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Ji Su Kang
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Minhyung Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Areum Baek
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seongjun Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Sun-Ku Chung
- Mibyeong Research Center, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
29
|
Targeting Mechanotransduction in Osteosarcoma: A Comparative Oncology Perspective. Int J Mol Sci 2020; 21:ijms21207595. [PMID: 33066583 PMCID: PMC7589883 DOI: 10.3390/ijms21207595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanotransduction is the process in which cells can convert extracellular mechanical stimuli into biochemical changes within a cell. While this a normal process for physiological development and function in many organ systems, tumour cells can exploit this process to promote tumour progression. Here we summarise the current state of knowledge of mechanotransduction in osteosarcoma (OSA), the most common primary bone tumour, referencing both human and canine models and other similar mesenchymal malignancies (e.g., Ewing sarcoma). Specifically, we discuss the mechanical properties of OSA cells, the pathways that these cells utilise to respond to external mechanical cues, and mechanotransduction-targeting strategies tested in OSA so far. We point out gaps in the literature and propose avenues to address them. Understanding how the physical microenvironment influences cell signalling and behaviour will lead to the improved design of strategies to target the mechanical vulnerabilities of OSA cells.
Collapse
|
30
|
Gottipati MK, Zuidema JM, Gilbert RJ. Biomaterial strategies for creating in vitro astrocyte cultures resembling in vivo astrocyte morphologies and phenotypes. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:67-74. [PMID: 34296048 DOI: 10.1016/j.cobme.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are dynamic cells residing in the central nervous system exhibiting many diverse functions. Astrocytes quickly change and present unique phenotypes in response to injury or disease. Here, we briefly summarize recent information regarding astrocyte morphology and function and provide brief insight into their phenotypic changes following injury or disease. We also present the utility of in vitro astrocyte cultures and present recent advances in biomaterial development that enable better recapitulation of their in vivo behavior and morphology.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY. 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY. 12180.,Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 W. 12 Avenue, Columbus, OH. 43210
| | - Jonathan M Zuidema
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA. 92093
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY. 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY. 12180
| |
Collapse
|
31
|
Molina ER, Chim LK, Barrios S, Ludwig JA, Mikos AG. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:249-271. [PMID: 32057288 PMCID: PMC7310212 DOI: 10.1089/ten.teb.2019.0302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Investigations of cancer biology and screening of potential therapeutics for efficacy and safety begin in the preclinical laboratory setting. A staple of most basic research in cancer involves the use of tissue culture plates, on which immortalized cell lines are grown in monolayers. However, this practice has been in use for over six decades and does not account for vital elements of the tumor microenvironment that are thought to aid in initiation, propagation, and ultimately, metastasis of cancer. Furthermore, information gleaned from these techniques does not always translate to animal models or, more crucially, clinical trials in cancer patients. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most common primary tumors of bone, but outcomes for patients with metastatic or recurrent disease have stagnated in recent decades. The unique elements of the bone tumor microenvironment have been shown to play critical roles in the pathogenesis of these tumors and thus should be incorporated in the preclinical models of these diseases. In recent years, the field of tissue engineering has leveraged techniques used in designing scaffolds for regenerative medicine to engineer preclinical tumor models that incorporate spatiotemporal control of physical and biological elements. We herein review the clinical aspects of OS and ES, critical elements present in the sarcoma microenvironment, and engineering approaches to model the bone tumor microenvironment. Impact statement The current paradigm of cancer biology investigation and therapeutic testing relies heavily on monolayer, monoculture methods developed over half a century ago. However, these methods often lack essential hallmarks of the cancer microenvironment that contribute to tumor pathogenesis. Tissue engineers incorporate scaffolds, mechanical forces, cells, and bioactive signals into biological environments to drive cell phenotype. Investigators of bone sarcomas, aggressive tumors that often rob patients of decades of life, have begun to use tissue engineering techniques to devise in vitro models for these diseases. Their efforts highlight how critical elements of the cancer microenvironment directly affect tumor signaling and pathogenesis.
Collapse
Affiliation(s)
- Eric R. Molina
- Department of Bioengineering, Rice University, Houston, Texas
| | - Letitia K. Chim
- Department of Bioengineering, Rice University, Houston, Texas
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, Texas
| | - Joseph A. Ludwig
- Division of Cancer Medicine, Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | | |
Collapse
|
32
|
Ozturk S, Gorgun C, Gokalp S, Vatansever S, Sendemir A. Development and characterization of cancer stem cell-based tumoroids as an osteosarcoma model. Biotechnol Bioeng 2020; 117:2527-2539. [PMID: 32391924 DOI: 10.1002/bit.27381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) cancer tumor models are becoming vital approaches for high-throughput drug screening, drug targeting, development of novel theranostic systems, and personalized medicine. Yet, it is becoming more evident that the tumor progression and metastasis is fueled by a subpopulation of stem-like cells within the tumor that are also called cancer stem cells (CSCs). This study aimed to develop a tumoroid model using CSCs. For this purpose CD133+ cells were isolated from SaOS-2 osteosarcoma cell line with magnetic-activated cell sorting. To evaluate tumoroid formation ability, the cells were incubated in different cell numbers in agar gels produced by 3D Petri Dish® method. Subsequently, CD133+ cells and CD133- cells were co-cultured to investigate CD133+ cell localization in tumoroids. The characterization of tumoroids was performed using Live&Dead staining, immunohistochemistry, and quantitative polymerase chain reaction analysis. The results showed that, CD133+ , CD133- and SaOS-2 cells were all able to form 3D tumoroids regardless of the initial cell number, but, while 72 hr were needed for CD133+ cells to self-assemble, 24 hr were enough for CD133- and SaOS-2 cells. CD133+ cells were located within tumoroids randomly with high cell viability. Finally, when compared to two-dimensional (2D) cultures, there were 5.88, 4.14, 6.95, and 1.68-fold higher messenger RNA expressions for Sox2, OCT3/4, Nanog, and Nestin, respectively, in CD133+ cells that were cultured within 3D tumoroids, showing longer maintenance of stem cell phenotype in 3D, that can allow more relevant screening and targeting efficiency in pharmaceutical testing. It was concluded that CSC-based tumoroids are propitious as 3D tumor models to fill the gap between conventional 2D in vitro culture and in vivo animal experiments for cancer research.
Collapse
Affiliation(s)
- Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey.,Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Cansu Gorgun
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Sevtap Gokalp
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Seda Vatansever
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey.,Research Center of Experimental Health Sciences (DESAM), Near East University, Mersin, Turkey
| | - Aylin Sendemir
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
33
|
Sikavitsas VI. Introduction to Editorial Board Member: Professor Antonios (Tony) G. Mikos. Bioeng Transl Med 2020; 5:e10155. [PMCID: PMC6971437 DOI: 10.1002/btm2.10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Vassilios I. Sikavitsas
- School of Chemical, Biological, and Materials EngineeringThe University of OklahomaNormanOklahama
| |
Collapse
|