1
|
Schaller R, Moya A, Zhang G, Chaaban M, Paillaud R, Bartoszek EM, Schaefer DJ, Martin I, Kaempfen A, Scherberich A. Engineered phalangeal grafts for children with symbrachydactyly: A proof of concept. J Tissue Eng 2024; 15:20417314241257352. [PMID: 38872920 PMCID: PMC11171439 DOI: 10.1177/20417314241257352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Tissue engineering approaches hold great promise in the field of regenerative medicine, especially in the context of pediatric applications, where ideal grafts need to restore the function of the targeted tissue and consider growth. In the present study, we aimed to develop a protocol to engineer autologous phalangeal grafts of relevant size for children suffering from symbrachydactyly. This condition results in hands with short fingers and missing bones. A previously-described, developmentally-inspired strategy based on endochondral ossification (ECO)-the main pathway leading to bone and bone marrow development-and adipose derived-stromal cells (ASCs) as the source of chondroprogenitor was used. First, we demonstrated that pediatric ASCs associated with collagen sponges can generate hypertrophic cartilage tissues (HCTs) in vitro that remodel into bone tissue in vivo via ECO. Second, we developed and optimized an in vitro protocol to generate HCTs in the shape of small phalangeal bones (108-390 mm3) using freshly isolated adult cells from the stromal vascular fraction (SVF) of adipose tissue, associated with two commercially available large collagen scaffolds (Zimmer Plug® and Optimaix 3D®). We showed that after 12 weeks of in vivo implantation in an immunocompromised mouse model such upscaled grafts remodeled into bone organs (including bone marrow tissues) retaining the defined shape and size. Finally, we replicated similar outcome (albeit with a slight reduction in cartilage and bone formation) by using minimally expanded pediatric ASCs (3 × 106 cells per grafts) in the same in vitro and in vivo settings, thereby validating the compatibility of our pediatric phalanx engineering strategy with a clinically relevant scenario. Taken together, these results represent a proof of concept of an autologous approach to generate osteogenic phalangeal grafts of pertinent clinical size, using ASCs in children born with symbrachydactyly, despite a limited amount of tissue available from pediatric patients.
Collapse
Affiliation(s)
- Romain Schaller
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Adrien Moya
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gangyu Zhang
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Paillaud
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ewelina M Bartoszek
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre Kaempfen
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
- Paediatric Orthopaedic, University Children’s Hospital Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Chaaban M, Moya A, García-García A, Paillaud R, Schaller R, Klein T, Power L, Buczak K, Schmidt A, Kappos E, Ismail T, Schaefer DJ, Martin I, Scherberich A. Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification. Biomaterials 2023; 303:122387. [PMID: 37977007 DOI: 10.1016/j.biomaterials.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Endochondral ossification (ECO), the major ossification process during embryogenesis and bone repair, involves the formation of a cartilaginous template remodelled into a functional bone organ. Adipose-derived stromal cells (ASC), non-skeletal multipotent progenitors from the stromal vascular fraction (SVF) of human adipose tissue, were shown to recapitulate ECO and generate bone organs in vivo when primed into a hypertrophic cartilage tissue (HCT) in vitro. However, the reproducibility of ECO was limited and the major triggers remain unknown. We studied the effect of the expansion of cells and maturation of HCT on the induction of the ECO process. SVF cells or expanded ASC were seeded onto collagen sponges, cultured in chondrogenic medium for 3-6 weeks and implanted ectopically in nude mice to evaluate their bone-forming capacities. SVF cells from all tested donors formed mature HCT in 3 weeks whereas ASC needed 4-5 weeks. A longer induction increased the degree of maturation of the HCT, with a gradually denser cartilaginous matrix and increased mineralization. This degree of maturation was highly predictive of their bone-forming capacity in vivo, with ECO achieved only for an intermediate maturation degree. In parallel, expanding ASC also resulted in an enrichment of the stromal fraction characterized by a rapid change of their proteomic profile from a quiescent to a proliferative state. Inducing quiescence rescued their chondrogenic potential. Our findings emphasize the role of monolayer expansion and chondrogenic maturation degree of ASC on ECO and provides a simple, yet reproducible and effective approach for bone formation to be tested in specific clinical models.
Collapse
Affiliation(s)
- Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrien Moya
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andres García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Paillaud
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Romain Schaller
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Thibaut Klein
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Elisabeth Kappos
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Tarek Ismail
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Li T, Ma Z, Zhang Y, Yang Z, Li W, Lu D, Liu Y, Qiang L, Wang T, Ren Y, Wang W, He H, Zhou X, Mao Y, Zhu J, Wang J, Chen X, Dai K. Regeneration of Humeral Head Using a 3D Bioprinted Anisotropic Scaffold with Dual Modulation of Endochondral Ossification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205059. [PMID: 36755334 PMCID: PMC10131811 DOI: 10.1002/advs.202205059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Indexed: 06/18/2023]
Abstract
Tissue engineering is theoretically thought to be a promising method for the reconstruction of biological joints, and thus, offers a potential treatment alternative for advanced osteoarthritis. However, to date, no significant progress is made in the regeneration of large biological joints. In the current study, a biomimetic scaffold for rabbit humeral head regeneration consisting of heterogeneous porous architecture, various bioinks, and different hard supporting materials in the cartilage and bone regions is designed and fabricated in one step using 3D bioprinting technology. Furthermore, orchestrated dynamic mechanical stimulus combined with different biochemical cues (parathyroid hormone [PTH] and chemical component hydroxyapatite [HA] in the outer and inner region, respectively) are used for dual regulation of endochondral ossification. Specifically, dynamic mechanical stimulus combined with growth factor PTH in the outer region inhibits endochondral ossification and results in cartilage regeneration, whereas dynamic mechanical stimulus combined with HA in the inner region promotes endochondral ossification and results in efficient subchondral bone regeneration. The strategy established in this study with the dual modulation of endochondral ossification for 3D bioprinted anisotropic scaffolds represents a versatile and scalable approach for repairing large joints.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Zhengjiang Ma
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Yuxin Zhang
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Zezheng Yang
- Department of OrthopedicsThe Fifth People's Hospital of ShanghaiFudan UniversityMinhang DistrictShanghai200240P. R. China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Dezhi Lu
- School of MedicineShanghai UniversityJing An DistrictShanghai200444China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Lei Qiang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Ya Ren
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Wenhao Wang
- Southwest JiaoTong University College of MedicineNo. 111 North 1st Section of Second Ring RoadChengdu610036China
| | - Hongtao He
- The Third Ward of Department of OrthopedicsThe Second Hospital of Dalian Medical UniversityNo. 467, Zhongshan Road, Shahekou DistrictDalianLiaoning Province116000P. R. China
| | - Xiaojun Zhou
- College of Biological Science and Medical EngineeringState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620P. R. China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Junfeng Zhu
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| | - Xiaodong Chen
- Department of OrthopaedicsXinhua Hospital affiliated to Shanghai Jiaotong University School of MedicineNo. 1665 Kongjiang RoadShanghai200092P. R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic ImplantDepartment of Orthopaedic SurgeryShanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine639 Zhizaoju RdShanghai200011China
| |
Collapse
|
5
|
Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience 2022; 25:105370. [PMID: 36339269 PMCID: PMC9626746 DOI: 10.1016/j.isci.2022.105370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to solve the clinical challenges related to bone grafting, several tissue engineering (TE) strategies have been proposed to repair critical-sized defects. Generally, the classical TE approaches are designed to promote bone repair via intramembranous ossification. Although promising, strategies that direct the osteogenic differentiation of mesenchymal stem/stromal cells are usually characterized by a lack of functional vascular supply, often resulting in necrotic cores. A less explored alternative is engineering bone constructs through a cartilage-mediated approach, resembling the embryological process of endochondral ossification. The remodeling of an intermediary hypertrophic cartilaginous template triggers vascular invasion and bone tissue deposition. Thus, employing this knowledge can be a promising direction for the next generation of bone TE constructs. This review highlights the most recent biomimetic strategies for applying endochondral ossification in bone TE while discussing the plethora of cell types, culture conditions, and biomaterials essential to promote a successful bone regeneration process.
Collapse
|
6
|
Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids. Acta Biomater 2022:S1742-7061(22)00693-6. [DOI: 10.1016/j.actbio.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
7
|
Huang R, Fu R, Yan Y, Liu C, Yang J, Xie Y, Li Q. Engineering hypertrophic cartilage grafts from lipoaspirate for critical-sized calvarial bone defect reconstruction: An adipose tissue-based developmental engineering approach. Bioeng Transl Med 2022; 7:e10312. [PMID: 36176620 PMCID: PMC9472001 DOI: 10.1002/btm2.10312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Developmental engineering of living implants from different cell sources capable of stimulating bone regeneration by recapitulating endochondral ossification (ECO) is a promising strategy for large bone defect reconstruction. However, the clinical translation of these cell-based approaches is hampered by complex manufacturing procedures, poor cell differentiation potential, and limited predictive in vivo performance. We developed an adipose tissue-based developmental engineering approach to overcome these hurdles using hypertrophic cartilaginous (HyC) constructs engineered from lipoaspirate to repair large bone defects. The engineered HyC constructs were implanted into 4-mm calvarial defects in nude rats and compared with decellularized bone matrix (DBM) grafts. The DBM grafts induced neo-bone formation via the recruitment of host cells, while the HyC pellets supported bone regeneration via ECO, as evidenced by the presence of remaining cartilage analog and human NuMA-positive cells within the newly formed bone. However, the HyC pellets clearly showed superior regenerative capacity compared with that of the DBM grafts, yielding more new bone formation, higher blood vessel density, and better integration with adjacent native bone. We speculate that this effect arises from vascular endothelial growth factor and bone morphogenetic protein-2 secretion and mineral deposition in the HyC pellets before implantation, promoting increased vascularization and bone formation upon implantation. The results of this study demonstrate that adipose-derived HyC constructs can effectively heal large bone defects and present a translatable therapeutic option for bone defect repair.
Collapse
Affiliation(s)
- Ru‐Lin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rao Fu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Yan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chuanqi Liu
- Department of Plastic and Burn SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Jing Yang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yun Xie
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Han Z, Bai L, Zhou J, Qian Y, Tang Y, Han Q, Zhang X, Zhang M, Yang X, Cui W, Hao Y. Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials 2022; 285:121545. [PMID: 35512418 DOI: 10.1016/j.biomaterials.2022.121545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
Nanofat (NF) is a fine emulsion that has been used to treat a variety of diseases given its abundance of bioactive components. However, the biological functions of NF have been limited due to its inability to localize during implantation. In this study, NF was immobilized in microfluidic-generated aldehyde-modified polylactic glycolic acid (PLGA) porous microspheres (PMs) via Schiff base condensation and non-covalent binding in a three-dimensional (3D) porous network (PMs@NF). The PMs effectively enhanced the cartilage-targeted retention efficiency of NF, which also resulted in remarkable lubrication performance, with the friction coefficient being reduced by ∼80%, which was maintained over time. Meanwhile, the 3D penetrating structure of the microspheres stimulated cytokine secretion by the NF-derived stem cells, upregulating the expression of anabolism-related genes and downregulating catabolism, and the expression of inflammation-related and pain-related genes. Injecting PMs@NF into the knee joint cavity of a rat model with destabilization of the medial meniscus (DMM) reduced osteophyte formation and protected the cartilage from degeneration, thereby inhibiting the progression of osteoarthritis and improving animal behavior. In summary, this study developed a multifunctional platform with NF immobilization and super-lubrication, which showed great potential for the minimally invasive treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zeyu Han
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Lang Bai
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Yinhua Qian
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Qibin Han
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Xiaoyu Zhang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiao Minxiang, Beijing, 100730, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China.
| |
Collapse
|
9
|
Cheng C, Chaaban M, Born G, Martin I, Li Q, Schaefer DJ, Jaquiery C, Scherberich A. Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Front Bioeng Biotechnol 2022; 10:841690. [PMID: 35350180 PMCID: PMC8957819 DOI: 10.3389/fbioe.2022.841690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Devitalized bone matrix (DBM) is currently the gold standard alternative to autologous bone grafting in maxillofacial surgery. However, it fully relies on its osteoconductive properties and therefore requires defects with healthy bone surrounding. Fractionated human adipose tissue, when differentiated into hypertrophic cartilage in vitro, was proven reproducibly osteogenic in vivo, by recapitulating endochondral ossification (ECO). Both types of bone substitutes were thus compared in an orthotopic, preclinical mandibular defect model in rat. Methods: Human adipose tissue samples were collected and cultured in vitro to generate disks of hypertrophic cartilage. After hypertrophic induction, eight samples from two donors were implanted into a mandible defect in rats, in parallel to Bio-Oss® DBM granules. After 12 weeks, the mandible samples were harvested and evaluated by Micro-CT and histology. Results: Micro-CT demonstrated reproducible ECO and complete restoration of the mandibular geometry with adipose-based disks, with continuous bone inside and around the defect, part of which was of human (donor) origin. In the Bio-Oss® group, instead, osteoconduction from the border of the defect was observed but no direct connection of the granules with the surrounding bone was evidenced. Adipose-based grafts generated significantly higher mineralized tissue volume (0.57 ± 0.10 vs. 0.38 ± 0.07, n = 4, p = 0.03) and newly formed bone (18.9 ± 3.4% of surface area with bone tissue vs. 3 ± 0.7%, p < 0.01) than Bio-Oss®. Conclusion: Our results provide a proof-of-concept that adipose-based hypertrophic cartilage grafts outperform clinical standard biomaterials in maxillofacial surgery.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Arnaud Scherberich,
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Claude Jaquiery
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
- *Correspondence: Qingfeng Li, ; Arnaud Scherberich,
| |
Collapse
|
10
|
Enrichment of Nanofiber Hydrogel Composite with Fractionated Fat Promotes Regenerative Macrophage Polarization and Vascularization for Soft-Tissue Engineering. Plast Reconstr Surg 2022; 149:433e-444e. [PMID: 35196680 DOI: 10.1097/prs.0000000000008872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fractionated fat has been shown to promote dermal regeneration; however, the use of fat grafting for reconstruction of soft-tissue defects is limited because of volume loss over time. The authors have developed a novel approach for engineering of vascularized soft tissue using an injectable nanofiber hydrogel composite enriched with fractionated fat. METHODS Fractionated fat was generated by emulsification of groin fat pads from rats and mixed in a 3:1 ratio with nanofiber hydrogel composite (nanofiber hydrogel composite with fractionated fat). Nanofiber hydrogel composite with fractionated fat or nanofiber hydrogel composite alone was placed into isolation chambers together with arteriovenous loops, which were subcutaneously implanted into the groin of rats (n = 8 per group). After 21 days, animals were euthanized and systemically perfused with ink, and tissue was explanted for histologic analysis. Immunofluorescent staining and confocal laser scanning microscopy were used to quantify CD34+ progenitor cell and macrophage subpopulations. RESULTS Nanofiber hydrogel composite with fractionated fat tissue maintained its shape without shrinking and showed a significantly stronger functional vascularization compared to composite alone after 21 days of implantation (mean vessel count, 833.5 ± 206.1 versus 296.5 ± 114.1; p = 0.04). Tissue heterogeneity and cell count were greater in composite with fractionated fat (mean cell count, 49,707 ± 18,491 versus 9263 ± 3790; p = 0.005), with a significantly higher number of progenitor cells and regenerative CD163+ macrophages compared to composite alone. CONCLUSIONS Fractionated fat-enriched nanofiber hydrogel composite transforms into highly vascularized soft tissue over 21 days without signs of shrinking and promotes macrophage polarization toward regenerative phenotypes. Enrichment of injectable nanofiber hydrogel composite with fractionated fat represents a promising approach for durable reconstruction of soft-tissue defects. CLINICAL RELEVANCE STATEMENT The authors' approach for tissue engineering may ultimately lay the groundwork for clinically relevant applications with the goal of generating large volumes of vascularized soft tissue for defect reconstruction without donor site morbidity.
Collapse
|
11
|
Papantoniou I, Nilsson Hall G, Loverdou N, Lesage R, Herpelinck T, Mendes L, Geris L. Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering. Adv Drug Deliv Rev 2021; 169:22-39. [PMID: 33290762 PMCID: PMC7839840 DOI: 10.1016/j.addr.2020.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
A decade after the term developmental engineering (DE) was coined to indicate the use of developmental processes as blueprints for the design and development of engineered living implants, a myriad of proof-of-concept studies demonstrate the potential of this approach in small animal models. This review provides an overview of DE work, focusing on applications in bone regeneration. Enabling technologies allow to quantify the distance between in vitro processes and their developmental counterpart, as well as to design strategies to reduce that distance. By embedding Nature's robust mechanisms of action in engineered constructs, predictive large animal data and subsequent positive clinical outcomes can be gradually achieved. To this end, the development of next generation biofabrication technologies should provide the necessary scale and precision for robust living bone implant biomanufacturing.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), Stadiou street, 26504 Patras, Greece; Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Gabriella Nilsson Hall
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Niki Loverdou
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Raphaelle Lesage
- Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | - Tim Herpelinck
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Luis Mendes
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium.
| | - Liesbet Geris
- Skeletal Biology & Engineering Research Center, KU Leuven, Herestraat 49 (813), 3000 Leuven, Belgium; GIGA in silico medicine, University of Liège, Avenue de l'Hôpital 11 (B34), 4000 Liège, Belgium; Prometheus, The KU Leuven R&D Division for Skeletal Tissue Engineering, Herestraat 49 (813), 3000 Leuven, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Fu R, Liu C, Yan Y, Li Q, Huang RL. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021; 12:20417314211004211. [PMID: 33868628 PMCID: PMC8020769 DOI: 10.1177/20417314211004211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Elkhenany H, Elkodous MA, Newby SD, El-Derby AM, Dhar M, El-Badri N. Tissue Engineering Modalities and Nanotechnology. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-55359-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|