1
|
Jaberi A, Kedzierski A, Kheirabadi S, Tagay Y, Ataie Z, Zavari S, Naghashnejad M, Waldron O, Adhikari D, Lester G, Gallagher C, Borhan A, Ravnic D, Tabdanov E, Sheikhi A. Engineering Microgel Packing to Tailor the Physical and Biological Properties of Gelatin Methacryloyl Granular Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2402489. [PMID: 39152936 DOI: 10.1002/adhm.202402489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Granular hydrogel scaffolds (GHS) are fabricated via placing hydrogel microparticles (HMP) in close contact (packing), followed by physical and/or chemical interparticle bond formation. Gelatin methacryloyl (GelMA) GHS have recently emerged as a promising platform for biomedical applications; however, little is known about how the packing of building blocks, physically crosslinked soft GelMA HMP, affects the physical (pore microarchitecture and mechanical/rheological properties) and biological (in vitro and in vivo) attributes of GHS. Here, the GHS pore microarchitecture is engineered via the external (centrifugal) force-induced packing and deformation of GelMA HMP to regulate GHS mechanical and rheological properties, as well as biological responses in vitro and in vivo. Increasing the magnitude and duration of centrifugal force increases the HMP deformation/packing, decreases GHS void fraction and median pore diameter, and increases GHS compressive and storage moduli. MDA-MB-231 human triple negative breast adenocarcinoma cells spread and flatten on the GelMA HMP surface in loosely packed GHS, whereas they adopt an elongated morphology in highly packed GHS as a result of spatial confinement. Via culturing untreated or blebbistatin-treated cells in GHS, the effect of non-muscle myosin II-driven contractility on cell morphology is shown. In vivo subcutaneous implantation in mice confirms a significantly higher endothelial, fibroblast, and macrophage cell infiltration within the GHS with a lower packing density, which is in accordance with the in vitro cell migration outcome. These results indicate that the packing state of GelMA GHS may enable the engineering of cell response in vitro and tissue response in vivo. This research is a fundamental step forward in standardizing and engineering GelMA GHS microarchitecture for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Saman Zavari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Naghashnejad
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Olivia Waldron
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Daksh Adhikari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gerald Lester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Colin Gallagher
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dino Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Erdem Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
2
|
Daly AC. Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives. Adv Healthc Mater 2024; 13:e2301388. [PMID: 37317658 DOI: 10.1002/adhm.202301388] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Granular hydrogels, which are formed by densely packing microgels, are promising materials for bioprinting due to their extrudability, porosity, and modularity. However, the multidimensional parameter space involved in granular hydrogel design makes material optimization challenging. For example, design inputs such as microgel morphology, packing density, or stiffness can influence multiple rheological properties that govern printability and the behavior of encapsulated cells. This review provides an overview of fabrication methods for granular hydrogels, and then examines how important design inputs can influence material properties associated with printability and cellular responses across multiple scales. Recent applications of granular design principles in bioink engineering are described, including the development of granular support hydrogels for embedded printing. Further, the paper provides an overview of how key physical properties of granular hydrogels can influence cellular responses, highlighting the advantages of granular materials for promoting cell and tissue maturation after the printing process. Finally, potential future directions for advancing the design of granular hydrogels for bioprinting are discussed.
Collapse
Affiliation(s)
- Andrew C Daly
- Biomedical Engineering, University of Galway, Galway, H91 TK33, Ireland
- CÚRAM the Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
3
|
Fatima R, Almeida B. Methods to achieve tissue-mimetic physicochemical properties in hydrogels for regenerative medicine and tissue engineering. J Mater Chem B 2024; 12:8505-8522. [PMID: 39149830 DOI: 10.1039/d4tb00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Hydrogels are water-swollen polymeric matrices with properties that are remarkably similar in function to the extracellular matrix. For example, the polymer matrix provides structural support and adhesion sites for cells in much of the same way as the fibers of the extracellular matrix. In addition, depending on the polymer used, bioactive sites on the polymer may provide signals to initiate certain cell behavior. However, despite their potential as biomaterials for tissue engineering and regenerative medicine applications, fabricating hydrogels that truly mimic the physicochemical properties of the extracellular matrix to physiologically-relevant values is a challenge. Recent efforts in the field have sought to improve the physicochemical properties of hydrogels using advanced materials science and engineering methods. In this review, we highlight some of the most promising methods, including crosslinking strategies and manufacturing approaches such as 3D bioprinting and granular hydrogels. We also provide a brief perspective on the future outlook of this field and how these methods may lead to the clinical translation of hydrogel biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | - Bethany Almeida
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
4
|
Caiado Decarli M, Ferreira HP, Sobreiro-Almeida R, Teixeira FC, Correia TR, Babilotte J, Olijve J, Custódio CA, Gonçalves IC, Mota C, Mano JF, Moroni L. Embedding Bioprinting of Low Viscous, Photopolymerizable Blood-Based Bioinks in a Crystal Self-Healing Transparent Supporting Bath. SMALL METHODS 2024:e2400857. [PMID: 38970553 DOI: 10.1002/smtd.202400857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Protein-based hydrogels have great potential to be used as bioinks for biofabrication-driven tissue regeneration strategies due to their innate bioactivity. Nevertheless, their use as bioinks in conventional 3D bioprinting is impaired due to their intrinsic low viscosity. Using embedding bioprinting, a liquid bioink is printed within a support that physically holds the patterned filament. Inspired by the recognized microencapsulation technique complex coacervation, crystal self-healing embedding bioprinting (CLADDING) is introduced based on a highly transparent crystal supporting bath. The suitability of distinct classes of gelatins is evaluated (i.e., molecular weight distribution, isoelectric point, and ionic content), as well as the formation of gelatin-gum arabic microparticles as a function of pH, temperature, solvent, and mass ratios. Characterizing and controlling this parametric window resulted in high yields of support bath with ideal self-healing properties for interaction with protein-based bioinks. This support bath achieved transparency, which boosted light permeation within the bath. Bioprinted constructs fully composed of platelet lysates encapsulating a co-culture of human mesenchymal stromal cells and endothelial cells are obtained, demonstrating a high-dense cellular network with excellent cell viability and stability over a month. CLADDING broadens the spectrum of photocrosslinkable materials with extremely low viscosity that can now be bioprinted with sensitive cells without any additional support.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen/University of Groningen, A. Deusinglaan 1, Groningen, AV 9713, The Netherlands
| | - Helena P Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde/INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-180, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Rita Sobreiro-Almeida
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Filipa C Teixeira
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Tiago R Correia
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Joanna Babilotte
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Jos Olijve
- Rousselot Biomedical, Expertise Center, Meulestedekaai 81, Ghent, 9000, Belgium
| | - Catarina A Custódio
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
- Metatissue, PCI, Creative Science Park Aveiro Region, Via do Conhecimento, Ílhavo, 3830-352, Portugal
| | - Inês C Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde/INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-180, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - João F Mano
- CICECO - Department of Chemistry, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
5
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
6
|
Sreepadmanabh M, Arun AB, Bhattacharjee T. Design approaches for 3D cell culture and 3D bioprinting platforms. BIOPHYSICS REVIEWS 2024; 5:021304. [PMID: 38765221 PMCID: PMC11101206 DOI: 10.1063/5.0188268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
The natural habitat of most cells consists of complex and disordered 3D microenvironments with spatiotemporally dynamic material properties. However, prevalent methods of in vitro culture study cells under poorly biomimetic 2D confinement or homogeneous conditions that often neglect critical topographical cues and mechanical stimuli. It has also become increasingly apparent that cells in a 3D conformation exhibit dramatically altered morphological and phenotypical states. In response, efforts toward designing biomaterial platforms for 3D cell culture have taken centerstage over the past few decades. Herein, we present a broad overview of biomaterials for 3D cell culture and 3D bioprinting, spanning both monolithic and granular systems. We first critically evaluate conventional monolithic hydrogel networks, with an emphasis on specific experimental requirements. Building on this, we document the recent emergence of microgel-based 3D growth media as a promising biomaterial platform enabling interrogation of cells within porous and granular scaffolds. We also explore how jammed microgel systems have been leveraged to spatially design and manipulate cellular structures using 3D bioprinting. The advent of these techniques heralds an unprecedented ability to experimentally model complex physiological niches, with important implications for tissue bioengineering and biomedical applications.
Collapse
Affiliation(s)
- M Sreepadmanabh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Ashitha B. Arun
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| |
Collapse
|
7
|
D’Elia A, Jones OL, Canziani G, Sarkar B, Chaiken I, Rodell CB. Injectable Granular Hydrogels Enable Avidity-Controlled Biotherapeutic Delivery. ACS Biomater Sci Eng 2024; 10:1577-1588. [PMID: 38357739 PMCID: PMC10934254 DOI: 10.1021/acsbiomaterials.3c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Protein therapeutics represent a rapidly growing class of pharmaceutical agents that hold great promise for the treatment of various diseases such as cancer and autoimmune dysfunction. Conventional systemic delivery approaches, however, result in off-target drug exposure and a short therapeutic half-life, highlighting the need for more localized and controlled delivery. We have developed an affinity-based protein delivery system that uses guest-host complexation between β-cyclodextrin (CD, host) and adamantane (Ad, guest) to enable sustained localized biomolecule presentation. Hydrogels were formed by the copolymerization of methacrylated CD and methacrylated dextran. Extrusion fragmentation of bulk hydrogels yielded shear-thinning and self-healing granular hydrogels (particle diameter = 32.4 ± 16.4 μm) suitable for minimally invasive delivery and with a high host capacity for the retention of guest-modified proteins. Bovine serum albumin (BSA) was controllably conjugated to Ad via EDC chemistry without affecting the affinity of the Ad moiety for CD (KD = 12.0 ± 1.81 μM; isothermal titration calorimetry). The avidity of Ad-BSA conjugates was directly tunable through the number of guest groups attached, resulting in a fourfold increase in the complex half-life (t1/2 = 5.07 ± 1.23 h, surface plasmon resonance) that enabled a fivefold reduction in protein release at 28 days. Furthermore, we demonstrated that the conjugation of Ad to immunomodulatory cytokines (IL-4, IL-10, and IFNγ) did not detrimentally affect cytokine bioactivity and enabled their sustained release. Our strategy of avidity-controlled delivery of protein-based therapeutics is a promising approach for the sustained local presentation of protein therapeutics and can be applied to numerous biomedical applications.
Collapse
Affiliation(s)
- Arielle
M. D’Elia
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Olivia L. Jones
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Gabriela Canziani
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Biplab Sarkar
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Christopher B. Rodell
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Zhang YD, Ma AB, Sun L, Chen JD, Hong G, Wu HK. Nanoclay-Modified Hyaluronic Acid Microspheres for Bone Induction by Sustained rhBMP-2 Delivery. Macromol Biosci 2024; 24:e2300245. [PMID: 37572308 DOI: 10.1002/mabi.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Microspheres (MSs) are ideal candidates as biological scaffolds loading with growth factors or cells for bone tissue engineering to repair irregular alveolar bone defects by minimally invasive injection. However, the high initial burst release of growth factor and low cell attachment limit the application of microspheres. The modification of microspheres often needs expensive experiments facility or complex chemical reactions, which is difficult to achieve and may bring other problems. In this study, a sol-grade nanoclay, laponite XLS is used to modify the surface of MSs to enhance its affinity to either positively or negatively charged proteins and cells without changing the interior structure of the MSs. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is used as a representation of growth factor to check the osteoinduction ability of laponite XLS-modified MSs. By modification, the protein sustained release, cell loading, and osteoinduction ability of MSs are improved. Modified by 1% laponite XLS, the MSs can not only promote osteogenic differentiation of MC3T3-E1 cells by themselves, but also enhance the effect of the rhBMP-2 below the effective dose. Collectively, the study provides an easy and viable method to modify the biological behavior of microspheres for bone tissue regeneration.
Collapse
Affiliation(s)
- Yi-Ding Zhang
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Ao-Bo Ma
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Lu Sun
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Jun-Duo Chen
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
- Department of Prosthodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, 60115, Indonesia
| | - Hong-Kun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
9
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Chen D, Ma X, Zhu J, Wang Y, Guo S, Qin J. Pectin based hydrogel with covalent coupled doxorubicin and limonin loading for lung tumor therapy. Colloids Surf B Biointerfaces 2024; 234:113670. [PMID: 38042108 DOI: 10.1016/j.colsurfb.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Self-healing hydrogels have shown great application potential in drug delivery for anti-tumor therapy and tissue engineering. In this research, Doxorubicin (DOX) was coupled onto the oxidized pectin (pec-Ald) to prepare DOX grafted pec-AD and used to fabricate self-healing hydrogel for lung cancer therapy combined with novel herbal medicine extract limonin targeting lung cancer cells. The hydrogel was prepared with P(NIPAM195-co-AH54) cross-linking and the hydrazone bond cross-linked hydrogel showed good mechanical property and self-healing behavior. With pectin composition, the hydrogel was still biodegradable catalyzed by enzyme and in vivo. The hydrogel formed fast fit for injectable application and the hydrogel itself showed moderate lung cancer inhibition activity. With limonin loading, the hydrogel showed synergistic lung cancer therapy with the tumor growth greatly inhibited. The covalent coupling of DOX and loaded limonin in the hydrogel decreased in vivo toxicity and the hydrogel degraded on time. With biodegradability and improved lung cancer therapy efficiency, this DOX grafted self-healing hydrogel could find great potential application in cancer therapy in near future.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jingjing Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
11
|
Xiao X, Yang Y, Lai Y, Huang Z, Li C, Yang S, Niu C, Yang L, Feng L. Customization of an Ultrafast Thiol-Norbornene Photo-Cross-Linkable Hyaluronic Acid-Gelatin Bioink for Extrusion-Based 3D Bioprinting. Biomacromolecules 2023; 24:5414-5427. [PMID: 37883334 DOI: 10.1021/acs.biomac.3c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Light-based three-dimensional (3D) bioprinting has been widely studied in tissue engineering. Despite the fact that free-radical chain polymerization-based bioinks like hyaluronic acid methacrylate (HAMA) and gelatin methacryloyl (GelMA) have been extensively explored in 3D bioprinting, the thiol-ene hydrogel system has attracted increasing attention for its ability in building hydrogel scaffolds in an oxygen-tolerant and cell-friendly way. Herein, we report a superfast curing thiol-ene bioink composed of norbornene-modified hyaluronic acid (NorHA) and thiolated gelatin (GelSH) for 3D bioprinting. A new facile approach was first introduced in the synthesis of NorHA, which circumvented the cumbersome steps involved in previous works. Additionally, after mixing NorHA with macro-cross-linker GelSH, the customized NorHA/GelSH bioinks exhibited fascinating superiorities over the gold standard GelMA bioinks, such as an ultrafast curing rate (1-5 s), much lowered photoinitiator concentration (0.03% w/v), and flexible physical performances. Moreover, the NorHA/GelSH hydrogel greatly avoided excess ROS generation, which is important for the survival of the encapsulated cells. Last, compared with the GelMA scaffold, the 3D-printed NorHA/GelSH scaffold not only exhibited excellent cell viability but also guaranteed cell proliferation, revealing its superior bioactivity. In conclusion, the NorHA/GelSH system is a promising candidate for 3D bioprinting and tissue engineering applications.
Collapse
Affiliation(s)
- Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shaojie Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chuan Niu
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
12
|
Riley L, Wei G, Bao Y, Cheng P, Wilson KL, Liu Y, Gong Y, Segura T. Void Volume Fraction of Granular Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303466. [PMID: 37267936 PMCID: PMC10592564 DOI: 10.1002/smll.202303466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Void volume fraction (VVF) is a global measurement frequently used to characterize the void space of granular scaffolds, yet there is no gold standard by which to measure VVF in practice. To study the relationship between VVF and particles of varying size, form, and composition, a library of 3D simulated scaffolds is used. Results reveal that relative to particle count, VVF is a less predictable metric across replicate scaffolds. Simulated scaffolds are used to explores the relationship between microscope magnification and VVF, and recommendations are offered for optimizing the accuracy of approximating VVF using 2D microscope images. Lastly, VVF of hydrogel granular scaffolds is measured while varying four input parameters: image quality, magnification, analysis software, and intensity threshold. Results show that VVF is highly sensitive to these parameters. Overall, random packing produces variation in VVF among granular scaffolds comprising the same particle populations. Furthermore, while VVF is used to compare the porosity of granular materials within a study, VVF is a less reliable metric across studies that use different input parameters. VVF, a global measurement, cannot describe the dimensions of porosity within granular scaffolds, and the work supports the notion that more descriptors are necessary to sufficiently characterize void space.
Collapse
Affiliation(s)
- Lindsay Riley
- Department of Biomedical Engineering, Duke University
| | - Grace Wei
- Department of Biology, Duke University
| | - Yijun Bao
- Department of Biomedical Engineering, Duke University
| | | | | | - Yining Liu
- Department of Biomedical Engineering, Duke University
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University
- Department of Medicine, Neurology, Dermatology, Duke University
| |
Collapse
|
13
|
Franca CM, Athirasala A, Subbiah R, Tahayeri A, Selvakumar P, Mansoorifar A, Horsophonphong S, Sercia A, Nih L, Bertassoni LE. High-Throughput Bioprinting of Geometrically-Controlled Pre-Vascularized Injectable Microgels for Accelerated Tissue Regeneration. Adv Healthc Mater 2023; 12:e2202840. [PMID: 37219011 PMCID: PMC10526736 DOI: 10.1002/adhm.202202840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/01/2023] [Indexed: 05/24/2023]
Abstract
Successful integration of cell-laden tissue constructs with host vasculature depends on the presence of functional capillaries to provide oxygen and nutrients to the embedded cells. However, diffusion limitations of cell-laden biomaterials challenge regeneration of large tissue defects that require bulk-delivery of hydrogels and cells. Herein, a strategy to bioprint geometrically controlled, endothelial and stem-cell laden microgels in high-throughput is introduced, allowing these cells to form mature and functional pericyte-supported vascular capillaries in vitro, and then injecting these pre-vascularized constructs minimally invasively in-vivo. It is demonstrated that this approach offers both desired scalability for translational applications as well as unprecedented levels of control over multiple microgel parameters to design spatially-tailored microenvironments for better scaffold functionality and vasculature formation. As a proof-of-concept, the regenerative capacity of the bioprinted pre-vascularized microgels is compared with that of cell-laden monolithic hydrogels of the same cellular and matrix composition in hard-to-heal defects in vivo. The results demonstrate that the bioprinted microgels have faster and higher connective tissue formation, more vessels per area, and widespread presence of functional chimeric (human and murine) vascular capillaries across regenerated sites. The proposed strategy, therefore, addresses a significant issue in regenerative medicine, demonstrating a superior potential to facilitate translational regenerative efforts.
Collapse
Affiliation(s)
- Cristiane M Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Avathamsa Athirasala
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Ramesh Subbiah
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Anthony Tahayeri
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Prakash Selvakumar
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Amin Mansoorifar
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Sivaporn Horsophonphong
- Department of Pediatric Dentistry, School of Dentistry, Mahidol University, Bangkok, 73170, Thailand
| | - Ashley Sercia
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
| | - Lina Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA, 90095, USA
| | - Luiz E Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, 97201, USA
- Division of Biomaterial and Biosciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR, 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Portland, OR, 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
| |
Collapse
|
14
|
Yin P, Su W, Li T, Wang L, Pan J, Wu X, Shao Y, Chen H, Lin L, Yang Y, Cheng X, Li Y, Wu Y, Zeng C, Huang W. A modular hydrogel bioink containing microsphere-embedded chondrocytes for 3D-printed multiscale composite scaffolds for cartilage repair. iScience 2023; 26:107349. [PMID: 37539040 PMCID: PMC10393809 DOI: 10.1016/j.isci.2023.107349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Articular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated. The modular hydrogel bioink could be printed via the gel-in-gel 3D bioprinting strategy for fabricating the multiscale hydrogel-based scaffolds. Meanwhile, the cells cultured in the scaffolds showed good proliferation and differentiation. Furthermore, we also found that the composite hydrogel was biocompatible in vivo. These results indicated that the modular hydrogel-based bioinks containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds could provide a 3D multiscale environment for enhancing cartilage repairing, which would be encouraging considering the numerous alternative applications in articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Panjing Yin
- Department of Joint Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P.R.China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Su
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jianying Pan
- Department of Joint Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P.R.China
| | - Xiaoqi Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Shao
- Department of Joint Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P.R.China
| | - Huabin Chen
- Department of Joint Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P.R.China
| | - Lin Lin
- Department of Joint Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P.R.China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiulin Cheng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Yanbing Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chun Zeng
- Department of Joint Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, P.R.China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
15
|
Lee S, Choi G, Yang YJ, Joo KI, Cha HJ. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ. Carbohydr Polym 2023; 313:120895. [PMID: 37182936 DOI: 10.1016/j.carbpol.2023.120895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
While the natural carbohydrate alginate has enabled effective three-dimensional (3D) extrusion bioprinting, it still suffers from some issues such as low printability and resolution and limited cellular function due to ionic crosslinking dependency. Here, we prepared a harmless visible light-based photocrosslinkable alginate by chemically bonding tyrosine-like residues onto alginate chains to propose a new microgel manufacturing system for the development of 3D-printed bioinks. The photocrosslinkable tyramine-conjugated alginate microgel achieved both higher cell viability and printing resolution compared to the bulk gel form. This alginate-based jammed granular microgel bioink showed excellent 3D bioprinting ability with maintained structural stability. As a biocompatible material, the developed multiple cell-loaded photocrosslinkable alginate-based microgel bioink provided excellent proliferation and migration abilities of laden living cells, providing an effective strategy to construct implantable functional artificial organ structures for 3D bioprinting-based tissue engineering.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kye Il Joo
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
16
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
17
|
Ruan C, Kouediatouka AN, Liu Q, Dong G. A sustained release lubrication method of agarose-sodium hyaluronate hydrogels for artificial joint. J Biomater Appl 2023:8853282231186680. [PMID: 37385593 DOI: 10.1177/08853282231186680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The artificial joint prosthesis's surface is subjected to wear due to the destruction of the joint lubrication environment after surgery. In this study, an agarose-sodium hyaluronate hydrogel was used as lubricant additive in order to supply and preserve the lubricating fluid of artificial joint prostheses. A ball on disc experiment was conducted using this hydrogel to evaluate the lubrication efficiency and release rate under various frequencies. The results showed that this hydrogel could release lubricant under pressure and then absorb the released fluid after decompression. Furthermore, the agarose-sodium hyaluronate hydrogel acted as an effective transport mechanism to release sodium hyaluronate lubricant into the metal-on-polymer friction interface. Compared with pure water lubrication, the friction coefficient and wear volume were reduced by up to 62.9%, and 86.9% respectively. Moreover, the proposed lubrication method provided a long-term lubrication on artificial hip joints.
Collapse
Affiliation(s)
- Chunbiao Ruan
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ange Nsilani Kouediatouka
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Qi Liu
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Guangneng Dong
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
19
|
An C, Li H, Zhao Y, Zhang S, Zhao Y, Zhang Y, Yang J, Zhang L, Ren C, Zhang Y, Liu J, Wang H. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int J Biol Macromol 2023; 231:123307. [PMID: 36652984 DOI: 10.1016/j.ijbiomac.2023.123307] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is an important type of naturally derived carbohydrate polymer with specific polysaccharide macromolecular structures and multifaceted biological functions, including biocompatibility, low immunogenicity, biodegradability, and bioactivity. Specifically, HA hydrogels in a microscopic scale have been widely used for biomedical applications, such as drug delivery, tissue engineering, and medical cosmetology, considering their superior properties outperforming the more conventional monolithic hydrogels in network homogeneity, degradation profile, permeability, and injectability. Herein, we reviewed the recent progress in the preparation and applications of HA microgels in biomedical fields. We first summarized the fabrication of HA microgels by focusing on the different crosslinking/polymerization schemes for HA gelation and the miniaturized fabrication techniques for producing HA-based microparticles. We then highlighted the use of HA-based microgels for different applications in regenerative medicine, including cartilage repair, bioactive delivery, diagnostic imaging, modular tissue engineering. Finally, we discussed the challenges and future perspectives in bridging the translational gap in the utilization of HA-based microgels in regenerative medicine.
Collapse
Affiliation(s)
- Chuanfeng An
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518060, PR China; State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China; Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Hanting Li
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yanqiu Zhao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuan Zhao
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yujie Zhang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jianhua Yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China
| | - Yang Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Huanan Wang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
20
|
Cunha D, Souza N, Moreira M, Rodrigues N, Silva P, Franca C, Horsophonphong S, Sercia A, Subbiah R, Tahayeri A, Ferracane J, Yelick P, Saboia V, Bertassoni L. 3D-printed microgels supplemented with dentin matrix molecules as a novel biomaterial for direct pulp capping. Clin Oral Investig 2023; 27:1215-1225. [PMID: 36287273 PMCID: PMC10171721 DOI: 10.1007/s00784-022-04735-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To develop a 3D-printed, microparticulate hydrogel supplemented with dentin matrix molecules (DMM) as a novel regenerative strategy for dental pulp capping. MATERIALS AND METHODS Gelatin methacryloyl microgels (7% w/v) mixed with varying concentrations of DMM were printed using a digital light projection 3D printer and lyophilized for 2 days. The release profile of the DMM-loaded microgels was measured using a bicinchoninic acid assay. Next, dental pulp exposure defects were created in maxillary first molars of Wistar rats. The exposures were randomly capped with (1) inert material - negative control, (2) microgels, (3) microgels + DMM 500 µg/ml, (4) microgels + DMM 1000 µg/ml, (5) microgels + platelet-derived growth factor (PDGF 10 ng/ml), or (6) MTA (n = 15/group). After 4 weeks, animals were euthanized, and treated molars were harvested and then processed to evaluate hard tissue deposition, pulp tissue organization, and blood vessel density. RESULTS All the specimens from groups treated with microgel + 500 µg/ml, microgel + 1000 µg/ml, microgel + PDGF, and MTA showed the formation of organized pulp tissue, tertiary dentin, newly formed tubular and atubular dentin, and new blood vessel formation. Dentin bridge formation was greater and pulp necrosis was less in the microgel + DMM groups compared to MTA. CONCLUSIONS The 3D-printed photocurable microgels doped with DMM exhibited favorable cellular and inflammatory pulp responses, and significantly more tertiary dentin deposition. CLINICAL RELEVANCE 3D-printed microgel with DMM is a promising biomaterial for dentin and dental pulp regeneration in pulp capping procedures.
Collapse
Affiliation(s)
- Diana Cunha
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nayara Souza
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Manuela Moreira
- School of Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nara Rodrigues
- School of Dentistry, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Paulo Silva
- School of Dentistry, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Cristiane Franca
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Sivaporn Horsophonphong
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Salaya, Thailand
| | - Ashley Sercia
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ramesh Subbiah
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Jack Ferracane
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Pamela Yelick
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, MA, 02111, USA
| | - Vicente Saboia
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Luiz Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
21
|
Pectin Based Hydrogels for Drug Delivery Applications: A Mini Review. Gels 2022; 8:gels8120834. [PMID: 36547359 PMCID: PMC9778466 DOI: 10.3390/gels8120834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Over the past few decades, hydrogel systems using natural polymers have been expansively employed in drug delivery applications. Among the various reported biopolymer-based hydrogel drug delivery systems, pectin (Pec) is an exceptional natural polymer due to its unique functionalities and excellent properties such as biocompatibility, biodegradability, low-cost, and simple gelling capability, which has received considerable interest in the drug delivery fields. Since there is an increasing need for biomaterials with unique properties for drug delivery applications, in this review, hydrogels fabricated from natural pectin polymers were thoroughly investigated. Additionally, the present mini review aims to bring collectively more concise ways such as sources, extraction, properties, and various forms of Pec based hydrogel drug delivery systems and their toxicity concerns are summarized. Finally, the potential objectives and challenges based on pectin-based hydrogel drug delivery systems are also discussed.
Collapse
|
22
|
Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio 2022; 17:100453. [PMID: 36254248 PMCID: PMC9568881 DOI: 10.1016/j.mtbio.2022.100453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/30/2022] Open
Abstract
In the last decade, hyaluronic acid (HA) has attracted an ever-growing interest in the biomedical engineering field as a biocompatible, biodegradable, and chemically versatile molecule. In fact, HA is a major component of the extracellular matrix (ECM) and is essential for the maintenance of cellular homeostasis and crosstalk. Innovative experimental strategies in vitro and in vivo using three-dimensional (3D) HA systems have been increasingly reported in studies of diseases, replacement of tissue and organ damage, repairing wounds, and encapsulating stem cells for tissue regeneration. The present work aims to give an overview and comparison of recent work carried out on HA systems showing advantages, limitations, and their complementarity, for a comprehensive characterization of their use. A special attention is paid to the use of HA in three important areas: cancer, diseases of the central nervous system (CNS), and tissue regeneration, discussing the most innovative experimental strategies. Finally, perspectives within and beyond these research fields are discussed.
Collapse
Affiliation(s)
- Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Giuseppe Gigli
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Via Arnesano, 73100, Lecce, Italy
| | - Lorenzo Moroni
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| |
Collapse
|
23
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
24
|
A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy. Cell Death Dis 2022; 13:738. [PMID: 36030275 PMCID: PMC9420120 DOI: 10.1038/s41419-022-05060-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/05/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Adipose-derived stem cells (ADSCs) show potential in skin regeneration research. A previous study reported the failure of full-thickness skin self-repair in an injury area exceeding 4 cm in diameter. Stem cell therapies have shown promise in accelerating skin regeneration; however, the low survival rate of transplanted cells due to the lack of protection during and after transplantation leads to low efficacy. Hence, effective biomaterials for the delivery and retention of ADSCs are urgently needed for skin regeneration purposes. Here, we covalently crosslinked hyaluronic acid with methacrylic anhydride and then covalently crosslinked the product with dopamine to engineer dopamine-methacrylated hyaluronic acid (DA-MeHA). Our experiments suggested that the DA-MeHA hydrogel firmly adhered to the skin wound defect and promoted cell proliferation in vitro and skin defect regeneration in vivo. Mechanistic analyses revealed that the beneficial effect of the DA-MeHA hydrogel combined with ADSCs on skin defect repair may be closely related to the Notch signaling pathway. The ADSCs from the DA-MeHA hydrogel secrete high levels of growth factors and are thus highly efficacious for promoting skin wound healing. This DA-MeHA hydrogel may be used as an effective potential carrier for stem cells as it enhances the efficacy of ADSCs in skin regeneration.
Collapse
|
25
|
Zhang J, Qin Y, Ou Y, Shen Y, Tang B, Zhang X, Yu Z. Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angew Chem Int Ed Engl 2022; 61:e202206339. [DOI: 10.1002/anie.202206339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Yipeng Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
- Cambridge University-Nanjing Centre of Technology and Innovation 126 Dingshan Street Nanjing 210046 P. R. China
| | - Yangteng Ou
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xiaoyun Zhang
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| |
Collapse
|
26
|
Chang L, Chang R, Shen J, Wang Y, Song H, Kang X, Zhao Y, Guo S, Qin J. Self-healing pectin/cellulose hydrogel loaded with limonin as TMEM16A inhibitor for lung adenocarcinoma treatment. Int J Biol Macromol 2022; 219:754-766. [PMID: 35961552 DOI: 10.1016/j.ijbiomac.2022.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
Lung cancer as one of the highest incident malignant tumors did not receive satisfactory chemotherapy due to lack of specific drug targets and targeted drugs. This study screened a new effective lung tumor inhibitor limonin from herbal medicine, which inhibited proliferation and promoted apoptosis of lung adenocarcinoma cells by targeting specific high expressed TMEM16A ion channel. Moreover, a novel biodegradable self-healing hydrogel was prepared from acylhydrazide functionalized carboxymethyl cellulose (CMC-AH) and oxidized pectin (pec-CHO) to reduce the side effects of the limonin to the body. The hydrogels showed fast gelation, good biocompatibility and sustained limonin release property. The limonin-loaded hydrogel significantly inhibited the growth of lung adenocarcinoma in xenografts mice because the limonin inhibited the proliferation, migration and promoted apoptosis of LA795 cells, and eliminated the acute toxicity through sustained release from the hydrogel. Combined the antitumor performance of the limonin and sustained release of pec-CHO/CMC-AH hydrogel, this limonin/hydrogel system achieved satisfactory antitumor effect and eliminated side effects in vivo. Therefore, this system has great potential application for enhanced lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Limin Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Ruixue Chang
- China Lucky Group Corporation, Baoding City, 071002, China
| | - Jiafu Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Hongzan Song
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China
| | - Youliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
27
|
A dZnONPs Enhanced Hybrid Injectable Photocrosslinked Hydrogel for Infected Wounds Treatment. Gels 2022; 8:gels8080463. [PMID: 35892722 PMCID: PMC9329969 DOI: 10.3390/gels8080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wounds caused by related diseases such as ischemia, diabetes, and venous stasis are often hard to manage, mainly because of their susceptibility to infection and the lack of healing-promoting growth factors. Functional hydrogel is a promising material for wound treatment due to its regulable swelling rate and its ability to absorb wound exudate, which can keep the wound isolated from the outside world to prevent infection. In this study, a photocrosslinked physicochemical double-network hydrogel with injectable, antibacterial, and excellent mechanical properties was prepared. The dZnONPs enhanced hybrid injectable photocrosslinked double-network hydrogel (Ebs@dZnONPs/HGT) was synthetized starting from acylated hyaluronic acid and tannic acid via free radical reaction and hydrogen bonding, following doped with ebselen (Ebs) loaded dendritic zinc oxide nanoparticles (dZnONPs) to prepare the Ebs@dZnONPs/HGT hydrogel. The physicochemical characterization confirmed that the Ebs@dZnONPs/HGT hydrogel had excellent mechanical properties, hydrophilicity, and injectable properties, and could fit irregular wounds well. In vitro experiments revealed that the Ebs@dZnONPs/HGT hydrogel presented credible cytocompatibility and prominent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vivo experiments further demonstrated that the Ebs@dZnONPs/HGT hydrogel had excellent biosafety and could improve re-epithelialization in the wound area, thus significantly accelerating wound healing.
Collapse
|
28
|
Eivazzadeh-Keihan R, Noruzi EB, Aliabadi HAM, Sheikhaleslami S, Akbarzadeh AR, Hashemi SM, Gorab MG, Maleki A, Cohan RA, Mahdavi M, Poodat R, Keyvanlou F, Esmaeili MS. Recent advances on biomedical applications of pectin-containing biomaterials. Int J Biol Macromol 2022; 217:1-18. [PMID: 35809676 DOI: 10.1016/j.ijbiomac.2022.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022]
Abstract
There is a growing demand for biomaterials developing with novel properties for biomedical applications hence, hydrogels with 3D crosslinked polymeric structures obtained from natural polymers have been deeply inspected in this field. Pectin a unique biopolymer found in the cell walls of fruits and vegetables is extensively used in the pharmaceutical, food, and textile industries due to its ability to form a thick gel-like solution. Considering biocompatibility, biodegradability, easy gelling capability, and facile manipulation of pectin-based biomaterials; they have been thoroughly investigated for various potential biomedical applications including drug delivery, wound healing, tissue engineering, creation of implantable devices, and skin-care products.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Sahra Sheikhaleslami
- Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roksana Poodat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Faeze Keyvanlou
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
29
|
Zhang J, Qin Y, Ou Y, Shen Y, Tang B, Zhang X, Yu Z. Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yipeng Qin
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yangteng Ou
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Yu Shen
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Bao Tang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Xiaoyun Zhang
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Ziyi Yu
- University of Cambridge Department of Chemistry Lensfield road Cambridge UNITED KINGDOM
| |
Collapse
|
30
|
Schumacher L, Siemsen K, Appiah C, Rajput S, Heitmann A, Selhuber-Unkel C, Staubitz A. A Co-Polymerizable Linker for the Covalent Attachment of Fibronectin Makes pHEMA Hydrogels Cell-Adhesive. Gels 2022; 8:258. [PMID: 35621556 PMCID: PMC9140594 DOI: 10.3390/gels8050258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Hydrogels are attractive biomaterials because their chemical and mechanical properties can be tailored to mimic those of biological tissues. However, many hydrogels do not allow cell or protein attachment. Therefore, they are post-synthetically functionalized by adding functional groups for protein binding, which then allows cell adhesion in cell culture substrates. However, the degree of functionalization and covalent binding is difficult to analyze in these cases. Moreover, the density of the functional groups and the homogeneity of their distribution is hard to control. This work introduces another strategy for the biofunctionalization of hydrogels: we synthesized a polymerizable linker that serves as a direct junction between the polymeric structure and cell adhesion proteins. This maleimide-containing, polymerizable bio-linker was copolymerized with non-functionalized monomers to produce a bioactive hydrogel based on poly(2-hydroxyethyl methacrylate) (pHEMA). Therefore, the attachment site was only controlled by the polymerization process and was thus uniformly distributed throughout the hydrogel. In this way, the bio-conjugation by a protein-binding thiol-maleimide Michael-type reaction was possible in the entire hydrogel matrix. This approach enabled a straightforward and highly effective biofunctionalization of pHEMA with the adhesion protein fibronectin. The bioactivity of the materials was demonstrated by the successful adhesion of fibroblast cells.
Collapse
Affiliation(s)
- Laura Schumacher
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Katharina Siemsen
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany;
| | - Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
- Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| |
Collapse
|
31
|
Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers (Basel) 2022; 14:polym14081549. [PMID: 35458307 PMCID: PMC9031091 DOI: 10.3390/polym14081549] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. This paper reviews the structure and classification of hydrogels and summarizes the fabrication and processing methods that can prepare a suitable hydrogel carrier with specific physical and chemical properties. Furthermore, the modulation of the physical and chemical properties of hydrogels is also discussed in detail in order to obtain a better therapeutic effect to promote nerve repair. Finally, the future perspectives of hydrogel microsphere carriers for stroke rehabilitation are highlighted.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| | - Mengjie Wang
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing 100044, China;
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Yusi Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
- NUIST-UoR International Research Institute, Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| |
Collapse
|
32
|
Qazi TH, Muir VG, Burdick JA. Methods to Characterize Granular Hydrogel Rheological Properties, Porosity, and Cell Invasion. ACS Biomater Sci Eng 2022; 8:1427-1442. [PMID: 35330993 PMCID: PMC10994272 DOI: 10.1021/acsbiomaterials.1c01440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Granular hydrogels are formed through the packing of hydrogel microparticles and are emerging for various biomedical applications, including as inks for 3D printing, substrates to study cell-matrix interactions, and injectable scaffolds for tissue repair. Granular hydrogels are suited for these applications because of their unique properties including inherent porosity, shear-thinning and self-healing behavior, and tunable design. The characterization of their material properties and biological response involves technical considerations that are unique to modular systems like granular hydrogels. Here, we describe detailed methods that can be used to quantitatively characterize the rheological behavior and porosity of granular hydrogels using reagents, tools, and equipment that are typically available in biomedical engineering laboratories. In addition, we detail methods for 3D cell invasion assays using multicellular spheroids embedded within granular hydrogels and describe steps to quantify features of cell outgrowth (e.g., endothelial cell sprouting) using standard image processing software. To illustrate these methods, we provide examples where features of granular hydrogels such as the size of hydrogel microparticles and their extent of packing during granular hydrogel formation are modulated. Our intent with this resource is to increase accessibility to granular hydrogel technology and to facilitate the investigation of granular hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Victoria G Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
33
|
Facile synthesize of norbornene-hyaluronic acid to form hydrogel via thiol-norbornene reaction for biomedical application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Pan X, Yuan S, Xun X, Fan Z, Xue X, Zhang C, Wang J, Deng J. Long-Term Recruitment of Endogenous M2 Macrophages by Platelet Lysate-Rich Plasma Macroporous Hydrogel Scaffold for Articular Cartilage Defect Repair. Adv Healthc Mater 2022; 11:e2101661. [PMID: 34969180 DOI: 10.1002/adhm.202101661] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/21/2021] [Indexed: 01/08/2023]
Abstract
After cartilage damage, a large number of monocytes/macrophages infiltrate into adjacent synovium and the resident macrophages in synovial tissue transform to activated macrophages (M1), which secrete pro-inflammatory cytokines to induce sustained inflammation and chondrocyte apoptotic. However, current clinical therapies for cartilage repair can rarely achieve long-term anti-inflammatory regulation and satisfactory outcomes. Herein, a platelet lysate-rich plasma macroporous hydrogel (PLPMH) scaffold with around 100 µm pore size and 1.25 MPa Young's modulus is developed to sustainedly recruit and polarize endogenous anti-inflammatory macrophages (M2) for improving cartilage defect repair. PLPMH scaffold can steadily release sphingosine1-phosphate and proteins via gradual degradation, thus inducing M2 macrophages migration or resting (M0) macrophages migration and then polarization to M2 phenotype, and improving the secretion of anti-inflammatory cytokines. Furthermore, PLPMH scaffold exhibits negligible inflammatory responses in vivo and promotes endogenous M2 macrophage infiltration in large numbers and long-time duration to provide a local anti-inflammatory microenvironment, which even lasts for 42 d. In a rabbit model of cartilage defect, PLPMH scaffold increases the ratio of M2 macrophages and improves cartilage tissue regeneration. These studies support that PLPMH scaffold may have a great potential in articular cartilage tissue engineering by providing an anti-inflammatory and pro-regenerative microenvironment.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Shanshan Yuan
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Xiaojie Xun
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | | | - Xinghe Xue
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Changhuan Zhang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Jilong Wang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Junjie Deng
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| |
Collapse
|
35
|
Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2021; 280:121299. [PMID: 34871880 DOI: 10.1016/j.biomaterials.2021.121299] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Despite significant achievements in the understanding and treatment of cancer, it remains a major burden. Traditional therapeutic approaches based on the 'one-size-fits-all' paradigm are becoming obsolete, as demonstrated by the increasing number of patients failing to respond to treatments. In contrast, more precise approaches based on individualized genetic profiling of tumors have already demonstrated their potential. However, even more personalized treatments display shortcomings mainly associated with systemic delivery, such as low local drug efficacy or specificity. A large amount of effort is currently being invested in developing precision medicine-based strategies for improving the efficiency of cancer theranostics and modelling, which are envisioned to be more accurate, standardized, localized, and less expensive. To this end, interdisciplinary research fields, such as biomedicine, material sciences, pharmacology, chemistry, tissue engineering, and nanotechnology, must converge for boosting the precision cancer ecosystem. In this regard, precision biomaterials have emerged as a promising strategy to detect, model, and treat cancer more efficiently. These are defined as those biomaterials precisely engineered with specific theranostic functions and bioactive components, with the possibility to be tailored to the cancer patient needs, thus having a vast potential in the increasing demand for more efficient treatments. In this review, we discuss the latest advances in the field of precision biomaterials in cancer research, which are expected to revolutionize disease management, focusing on their uses for cancer modelling, detection, and therapeutic applications. We finally comment on the needed requirements to accelerate their application in the clinic to improve cancer patient prognosis.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno N Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
36
|
Zhang Q, Yang T, Zhang R, Liang X, Wang G, Tian Y, Xie L, Tian W. Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomater 2021; 136:441-455. [PMID: 34551330 DOI: 10.1016/j.actbio.2021.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Rapid angiogenesis is one of the challenges in endodontic regeneration. Recently, tailored polymeric microsphere system that loaded pro-angiogenic growth factors (GFs) is promising in facilitating vascularization in dental pulp regeneration. In addition, the synergistic effect of multiple GFs is considered more beneficial, but combination usage of them is rather complex and costly. Herein, we aimed to incorporate human platelet lysate (PL), a natural-derived pool of multiple GFs, into gelatin methacrylate (GelMA) microsphere system (GP), which was further modified by Laponite (GPL), a nanoclay with efficient drug delivery ability. These hybrid microspheres were successfully fabricated by electrostatic microdroplet technique with suitable size range (180∼380 µm). After incorporation of the PL and Laponite with GelMA, the Young's modulus of the hybrid hydrogel increased up to about 3-fold and the swelling and degradation rate decreased simultaneously. The PL-derived GFs continued to release up to 28 days from both the GP and GPL microspheres, while the latter released relatively more slowly. What's more, the released GFs could effectively induce tubule formation of human umbilical endothelial cells (HUVECs) and also promote human dental pulp stem cells (hDPSCs) migration. Additionally, the PL component in the GelMA microspheres significantly improved the proliferation, spreading, and odontogenic differentiation of the encapsulated hDPSCs. As further verified by the subcutaneous implantation results, both of the GP and GPL groups enhanced microvascular formation and pulp-like tissue regeneration. This work demonstrated that PL-incorporating GelMA microsphere system was a promising functional vehicle for promoting vascularized endodontic regeneration. STATEMENT OF SIGNIFICANCE: Polymeric microsphere system loaded with pro-angiogenic growth factors (GFs) shows great promise for regeneration of vascularized dental pulp. Herein, we prepared a functional GelMA microsphere system incorporated with human platelet lysates (PL) and nanoclay Laponite by the electrostatic microdroplet method. The results demonstrated that the GelMA/PL/Laponite microspheres significantly improved the spreading, proliferation, and odontogenic differentiation of the encapsulated hDPSCs compared with pure GelMA microspheres. Moreover, they also enhanced microvascular formation and pulp-like tissue regeneration in vivo. This hybrid microsphere system has great potential to accelerate microvessel formation in regenerated dental pulp and other tissues.
Collapse
|
37
|
Hendow EK, Day RM. A facile approach to therapeutic angiogenesis using a platelet concentrate and microsphere composite. NANO SELECT 2021. [DOI: 10.1002/nano.202100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Eseelle K. Hendow
- Centre for Precision Healthcare UCL Division of Medicine University College London London UK
| | - Richard M. Day
- Centre for Precision Healthcare UCL Division of Medicine University College London London UK
| |
Collapse
|
38
|
Wu P, Xi X, Li R, Sun G. Engineering Polysaccharides for Tissue Repair and Regeneration. Macromol Biosci 2021; 21:e2100141. [PMID: 34219388 DOI: 10.1002/mabi.202100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The success of repair or regeneration depends greatly on the architecture of 3D scaffolds that finely mimic natural extracellular matrix to support cell growth and assembly. Polysaccharides have excellent biocompatibility with intrinsic biological cues and they have been extensively investigated as scaffolds for tissue engineering and regenerative medicine (TERM). The physical and biochemical structures of natural polysaccharides, however, can barely meet all the requirements of tissue-engineered scaffolds. To take advantage of their inherent properties, many innovative approaches including chemical, physical, or joint modifications have been employed to improve their properties. Recent advancement in molecular and material building technology facilitates the fabrication of advanced 3D structures with desirable properties. This review focuses on the latest progress of polysaccharide-based scaffolds for TERM, especially those that construct advanced architectures for tissue regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xin Xi
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Ruochen Li
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guoming Sun
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.,Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| |
Collapse
|
39
|
Xu B, Cao Y, Zheng Z, Galan EA, Hu Z, Ge J, Xing X, Ma S. Injectable Mesenchymal Stem Cell-Laden Matrigel Microspheres for Endometrium Repair and Regeneration. Adv Biol (Weinh) 2021; 5:e2000202. [PMID: 34117721 DOI: 10.1002/adbi.202000202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Endometrial injury and intrauterine adhesions are increasingly reported in recent years; however, treatment options remain limited. Intravenous injection of mesenchymal stem cells (MSCs) for endometrium regeneration has limited effectiveness as the retention rate of transplanted cells is low. Hydrogel-based tissue-engineered solutions, such as MSC-seeded bioscaffolds, are reported to increase retention rates; however, a less invasive alternative is still desirable. 560-µm homogeneous Matrigel microspheres are fabricated, loading them with about 1500 MSCs and injecting them into the injured endometria of rats' uteri. This minimally invasive procedure is proved to significantly increase endometrium thickness by over onefold after 21 d (p < 0.0001) and fertility rates from 25% to 75% in impaired and repaired uteri (p < 0.001), respectively. This study provides a minimally invasive alternative to endometrium repair with the promise to establish a broad-spectrum technique for MSC transplantation.
Collapse
Affiliation(s)
- Bing Xu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.,Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Yuanxiong Cao
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.,Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Zheng Zheng
- Shenzhen Maternity and Child Healthcare Hospital, 2004 Hongli Road, Shenzhen, 518028, China
| | - Edgar A Galan
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.,Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Zhiwei Hu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.,Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Jun Ge
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China.,Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinhui Xing
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China.,Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China.,Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
40
|
Liu Y, Wong CW, Chang SW, Hsu SH. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Acta Biomater 2021; 122:211-219. [PMID: 33444794 DOI: 10.1016/j.actbio.2020.12.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Self-healing hydrogels attract broad attention as cell/drug carriers for direct injection into damaged tissues or as bioinks for three-dimensional (3D) printing of tissue-like constructs. For application in 3D printing, the self-healing hydrogels should maintain the steady rheological properties during printing process, and be further stabilized by secondary post-printing crosslinking. Here, a chitosan self-healing hydrogel is developed for injectable hydrogel and printable ink using phenol-functionalized chitosan and dibenzaldehyde-terminated telechelic poly(ethylene glycol). Phenol functionalization of chitosan can introduce unique interaction that allows the hydrogel to possess fast gelling rate, good self-healing ability, and long-range critical gel behavior, as well as secondary visible light-crosslinking capability. The hydrogel is easily pre-formed in a syringe and extruded through a 26-gauge needle to produce a continuous and stackable filament. The cell-laden hydrogel is successfully printed into a 3D construct. Moreover, the hydrogel is developed for modular 3D printing, where hydrogel modules (LEGO-like building blocks) are individually printed and assembled into an integrated construct followed by secondary visible light-crosslinking. The versatile phenol-functionalized chitosan self-healing hydrogel will open up numerous potential applications, particularly in 3D bioprinting and modular 3D bioprinting.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, R.O.C..
| |
Collapse
|
41
|
Gomez-Florit M, Pardo A, Domingues RMA, Graça AL, Babo PS, Reis RL, Gomes ME. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020; 25:E5858. [PMID: 33322369 PMCID: PMC7763437 DOI: 10.3390/molecules25245858] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
In the field of tissue engineering and regenerative medicine, hydrogels are used as biomaterials to support cell attachment and promote tissue regeneration due to their unique biomimetic characteristics. The use of natural-origin materials significantly influenced the origin and progress of the field due to their ability to mimic the native tissues' extracellular matrix and biocompatibility. However, the majority of these natural materials failed to provide satisfactory cues to guide cell differentiation toward the formation of new tissues. In addition, the integration of technological advances, such as 3D printing, microfluidics and nanotechnology, in tissue engineering has obsoleted the first generation of natural-origin hydrogels. During the last decade, a new generation of hydrogels has emerged to meet the specific tissue necessities, to be used with state-of-the-art techniques and to capitalize the intrinsic characteristics of natural-based materials. In this review, we briefly examine important hydrogel crosslinking mechanisms. Then, the latest developments in engineering natural-based hydrogels are investigated and major applications in the field of tissue engineering and regenerative medicine are highlighted. Finally, the current limitations, future challenges and opportunities in this field are discussed to encourage realistic developments for the clinical translation of tissue engineering strategies.
Collapse
Affiliation(s)
- Manuel Gomez-Florit
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Alberto Pardo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ana L. Graça
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Pedro S. Babo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|