1
|
Bai Y, Wang R, Wang X, Duan X, Yan X, Liu C, Tian W. Hyaluronic acid coated nano-particles for H 2O 2-elevation augmented photo-/chemodynamic therapy. Int J Biol Macromol 2023; 245:125523. [PMID: 37356681 DOI: 10.1016/j.ijbiomac.2023.125523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In recent years, the association of chemodynamic therapy (CDT) with photodynamic therapy (PDT) has attracted much attention due to their mutually reinforced property. Nevertheless, how to further strengthen their performance is still a big challenge. Given the PDT/CDT therapeutic mechanism, the H2O2 amount might affect their final performance. Thus, in this paper, our synthesized pH-responsive Fenton agents (ferrocene-cinnamaldehyde conjugates, Fc-CA) were encapsulated in hyaluronic acid (HA) coated porphyrin-based MOF to obtain supramolecular nano-particles (Fc-CA-PCN-HA). After the CD44-receptor mediated internalization, the released Fc-CA could further dissociate in the acidic pH micro-environment. The released CA can activate the NADPH oxidase to elevate the H2O2 amount which could be preferable to produce more ·OH through Fenton reaction for cancer cells apoptosis. Additionally, O2 was also generated in the CDT which could alleviate tumor hypoxia condition and be provided as the reactant for PDT to produce more 1O2. Thus, given the excellent cascade reactions induced therapeutic performance of Fc-CA-PCN-HA in vitro and in vivo, the H2O2-elevation strategy might further enhance the PDT/CDT outcomes.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Ruiqi Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoning Wang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| | - Xiaochen Yan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chengfei Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
2
|
Tian J, Wang J, Xu H, Zou B, Chen W, Liu Y, Chen J, Zhang R. Nanoscale metal-organic framework delivers rapamycin to induce tissue immunogenic cell death and potentiates cancer immunotherapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102678. [PMID: 37044194 DOI: 10.1016/j.nano.2023.102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Rapamycin has great potential in the antitumor application, but its therapeutic effect is seriously affected by poor water solubility, targeting ability, and low bioavailability. Here, we constructed a novel composite nanomaterial with PCN-224 as a drug carrier and loaded rapamycin, named R@BP@HA. The nanoplate not only improves targeting, but also synergizes rapamycin with PCN-224 to effectively promote tumor cell apoptosis, which subsequently causes immunogenic cell death (ICD), and shows strong therapeutic effect in 4T1 breast cancer model. The treatment effect depends on three main points:(i)Proapoptotic effect of rapamycin on tumor cells;(ii)ROS production by PCN-224-mediated photodynamic therapy;(iii)ICD induced DC maturation, increased immune response and promoted T cell proliferation and differentiation. This nanoplate offers potential antitumor efficacy in combination with chemotherapy, photodynamic therapy, and immunotherapy.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China.
| | - Jing Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Huanyu Xu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Bocheng Zou
- Department of The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Weihao Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Yulong Liu
- Department of The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingshu Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- Department of The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
Feng H, Zhao L, Bai Z, Xin Z, Wang C, Liu L, Song J, Zhang H, Bai Y, Feng F. Aptamer modified Zr-based porphyrinic nanoscale metal-organic frameworks for active-targeted chemo-photodynamic therapy of tumors. RSC Adv 2023; 13:11215-11224. [PMID: 37056970 PMCID: PMC10087063 DOI: 10.1039/d3ra00753g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Active-targeted nanoplatforms could specifically target tumors compared to normal cells, making them a promising therapeutic agent. The aptamer is a kind of short DNA or RNA sequence that can specifically bind to target molecules, and could be widely used as the active targeting agents of nanoplatforms to achieve active-targeted therapy of tumors. Herein, an aptamer modified nanoplatform DOX@PCN@Apt-M was designed for active-targeted chemo-photodynamic therapy of tumors. Zr-based porphyrinic nanoscale metal organic framework PCN-224 was synthesized through a one-pot reaction, which could produce cytotoxic 1O2 for efficient treatment of tumor cells. To improve the therapeutic effect of the tumor, the anticancer drug doxorubicin (DOX) was loaded into PCN-224 to form DOX@PCN-224 for tumor combination therapy. Active-targeted combination therapy achieved by modifying the MUC1 aptamer (Apt-M) onto DOX@PCN-224 surface can not only further reduce the dosage of therapeutic agents, but also reduce their toxic and side effects on normal tissues. In vitro, experimental results indicated that DOX@PCN@Apt-M exhibited enhanced combined therapeutic effect and active targeting efficiency under 808 nm laser irradiation for MCF-7 tumor cells. Based on PCN-224 nanocarriers and aptamer MUC1, this work provides a novel strategy for precisely targeting MCF-7 tumor cells.
Collapse
Affiliation(s)
- Haidi Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Zhiqiang Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
| | - Zhihui Xin
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
| | - Chaoyu Wang
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Lizhen Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Jinping Song
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
- School Department of Energy Chemistry and Materials Engineering, Shanxi Institute P. R. China
| |
Collapse
|
4
|
Xu H, Nie W, Dai L, Luo R, Lin D, Zhang M, Zhang J, Gao F. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy. Carbohydr Polym 2022; 301:120311. [DOI: 10.1016/j.carbpol.2022.120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
5
|
Chen K, Sun X, Liu Y, Yang Y, Shi M, Yu J, Zhang S, Shi P. CeO 2-Decorated Metal-Organic Framework for Enhanced Photodynamic Therapy. Inorg Chem 2022; 61:16307-16316. [PMID: 36196889 DOI: 10.1021/acs.inorgchem.2c02227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photodynamic therapy (PDT) is quickly developing as a hopeful cancer treatment. However, hypoxic tumors, poor targeting, and photosensitizers (PS) aggregation limited the efficiency of PDT. Here, we report a hyaluronic acid (HA)-modified CeO2-nanoparticle-decorated metal-organic framework (PCN-224@CeO2-HA) to enhance PDT and achieve targeted treatment. CeO2 catalyzes H2O2 to produce O2 to solve hypoxia problems. HA could target the CD44 receptor, which is highly expressed on the tumor cell membranes. The growth of tumor cells 4T1 and MCF-7 was controlled distinctly after being incubated with PCN-224@CeO2-HA under laser irradiation, while the survival ability of normal cell LO2 was nearly unchanged. Importantly, PCN-224@CeO2-HA could be effectively aggregated within the tumor area after 12 h of injection, and the tumor growth was remarkably inhibited under laser irradiation. PCN-224@CeO2-HA presented good biocompatibility and an excellent antitumor effect, providing a new strategy to produce O2 in situ for enhanced PDT.
Collapse
Affiliation(s)
- Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| | - Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| | - Yingyan Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| | - Yapu Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| | - Min Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| | - Jie Yu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong P. R. China
| |
Collapse
|
6
|
Yu J, Xiao H, Yang Z, Qiao C, Zhou B, Jia Q, Wang Z, Wang X, Zhang R, Yang Y, Wang Z, Li J. A Potent Strategy of Combinational Blow Toward Enhanced Cancer Chemo-Photodynamic Therapy via Sustainable GSH Elimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106100. [PMID: 34910845 DOI: 10.1002/smll.202106100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Excessive glutathione (GSH), which is produced owing to abnormal metabolism of tumor cells, scavenges photo-induced reactive oxygen species (ROS) and consumes chemotherapeutic drugs, thereby attenuating the efficacy of photodynamic therapy and chemotherapy, respectively. Predominant strategies for GSH inhibition involve its chemical depletion, which only leads to a temporary therapeutic effect because GSH is replenished via various compensatory routes in tumor cells. Here, a versatile GSH-inhibiting nanosystem (termed PCNPs) for persistent synergistic therapy of cancer is reported. The porous skeleton of PCNPs allows easy encapsulation of buthionine sulfoximine (BSO) to sustainably suppress the biosynthesis of GSH. Thus, PCNPs not only demonstrate a prolonged release of BSO and improve drug utilization for efficient chemotherapy, but also act as an efficient photo-induced singlet oxygen radical generator that prevents the loss of ROS, thereby enhancing photodynamic therapy. In addition, the liposomal coating prevents cargo release in the blood, improves the accumulation of PCNPs at the tumor site, and promotes the cellular uptake of oxaliplatin and BSO. This strategy is applicable to ROS-based therapy and chemotherapy, which are suppressed by GSH, and may further enhance the synergistic effect of GSH-restrained therapy.
Collapse
Affiliation(s)
- Jie Yu
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Hua Xiao
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zuo Yang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chaoqiang Qiao
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Qian Jia
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhongdi Wang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Xiaofei Wang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Ruili Zhang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Zhongliang Wang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, 100071, P. R. China
| |
Collapse
|
7
|
Zhao LP, Zheng RR, Kong RJ, Huang CY, Rao XN, Yang N, Chen AL, Yu XY, Cheng H, Li SY. Self-Delivery Ternary Bioregulators for Photodynamic Amplified Immunotherapy by Tumor Microenvironment Reprogramming. ACS NANO 2022; 16:1182-1197. [PMID: 35023720 DOI: 10.1021/acsnano.1c08978] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abnormal metabolism of cancer cells results in complex tumor microenvironments (TME), which play a dominant role in tumor metastasis. Herein, self-delivery ternary bioregulators (designated as TerBio) are constructed for photodynamic amplified immunotherapy against colorectal cancer by TME reprogramming. Specifically, carrier-free TerBio are prepared by the self-assembly of chlorine e6, SB505124 (SB), and lonidamine (Lon), which exhibit improved tumor accumulation, tumor penetration, and cellular uptake behaviors. Interestingly, TerBio-mediated photodynamic therapy (PDT) could not only inhibit the primary tumor growth but also induce immunogenic cell death of tumors to activate the cascade immune response. Furthermore, TerBio are capable of TME reprograming by SB-triggered transforming growth factor (TGF)-β blockage and Lon-induced lactic acid efflux inhibition. As a consequence, TerBio significantly suppresses distant and metastatic tumor growth by PDT-amplified immunotherapy. This study might advance the development of self-delivery nanomedicine against malignant tumor growth and metastasis.
Collapse
Affiliation(s)
- Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Chu-Yu Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xiao-Na Rao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ni Yang
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - A-Li Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
8
|
Yang J, Jin RM, Wang SY, Xie XT, Hu W, Tang HF, Liu B. Co-delivery of paclitaxel and doxorubicin using polypeptide-engineered nanogels for combination therapy of tumor. NANOTECHNOLOGY 2022; 33:155101. [PMID: 34963110 DOI: 10.1088/1361-6528/ac46b4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 05/24/2023]
Abstract
Loading of chemotherapeutic agents into nanoparticles has been demonstrated to be an effective strategy for cancer therapy. However, simultaneous delivery of different functional drugs to tumor sites for chemotherapy still remains challenging. In this study, nanogels formed by an engineered coiled-coil polypeptide PC10A were designed and prepared as a carrier for co-delivery of paclitaxel (PTX) and doxorubicin (DOX) through ultrasonic treatment and electrostatic adsorption. The drug loading content and encapsulation efficiency of PTX and DOX in the PC10A/PTX/DOX nanogels were 5.98 wt%, 70 wt%, and 8.55 wt%, 83 wt%, respectively. Because the polypeptide PC10A was non-toxic and biodegradable, the PC10A/PTX/DOX nanogels exhibited good biocompatibility. Thein vitroandin vivoantitumor experiments showed that the PC10A/PTX/DOX nanogels possessed obviously synergistic therapy effect of tumors and lower side effects compared with free PTX/DOX. Therefore, the PC10A/PTX/DOX nanogels are promising to provide a new strategy for combination therapy of different functional drugs.
Collapse
Affiliation(s)
- Jie Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Rui-Mei Jin
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Shen-Yan Wang
- Innovation Institute for Biomedical Materials, College of Nursing and Health Management & College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, People's Republic of China
| | - Xiao-Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Wei Hu
- Innovation Institute for Biomedical Materials, College of Nursing and Health Management & College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, People's Republic of China
| | - Hong-Feng Tang
- Innovation Institute for Biomedical Materials, College of Nursing and Health Management & College of Life Science and Chemistry, Wuhan Donghu University, Wuhan 430212, People's Republic of China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| |
Collapse
|
9
|
Pei P, Shen W, Zhang Y, Zhang Y, Qi Z, Zhou H, Liu T, Sun L, Yang K. Radioactive nano-oxygen generator enhance anti-tumor radio-immunotherapy by regulating tumor microenvironment and reducing proliferation. Biomaterials 2021; 280:121326. [PMID: 34953386 DOI: 10.1016/j.biomaterials.2021.121326] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
Oxygen (O2) is the substance irreplaceable of the body's metabolism, which is not only the primary consumable of life activities, but also provide the input energy for the whole body. Importantly, the O2 supply will act as an important role in the field of tumor theranostics. Herein, we successfully construct a radioactive nano-oxygen generator (177Lu-APPs-PEG) with superior properties, which can not only realize a high-performance radioisotope labelling, but also unfreeze the limitation of O2 dependence of internal radioisotope therapy (IRT). More importantly, such nano-oxygen generator also can effectively enhance the infiltration of cytotoxic T cells (CTLs) in distant tumors and reduce tumor metastasis. Meanwhile, the increase of O2 in tumor-site can affect the metabolism of tumor cells and regulatory T (Treg) cells to reduce cancer cells proliferation by down-regulating the expression of hypoxia-inducible factor-1α (HIF-1α) and c-Myc. In short, the strategies we designed provide a new idea for the influence of nano-enzymes on tumor metabolism and immunotherapy.
Collapse
Affiliation(s)
- Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhongyuan Qi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
10
|
Alves SR, Calori IR, Tedesco AC. Photosensitizer-based metal-organic frameworks for highly effective photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112514. [PMID: 34857293 DOI: 10.1016/j.msec.2021.112514] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) uses a photosensitizer, molecular oxygen, and visible light as an alternative clinical protocol against located malignant tumors and other diseases. More recently, PDT has been combined to immunotherapy as a promising option to treat metastatic cancer. However, previous generations of photosensitizers (PSs) revealed clinical difficulties such as long-term skin photosensitivity (first generation), the need for drug delivery vehicles (second generation), and intracellular self-aggregation (third generation), which have generated a somewhat confusing scenario in PDT approaches and evolution. Recently, metal-organic frameworks (MOFs) with exceptionally high PS loading as a building unit of MOF framework have emerged as fourth-generation PS and presented outstanding outcomes under pre-clinical studies. For PS-based MOFs, the inorganic building unit (metal ions/clusters) plays an important role as a coadjuvant in PDT to alleviate hypoxia, to decrease antioxidant species, to yield ROS, or to act as a contrast agent for imaging-guided therapy. In this review, we intend to carry out a broad update on the recent history and the characteristics of PS-based MOFs from basic chemistry to the structure relationship with biological application in PDT. The details and variables that result in different photophysics, size, and morphology, are discussed. Also, we present an overview of the achievements on the pre-clinical assays in combination with other strategies, including alleviating hypoxia in solid tumors, chemotherapy, and the most recent immunotherapy for cancer.
Collapse
Affiliation(s)
- Samara Rodrigues Alves
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
11
|
Zhou X, Huang JQ, Liu LS, Deng FA, Liu YB, Li YM, Chen AL, Yu XY, Li SY, Cheng H. Self-Remedied Nanomedicine for Surmounting the Achilles' Heel of Photodynamic Tumor Therapy. ACS APPLIED BIO MATERIALS 2021; 4:8023-8032. [PMID: 35006783 DOI: 10.1021/acsabm.1c00938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxygen-dependent photodynamic therapy (PDT) could exacerbate tumor hypoxia to induce the upregulation of hypoxia-inducible factor-1α (HIF-1α), which would promote tumor growth and metastasis. In this paper, a self-remedied nanomedicine is developed based on a photosensitizer and a HIF-1α inhibitor to surmount the Achilles' heel of PDT for enhanced antitumor efficacy. Specifically, the nanomedicine (designated as CYC-1) is prepared by the self-assembly of chlorine e6 (Ce6) and 3-(5'-hydroxy-methyl-2'-furyl)-1-benzylindazole (YC-1) through π-π stacking and hydrophobic interactions. Of special note, carrier-free CYC-1 holds an extremely high drug loading rate and avoids excipient-triggered adverse reactions. Intravenously administered CYC-1 prefers to accumulate in the tumor tissue for effective cellular uptake. More importantly, it is verified that CYC-1 is capable of inhibiting the HIF-1α activity, thereby improving its PDT efficacy on tumor suppression. Besides, CYC-1 has the overwhelming superiority in restraining tumor proliferation over the combined administration of Ce6 and YC-1, which highlights the advantage of this self-remedied strategy in drug delivery and tumor therapy. This study sheds light on the development of self-delivery nanomedicine for efficient PDT against malignancies.
Collapse
Affiliation(s)
- Xiang Zhou
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ling-Shan Liu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Fu-An Deng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yi-Bin Liu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - A-Li Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xi-Yong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
12
|
Zhao L, Zheng R, Liu L, Chen X, Guan R, Yang N, Chen A, Yu X, Cheng H, Li S. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy. Biomaterials 2021; 275:120970. [PMID: 34146889 DOI: 10.1016/j.biomaterials.2021.120970] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Amplifying oxidative stress to break intracellular redox homeostasis could accelerate tumor cell death. In this work, a self-delivery oxidative stress amplifier is developed for chemotherapy sensitized immunotherapy. By virtue of the π-π stacking and coordination effect, copper ions (Cu2+), doxorubicin (DOX) and NLG919 are able to self-assembly into the nanosized oxidative stress amplifier (designated as Cu-DON) with a favorable stability and a biocompatibility. Intravenously administrated Cu-DON could effectively accumulate and penetrate into tumor tissues for cellular uptake. Subsequently, the GSH-responsive DOX release will initiate the immunogenic chemotherapy (IC) for primary tumor inhibition. Moreover, Cu2+-mediated GSH consumption and DOX-triggered oxidative stress could cause the intracellular redox imbalance, contributing to immunogenic cell death (ICD) response. Further, the concomitant release of NLG919 would inhibit indoleamine 2,3-dioxygenase 1 (IDO-1) to reverse immunosuppressive tumor microenvironment (ITM) for enhanced immunotherapy. Consequently, this self-delivery oxidative stress amplifier greatly restrains the growth of primary, distant as well as rechallenged tumors by chemotherapy sensitized immunotherapy, which would shed light on the development of combination therapy to block tumor growth and metastasis in clinic.
Collapse
Affiliation(s)
- Linping Zhao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Rongrong Zheng
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lingshan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiayun Chen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Runtian Guan
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ni Yang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China.
| | - Shiying Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
13
|
Yuan P, Deng F, Liu Y, Zheng R, Rao X, Qiu X, Zhang D, Yu X, Cheng H, Li S. Mitochondria Targeted O 2 Economizer to Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy. Adv Healthc Mater 2021; 10:e2100198. [PMID: 33938637 DOI: 10.1002/adhm.202100198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) often suffers from the exacerbated tumor hypoxia and the heterogeneous distribution of photosensitizers, leading to an inefficient ROS productivity and availability. In this work, a mitochondria targeted O2 economizer (designated as Mito-OxE) is developed to improve PDT efficiency by alleviating tumor hypoxia and enhancing the subcellular localization of photosensitizers. Specifically, the photosensitizer of protoporphyrin IX (PpIX) is modified with the hydrophilic polyethylene glycol and the lipophilic cation of triphenylphosphine (TPP) to fabricate the biocompatible mitochondria targeted photosensitizers (designated as Mito-PSs). And Mito-OxE is prepared by using Mito-PSs to load the mitochondrial oxidative phosphorylation inhibitors of atovaquone (ATO). Benefiting from the targeting capability of TPP, Mito-OxE can selectively accumulate in mitochondria after cellular uptake. Subsequently, the mitochondrial respiration would be suppressed to with the participation of ATO, resulting in a local hypoxia mitigation for enhanced PDT. Compared with Mito-PSs, Mito-OxE maximizes the therapeutic effect against hypoxic tumors under light irradiation. This design of mitochondria targeted O2 economizer would advance the development of targeted drug delivery system for effective PDT regardless of hypoxic microenvironment.
Collapse
Affiliation(s)
- Ping Yuan
- The Fifth Affiliated Hospital Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Fu‐An Deng
- The Fifth Affiliated Hospital Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Yi‐Bin Liu
- The Fifth Affiliated Hospital Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Rong‐Rong Zheng
- The Fifth Affiliated Hospital Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xiao‐Na Rao
- The Fifth Affiliated Hospital Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xiao‐Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Biomaterials Research Center School of Biomedical Engineering Southern Medical University Guangzhou 510515 P. R. China
| | - Da‐Wei Zhang
- Department of Hepatobiliary Surgery the Second Affiliated Hospital of Guangzhou Medical University Guangzhou 510260 P. R. China
| | - Xi‐Yong Yu
- The Fifth Affiliated Hospital Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Biomaterials Research Center School of Biomedical Engineering Southern Medical University Guangzhou 510515 P. R. China
| | - Shi‐Ying Li
- The Fifth Affiliated Hospital Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences Guangzhou Medical University Guangzhou 511436 P. R. China
| |
Collapse
|
14
|
DT-diaphorase triggered theranostic nanoparticles induce the self-burst of reactive oxygen species for tumor diagnosis and treatment. Acta Biomater 2021; 125:267-279. [PMID: 33652166 DOI: 10.1016/j.actbio.2021.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/27/2023]
Abstract
On-demand therapy following effective tumor detection would considerably reduce the side effects of traditional chemotherapy. DT-diaphorase (DTD), whose level is strongly elevated in various tumors, is a cytosolic flavoenzyme that promotes intracellular reactive oxygen species (ROS) generation via the redox cycling of hydroquinones. Incorporation of the DTD-responsive substrate to the structures of the probe and prodrug may facilitate the tumor detection and therapy. Herein, we established an multifunctional drug delivery nanosystem (HTLAC) that rapidly responds to the DTD enzyme, leads to the early-stage precise detection and termination of tumors. Firstly, the synthesis of DTD-responsive withaferin A (DT-WA) and indocyanine green (DT-Cy5) was performed. In the presence of DTD, WA, which produces ROS in cells, was released from DT-WA, and the red fluorescence of DT-Cy5 was detected for tumor imaging. Additionally, these DTD enzyme reaction processes of DT-WA and DT-Cy5 induced ROS. The self-burst of ROS generation by the two enzyme reaction processes as well as the released WA then led to the apoptosis of tumor cells. To increase the bioavailability and tumor targeting of drugs, cell-penetrating peptide and hyaluronic acid functionalized liposomes were used to encapsulate the drugs. The detailed in vitro and in vivo assays showed that HTLAC achieved enhanced tumor detection and superior antitumor efficiency. According to above outcomes, results showed that HTLAC might provide an efficacious approach for the fabrication of enzyme-triggering nanosystems to detect tumor and induce the self-burst of ROS for an efficient tumor treatment. STATEMENT OF SIGNIFICANCE: We have fabricated a HTLAC nanosystem to address the need of bursting reactive oxygen species (ROS) generation within tumor site. Our goal uniquely aims at not only augmentation of ROS-inducing anticancer efficacy, but also to meet the challenges of tumor dynamic detection in the clinical practices. In this work, the DT-diaphorase responsive withaferin A (DT-WA) and indocyanine green (DT-Cy5) are synthesized, and observed more specifically toward DTD under physiological conditions. As the cell-penetrating peptide and hyaluronic acid functionalized liposome, the HTLAC not only induces antiproliferative activity by generating self-burst of ROS, but also effectively accumulate and restore its fluorescence at the tumor site because of the HA actively targeting tumor along with the prolonged presence in blood circulation. Besides, this enzyme-triggering nanosystem exhibited an effective tumor inhibition with a low systemic toxicity.
Collapse
|
15
|
Wen T, Quan G, Niu B, Zhou Y, Zhao Y, Lu C, Pan X, Wu C. Versatile Nanoscale Metal-Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005064. [PMID: 33511778 DOI: 10.1002/smll.202005064] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
For decades, nanoscale metal-organic frameworks (nMOFs) have attracted extensive interest in biomedicine due to their distinct characteristics, including facile synthesis, porous interior, and tunable biocompatibility. With high porosity, versatile nMOFs allow for the facile encapsulation of various therapeutic agents with exceptionally high payloads. Constructed from metal ions and organic linkers through coordination bonds, nMOFs with plentiful functional groups enable the surface modification for active targeting and enhanced biocompatibility. This review outlines the up-to-date progresses on the exploration of nMOFs in the field of biomedicine. First, the classification and synthesis of nMOFs are discussed, followed by the concrete introduction of drug loading strategies of nMOFs and mechanisms of stimulation-responsive drug release. Second, the smart designs of the nMOFs-based platforms for anticancer and antibacterial treatment are summarized. Finally, the basic challenges faced by nMOFs research and the great potential of biomimetic nMOFs are presented. This review article affords an inspiring insight into the interdisciplinary research of nMOFs and their biomedical applications, which holds great expectation for their further clinical translation.
Collapse
Affiliation(s)
- Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|