1
|
Zhu P, Zhao Z, Gao Y. Advances in hydrogel for diagnosis and treatment for Parkinson's disease. Front Pharmacol 2025; 16:1552586. [PMID: 40012627 PMCID: PMC11860083 DOI: 10.3389/fphar.2025.1552586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Currently, few symptomatic and palliative care options are available for patients with Parkinson's disease (PD). Interdisciplinary research in materials engineering and regenerative medicine has stimulated the development of innovative therapeutic strategy for patients with PD. Hydrogels, which are versatile and accessible to modify, have garnered considerable interests. Hydrogels are a kind of three-dimensional hydrophilic network structure gels that are widely employed in biological materials. Hydrogels are conspicuous in many therapeutic applications, including neuron regeneration, neuroprotection, and diagnosis. This review focuses on the advantageous applications of hydrogel-based biomaterials in diagnosing and treating the patients with PD, including cell culture, disease modeling, carriers for cells, medications and proteins, as well as diagnostic and monitoring biosensors.
Collapse
Affiliation(s)
- Peining Zhu
- China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-Oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-Oncology, Changchun, China
| | - Zenghui Zhao
- China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-Oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-Oncology, Changchun, China
| | - Yufei Gao
- China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-Oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-Oncology, Changchun, China
| |
Collapse
|
2
|
Humpel C. Long-term live-cell imaging of GFAP+ astroglia and laminin+ vessels in organotypic mouse brain slices using microcontact printing. Front Cell Neurosci 2025; 19:1540150. [PMID: 39935610 PMCID: PMC11808140 DOI: 10.3389/fncel.2025.1540150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Organotypic brain slices are three-dimensional, 150-μm-thick sections derived from postnatal day 10 mice that can be cultured for several weeks in vitro. However, these slices pose challenges for live-cell imaging due to their thickness, particularly without access to expensive two-photon microscopy. In this study, we present an innovative method to label and visualize specific brain cell populations in living slices. Using microcontact printing, antibodies are applied directly onto the slices in a controlled 400-μm-diameter pattern. Astrocytes are labeled with glial fibrillary acidic protein (GFAP), and vessels are labeled with laminin. Subsequently, slices are incubated with secondary fluorescent antibodies (green fluorescent Alexa-488 or red fluorescent Alexa-546) and visualized using an inverted fluorescence microscope. This approach offers a cost-effective and detailed visualization technique for astroglia and vessels in living brain slices, enabling investigation to be conducted over several weeks.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Steiner K, Humpel C. Brain Slice Derived Nerve Fibers Grow along Microcontact Prints and are Stimulated by Beta-Amyloid(42). FRONT BIOSCI-LANDMRK 2024; 29:232. [PMID: 38940051 DOI: 10.31083/j.fbl2906232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Alzheimer's disease is characterized by extracellular beta-amyloid plaques, intraneuronal tau neurofibrillary tangles and excessive neurodegeneration. The mechanisms of neuron degeneration and the potential of these neurons to form new nerve fibers for compensation remain elusive. The present study aimed to evaluate the impact of beta-amyloid and tau on new formations of nerve fibers from mouse organotypic brain slices connected to collagen-based microcontact prints. METHODS Organotypic brain slices of postnatal day 8-10 wild-type mice were connected to established collagen-based microcontact prints loaded with polyornithine to enhance nerve fiber outgrowth. Human beta-amyloid(42) or P301S mutated aggregated tau was co-loaded to the prints. Nerve fibers were immunohistochemically stained with neurofilament antibodies. The physiological activity of outgrown neurites was tested with neurotracer MiniRuby, voltage-sensitive dye FluoVolt, and calcium-sensitive dye Rhod-4. RESULTS Immunohistochemical staining revealed newly formed nerve fibers extending along the prints derived from the brain slices. While collagen-only microcontact prints stimulated nerve fiber growth, those loaded with polyornithine significantly enhanced nerve fiber outgrowth. Beta-amyloid(42) significantly increased the neurofilament-positive nerve fibers, while tau had only a weak effect. MiniRuby crystals, retrogradely transported along these newly formed nerve fibers, reached the hippocampus, while FluoVolt and Rhod-4 monitored electrical activity in newly formed nerve fibers. CONCLUSIONS Our data provide evidence that intact nerve fibers can form along collagen-based microcontact prints from mouse brain slices. The Alzheimer's peptide beta-amyloid(42) stimulates this growth, hinting at a neuroprotective function when physiologically active. This "brain-on-chip" model may offer a platform for screening bioactive factors or testing drug effects on nerve fiber growth.
Collapse
Affiliation(s)
- Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Steiner K, Humpel C. Long-term organotypic brain slices cultured on collagen-based microcontact prints: A perspective for a brain-on-a-chip. J Neurosci Methods 2023; 399:109979. [PMID: 37783349 DOI: 10.1016/j.jneumeth.2023.109979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Organotypic brain slices are three-dimensional 150 µm-thick sections of a postnatal day 10 mouse and can be cultured for several weeks in vitro. In such brain slices the complex cellular connections are preserved with a high viability. These brain slices can be connected to collagen-loaded microcontact prints to develop a simple brain-on-a-chip model. Using the microcontact printing technique, many peptides or proteins can be printed onto a semipermeable membrane and linked to brain slices. On these microcontact prints, brain-derived nerve fibers grow out, or microglia can get activated and migrate out, or also new brain vessels can be formed. Such a brain-on-a-chip model may allow to develop new drugs or a diagnostic method for neurodegenerative diseases.
Collapse
Affiliation(s)
- Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
5
|
Lohani V, A.R A, Kundu S, Akhter MDQ, Bag S. Single-Cell Proteomics with Spatial Attributes: Tools and Techniques. ACS OMEGA 2023; 8:17499-17510. [PMID: 37251119 PMCID: PMC10210017 DOI: 10.1021/acsomega.3c00795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Now-a-days, the single-cell proteomics (SCP) concept is attracting interest, especially in clinical research, because it can identify the proteomic signature specific to diseased cells. This information is very essential when dealing with the progression of certain diseases, such as cancer, diabetes, Alzheimer's, etc. One of the major drawbacks of conventional destructive proteomics is that it gives an average idea about the protein expression profile in the disease condition. During the extraction of the protein from a biopsy or blood sample, proteins may come from both diseased cells and adjacent normal cells or any other cells from the disease environment. Again, SCP along with spatial attributes is utilized to learn about the heterogeneous function of a single protein. Before performing SCP, it is necessary to isolate single cells. This can be done by various techniques, including fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), laser capture microdissection (LCM), microfluidics, manual cell picking/micromanipulation, etc. Among the different approaches for proteomics, mass spectrometry-based proteomics tools are widely used for their high resolution as well as sensitivity. This Review mainly focuses on the mass spectrometry-based approaches for the study of single-cell proteomics.
Collapse
Affiliation(s)
- Vartika Lohani
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- PG Scholar, Department of Pharmacy, Banasthali
Vidyapith, Jaipur, Rajasthan 302001, India
| | - Akhiya A.R
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- PG Scholar, Department of Computational
Biology and Bioinformatics, University of
Kerala, Thiruvananthapuram, Kerala 695034, India
| | - Soumen Kundu
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - MD Quasid Akhter
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
| | - Swarnendu Bag
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
6
|
Chari D, Basit R, Wiseman J, Chowdhury F. Simulating traumatic brain injury in vitro: developing high throughput models to test biomaterial based therapies. Neural Regen Res 2023; 18:289-292. [PMID: 35900405 PMCID: PMC9396524 DOI: 10.4103/1673-5374.346465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traumatic brain injuries are serious clinical incidents associated with some of the poorest outcomes in neurological practice. Coupled with the limited regenerative capacity of the brain, this has significant implications for patients, carers, and healthcare systems, and the requirement for life-long care in some cases. Clinical treatment currently focuses on limiting the initial neural damage with long-term care/support from multidisciplinary teams. Therapies targeting neuroprotection and neural regeneration are not currently available but are the focus of intensive research. Biomaterial-based interventions are gaining popularity for a range of applications including biomolecule and drug delivery, and to function as cellular scaffolds. Experimental investigations into the development of such novel therapeutics for traumatic brain injury will be critically underpinned by the availability of appropriate high throughput, facile, ethically viable, and pathomimetic biological model systems. This represents a significant challenge for researchers given the pathological complexity of traumatic brain injury. Specifically, there is a concerted post-injury response mounted by multiple neural cell types which includes microglial activation and astroglial scarring with the expression of a range of growth inhibitory molecules and cytokines in the lesion environment. Here, we review common models used for the study of traumatic brain injury (ranging from live animal models to in vitro systems), focusing on penetrating traumatic brain injury models. We discuss their relative advantages and drawbacks for the developmental testing of biomaterial-based therapies.
Collapse
|
7
|
Leemhuis E, Favieri F, Forte G, Pazzaglia M. Integrated Neuroregenerative Techniques for Plasticity of the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10102563. [PMID: 36289825 PMCID: PMC9599452 DOI: 10.3390/biomedicines10102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
On the slow path to improving the life expectancy and quality of life of patients post spinal cord injury (SCI), recovery remains controversial. The potential role of the regenerative capacity of the nervous system has led to numerous attempts to stimulate the SCI to re-establish the interrupted sensorimotor loop and to understand its potential in the recovery process. Numerous resources are now available, from pharmacological to biomolecular approaches and from neuromodulation to sensorimotor rehabilitation interventions based on the use of various neural interfaces, exoskeletons, and virtual reality applications. The integration of existing resources seems to be a promising field of research, especially from the perspective of improving living conditions in the short to medium term. Goals such as reducing chronic forms of neuropathic pain, regaining control over certain physiological activities, and enhancing residual abilities are often more urgent than complete functional recovery. In this perspective article, we provide an overview of the latest interventions for the treatment of SCI through broad phases of injury rehabilitation. The underlying intention of this work is to introduce a spinal cord neuroplasticity-based multimodal approach to promote functional recovery and improve quality of life after SCI. Nonetheless, when used separately, biomolecular therapeutic approaches have been shown to have modest outcomes.
Collapse
Affiliation(s)
- Erik Leemhuis
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: (E.L.); (M.P.)
| | - Francesca Favieri
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppe Forte
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Sapienza Università di Roma, 00185 Roma, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: (E.L.); (M.P.)
| |
Collapse
|
8
|
Humpel C. Intranasal neprilysin rapidly eliminates amyloid-beta plaques, but causes plaque compensations: the explanation why the amyloid-beta cascade may fail? Neural Regen Res 2022; 17:1881-1884. [PMID: 35142662 PMCID: PMC8848595 DOI: 10.4103/1673-5374.335138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative brain disorders are a major burden in our society, such as Alzheimer´s disease. In order to repair or prevent such diseases, drugs are designed which enter the brain, but the blood-brain barrier limits their entry and the search for alternative pathways is important. Recently, we reported that intranasal delivery of the amyloid-beta degrading enzyme neprilysin eliminated amyloid-beta plaques in transgenic Alzheimer´s disease mice. This review describes the anatomical structure of the intranasal pathway, explains the intranasal delivery of pure neprilysin, cell-loaded neprilysin (platelets) and collagen-embedded neprilysin to destruct amyloid-beta plaques in Alzheimer´s disease in transgenic APP_SweDI mice and hypothesizes why this may cause compensation and why the amyloid-beta cascade hypothesis may fail.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Newland B, Long KR. Cryogel scaffolds: soft and easy to use tools for neural tissue culture. Neural Regen Res 2022; 17:1981-1983. [PMID: 35142684 PMCID: PMC8848619 DOI: 10.4103/1673-5374.335156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Katherine R. Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
10
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
11
|
Nguyen TT, Bao NS, Van Vo G. Advances in Hydrogel-Based Drug Delivery Systems for Parkinson's Disease. Neurochem Res 2022; 47:2129-2141. [PMID: 35596041 DOI: 10.1007/s11064-022-03617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a common central nervous system disorder (CNS) characterized by cell loss in the substantia nigra. Severe loss of dopaminergic neurons and Lewy body formation with α-synuclein inclusions are the main neuropathological features of PD. There's currently no cure for PD, but treatments are available to help relieve the symptoms and maintain quality of life. However, the variety of clinically available therapeutic molecules is mainly limited to treating symptoms rather than halting or reversing disease progression via medical interventions. As an emerging drug carrier, hydrogels loaded with therapeutic agents and cells are attracting attention as an alternative and potentially more effective approach to managing PD. The current work highlights applications of hydrogel-based biomaterials in cell culture and disease modeling as carriers for cells, medicines, and proteins as PD therapeutic models.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Si Bao
- Department of Neurosurgery, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
12
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
13
|
3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Int J Biol Macromol 2021; 192:1098-1107. [PMID: 34666132 DOI: 10.1016/j.ijbiomac.2021.10.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023]
Abstract
Plant-based hydrogels have attracted great attention in biomedical fields since they are biocompatible and based on natural, sustainable, cost-effective, and widely accessible sources. Here, we introduced new viscoelastic bio-inks composed of quince seed mucilage and cellulose nanofibrils (QSM/CNF) easily extruded into 3D lattice structures through direct ink writing in ambient conditions. The QSM/CNF inks enabled precise control on printing fidelity where CNF endowed objects with shape stability after freeze-drying and with suitable porosity, water uptake capacity, and mechanical strength. The compressive and elastic moduli of samples produced at the highest CNF content were both increased by ~100% (from 5.1 ± 0.2 kPa and 32 ± 1 kPa to 10.7 ± 0.5 and 64 ± 2 kPa, respectively). These values ideally matched those reported for soft tissues; accordingly, the cell compatibility of the printed samples was evaluated against HepG2 cells (human liver cancer). The results confirmed the 3D hydrogels as being non-cytotoxic and suitable to support attachment, survival, and proliferation of the cells. All in all, the newly developed inks allowed sustainable 3D bio-hydrogels fitting the requirements as scaffolds for soft tissue engineering.
Collapse
|
14
|
Steiner K, Humpel C. Microcontact Printing of Cholinergic Neurons in Organotypic Brain Slices. Front Neurol 2021; 12:775621. [PMID: 34867765 PMCID: PMC8636044 DOI: 10.3389/fneur.2021.775621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disorder of the brain, characterized by beta-amyloid plaques, tau pathology, and cell death of cholinergic neurons, resulting in loss of memory. The reasons for the damage of the cholinergic neurons are not clear, but the nerve growth factor (NGF) is the most potent trophic factor to support the survival of these neurons. In the present study we aim to microprint NGF onto semipermeable 0.4 μm pore membranes and couple them with organotypic brain slices of the basal nucleus of Meynert and to characterize neuronal survival and axonal growth. The brain slices were prepared from postnatal day 10 wildtype mice (C57BL6), cultured on membranes for 2-6 weeks, stained, and characterized for choline acetyltransferase (ChAT). The NGF was microcontact printed in 28 lines, each with 35 μm width, 35 μm space between them, and with a length of 8 mm. As NGF alone could not be printed on the membranes, NGF was embedded into collagen hydrogels and the brain slices were placed at the center of the microprints and the cholinergic neurons that survived. The ChAT+ processes were found to grow along with the NGF microcontact prints, but cells also migrated. Within the brain slices, some form of re-organization along the NGF microcontact prints occurred, especially the glial fibrillary acidic protein (GFAP)+ astrocytes. In conclusion, we provided a novel innovative microcontact printing technique on semipermeable membranes which can be coupled with brain slices. Collagen was used as a loading substance and allowed the microcontact printing of nearly any protein of interest.
Collapse
Affiliation(s)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Feng M, Hu S, Qin W, Tang Y, Guo R, Han L. Bioprinting of a Blue Light-Cross-Linked Biodegradable Hydrogel Encapsulating Amniotic Mesenchymal Stem Cells for Intrauterine Adhesion Prevention. ACS OMEGA 2021; 6:23067-23075. [PMID: 34549107 PMCID: PMC8444209 DOI: 10.1021/acsomega.1c02117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 05/31/2023]
Abstract
Intrauterine adhesion (IUA) is a common and prevailing complication after uterine surgery, which can lead to clinical symptoms such as a low menstrual volume, amenorrhea, periodic lower abdominal pain, infertility, and so on. Placing a three-dimensional printing hydrogel between the injured site and the adjacent tissue is considered to be a physical barrier to prevent adhesion, which can isolate the damaged area during the healing process. In this work, a tissue hydrogel with various proportions of a methacrylated gelatin (GelMA) and methacrylated collagen (ColMA) composite hydrogel loaded with amniotic mesenchymal stem cells (AMSCs) was constructed by using three-dimensional biological printing technology. Compared with the single GelMA hydrogel, the composite antiadhesion hydrogel (GelMA/ColMA) showed an appropriate swelling ratio, enhanced mechanical properties, and impressive stability. Meanwhile, the microstructure of the GelMA/ColMA composite hydrogel showed a denser and interconnected microporous structure. In addition, the cytotoxicity study indicated that the GelMA/ColMA hydrogel has a cytocompatibility nature toward AMSCs. Finally, the fabrication of stem cell encapsulation hydrogels was studied, and the cells could be released continuously for more than 7 days with the normal cell function. The results of in vivo experiments indicated that the GelMA/ColMA/hAMSC (human amnion mesenchymal stem cell) hydrogel can prevent cavity adhesion in a rat IUA model. Therefore, bioprinting a biodegradable hydrogel cross-linked by blue light has satisfactory anticavity adhesion effects with excellent physical properties and biocompatibility, which could be used as a preventive barrier for intrauterine adhesion.
Collapse
Affiliation(s)
- Miao Feng
- NHC
Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, P. R. China
- Department
of Gynecology, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| | - Shengxue Hu
- Beogene
Biotech (Guangzhou) Co., Ltd., Guangzhou 510663, P. R.
China
| | - Weibing Qin
- NHC
Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, P. R. China
- Department
of Center Laboratory, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| | - Yunge Tang
- NHC
Key Laboratory of Male Reproduction and Genetics, Guangzhou 510600, P. R. China
- Department
of Center Laboratory, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| | - Rui Guo
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Guangdong Provincial Engineering and Technological Research Center
for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Liwei Han
- Department
of Gynecology, Family Planning Research
Institute of Guangdong Province, Guangzhou 510600, P. R.
China
| |
Collapse
|
16
|
Gordián-Vélez WJ, Chouhan D, España RA, Chen HI, Burdick JA, Duda JE, Cullen DK. Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Res Bull 2021; 175:168-185. [PMID: 34332016 DOI: 10.1016/j.brainresbull.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a neurodegenerative disease affecting around 10 million people worldwide. The death of dopaminergic neurons in the substantia nigra and the axonal fibers that constitute the nigrostriatal pathway leads to a loss of dopamine in the striatum that causes the motor symptoms of this disease. Traditional treatments have focused on reducing symptoms, while therapies with human fetal or stem cell-derived neurons have centered on implanting these cells in the striatum to restore its innervation. An alternative approach is pathway reconstruction, which aims to rebuild the entire structure of neurons and axonal fibers of the nigrostriatal pathway in a way that matches its anatomy and physiology. This type of repair could be more capable of reestablishing the signaling mechanisms that ensure proper dopamine release in the striatum and regulation of other motor circuit regions in the brain. In this manuscript, we conduct a review of the literature related to pathway reconstruction as a treatment for Parkinson's disease, delve into the limitations of these studies, and propose the requisite design criteria to achieve this goal at a human scale. We then present our tissue engineering-based platform to fabricate hydrogel-encased dopaminergic axon tracts in vitro for later implantation into the brain to replace and reconstruct the pathway. These tissue-engineered nigrostriatal pathways (TE-NSPs) can be characterized and optimized for cell number and phenotype, axon growth lengths and rates, and the capacity for synaptic connectivity and dopamine release. We then show original data of advances in creating these constructs matching clinical design criteria using human iPSC-derived dopaminergic neurons and a hyaluronic acid hydrogel. We conclude with a discussion of future steps that are needed to further optimize human-scale TE-NSPs and translate them into clinical products.
Collapse
Affiliation(s)
- Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Dimple Chouhan
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Ucar B. Natural biomaterials in brain repair: A focus on collagen. Neurochem Int 2021; 146:105033. [PMID: 33785419 DOI: 10.1016/j.neuint.2021.105033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials derived from natural resources have increasingly been used for versatile applications in the central nervous system (CNS). Thanks to their biocompatibility and biodegradability, natural biomaterials offer vast possibilities for future clinical repair strategies for the CNS. These materials can be used for diverse applications such as hydrogels to fill the tissue cavities, microparticles to deliver drugs across the blood-brain barrier, and scaffolds to transplant stem cells. In this review, various uses of prominent protein and polysaccharide biomaterials, with a special focus on collagen, in repair and regenerative applications for the brain are summarized together with their individual advantages and disadvantages.
Collapse
Affiliation(s)
- Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
18
|
Li A, Tyson J, Patel S, Patel M, Katakam S, Mao X, He W. Emerging Nanotechnology for Treatment of Alzheimer's and Parkinson's Disease. Front Bioeng Biotechnol 2021; 9:672594. [PMID: 34113606 PMCID: PMC8185219 DOI: 10.3389/fbioe.2021.672594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of the two most common neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's Disease (AD), are expected to rise alongside the progressive aging of society. Both PD and AD are classified as proteinopathies with misfolded proteins α-synuclein, amyloid-β, and tau. Emerging evidence suggests that these misfolded aggregates are prion-like proteins that induce pathological cell-to-cell spreading, which is a major driver in pathogenesis. Additional factors that can further affect pathology spreading include oxidative stress, mitochondrial damage, inflammation, and cell death. Nanomaterials present advantages over traditional chemical or biological therapeutic approaches at targeting these specific mechanisms. They can have intrinsic properties that lead to a decrease in oxidative stress or an ability to bind and disaggregate fibrils. Additionally, nanomaterials enhance transportation across the blood-brain barrier, are easily functionalized, increase drug half-lives, protect cargo from immune detection, and provide a physical structure that can support cell growth. This review highlights emergent nanomaterials with these advantages that target oxidative stress, the fibrillization process, inflammation, and aid in regenerative medicine for both PD and AD.
Collapse
Affiliation(s)
- Amanda Li
- Washington University School of Medicine, St. Louis, MO, United States
| | - Joel Tyson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Shivni Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meer Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sruthi Katakam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, China
| |
Collapse
|
19
|
Humpel C. Intranasal Delivery of Collagen-Loaded Neprilysin Clears Beta-Amyloid Plaques in a Transgenic Alzheimer Mouse Model. Front Aging Neurosci 2021; 13:649646. [PMID: 33967739 PMCID: PMC8100061 DOI: 10.3389/fnagi.2021.649646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by extracellular beta-amyloid (Aβ) plaques and intraneuronal tau tangles in the brain. A therapeutic strategy aims to prevent or clear these Aβ plaques and the Aβ-degrading enzyme neprilysin is a potent drug to degrade plaques. The major challenge is to deliver bioactive neprilysin into the brain via the blood-brain barrier. The aim of the present study is to explore if intranasal delivery of neprilysin can eliminate plaques in a transgenic AD mouse model (APP_SweDI). We will test if collagen or platelets are useful vehicles to deliver neprilysin into the brain. Using organotypic brain slices from adult transgenic APP_SweDI mice, we show that neprilysin alone or loaded in collagen hydrogels or in platelets cleared cortical plaques. Intransasal delivery of neprilysin alone increased small Aβ depositions in the middle and caudal cortex in transgenic mice. Platelets loaded with neprilysin cleared plaques in the frontal cortex after intranasal application. Intranasal delivery of collagen-loaded neprilysin was very potent to clear plaques especially in the middle and caudal parts of the cortex. Our data support that the Aβ degrading enzyme neprilysin delivered to the mouse brain can clear Aβ plaques and intranasal delivery (especially with collagen as a vehicle) is a fast and easy application. However, it must be considered that intranasal neprilysin may also activate more plaque production in the transgenic mouse brain as a side effect.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emnéus J. 3D biomaterial models of human brain disease. Neurochem Int 2021; 147:105043. [PMID: 33887378 DOI: 10.1016/j.neuint.2021.105043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Inherent limitations of the traditional approaches to study brain function and disease, such as rodent models and 2D cell culture platforms, have led to the development of 3D in vitro cell culture systems. These systems, products of multidisciplinary efforts encompassing stem cell biology, materials engineering, and biofabrication, have quickly shown great potential to mimic biochemical composition, structural properties, and cellular morphology and diversity found in the native brain tissue. Crucial to these developments have been the advancements in stem cell technology and cell reprogramming protocols that allow reproducible generation of human subtype-specific neurons and glia in laboratory conditions. At the same time, biomaterials have been designed to provide cells in 3D with a microenvironment that mimics functional and structural aspects of the native extracellular matrix with increasing fidelity. In this article, we review the use of biomaterials in 3D in vitro models of neurological disorders with focus on hydrogel technology and with biochemical composition and physical properties of the in vivo environment as reference.
Collapse
Affiliation(s)
- Janko Kajtez
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden.
| | - Fredrik Nilsson
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Alessandro Fiorenzano
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Malin Parmar
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
21
|
Newland B, Newland H, Lorenzi F, Eigel D, Welzel PB, Fischer D, Wang W, Freudenberg U, Rosser A, Werner C. Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery. ACS Chem Neurosci 2021; 12:1178-1188. [PMID: 33754692 PMCID: PMC8033563 DOI: 10.1021/acschemneuro.1c00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
![]()
Glycosaminoglycan-based hydrogels
hold great potential for applications
in tissue engineering and regenerative medicine. By mimicking the
natural extracellular matrix processes of growth factor binding and
release, such hydrogels can be used as a sustained delivery device
for growth factors. Since neural networks commonly follow well-defined,
high-aspect-ratio paths through the central and peripheral nervous
system, we sought to create a fiber-like, elongated growth factor
delivery system. Cryogels, with networks formed at subzero temperatures,
are well-suited for the creation of high-aspect-ratio biomaterials,
because they have a macroporous structure making them mechanically
robust (for ease of handling) yet soft and highly compressible (for
interfacing with brain tissue). Unlike hydrogels, cryogels can be
synthesized in advance of their use, stored with ease, and rehydrated
quickly to their original shape. Herein, we use solvent-assisted microcontact
molding to form sacrificial templates, in which we produced highly
porous cryogel microscale scaffolds with a well-defined elongated
shape via the photopolymerization of poly(ethylene glycol) diacrylate
and maleimide-functionalized heparin. Dissolution of the template
yielded cryogels that could load nerve growth factor (NGF) and release
it over a period of 2 weeks, causing neurite outgrowth in PC12 cell
cultures. This microscale template-assisted synthesis technique allows
tight control over the cryogel scaffold dimensions for high reproducibility
and ease of injection through fine gauge needles.
Collapse
Affiliation(s)
- Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Heike Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Francesca Lorenzi
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Francesco Marzolo, 135131 Padova, Italy
| | - Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Petra B. Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dieter Fischer
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Wenxin Wang
- Charles Institute for Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Uwe Freudenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, U.K
- Brain Repair And Intracranial Neurotherapeutics (BRAIN) Unit, Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis
Building, Maindy Road, Cardiff CF24 4HQ3, U.K
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
22
|
Eigel D, Schuster R, Männel MJ, Thiele J, Panasiuk MJ, Andreae LC, Varricchio C, Brancale A, Welzel PB, Huttner WB, Werner C, Newland B, Long KR. Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials 2021; 271:120712. [PMID: 33618220 DOI: 10.1016/j.biomaterials.2021.120712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The human brain has unique features that are difficult to study in animal models, including the mechanisms underlying neurodevelopmental and psychiatric disorders. Despite recent advances in human primary brain tissue culture systems, the use of these models to elucidate cellular disease mechanisms remains limited. A major reason for this is the lack of tools available to precisely manipulate a specific area of the tissue in a reproducible manner. Here we report an easy-to-use tool for site-specific manipulation of human brain tissue in culture. We show that line-shaped cryogel scaffolds synthesized with precise microscale dimensions allow the targeted delivery of a reagent to a specific region of human brain tissue in culture. 3-sulfopropyl acrylate (SPA) was incorporated into the cryogel network to yield a negative surface charge for the reversible binding of molecular cargo. The fluorescent dyes BODIPY and DiI were used as model cargos to show that placement of dye loaded scaffolds onto brain tissue in culture resulted in controlled delivery without a burst release, and labelling of specific regions without tissue damage. We further show that cryogels can deliver tetrodotoxin to tissue, inhibiting neuronal function in a reversible manner. The robust nature and precise dimensions of the cryogel resulted in a user-friendly and reproducible tool to manipulate primary human tissue cultures. These easy-to-use cryogels offer an innovate approach for more complex manipulations of ex-vivo tissue.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Romy Schuster
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Martyna J Panasiuk
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Laura C Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Petra B Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
23
|
Moelgg K, Jummun F, Humpel C. Spreading of Beta-Amyloid in Organotypic Mouse Brain Slices and Microglial Elimination and Effects on Cholinergic Neurons. Biomolecules 2021; 11:434. [PMID: 33804246 PMCID: PMC7999593 DOI: 10.3390/biom11030434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 01/29/2023] Open
Abstract
The extracellular deposition of β-amyloid (Aβ) is one of the major characteristics in Alzheimer´s disease (AD). The "spreading hypothesis" suggests that a pathological protein (similar to prions) spreads over the entire brain. The aim of the present study was to use organotypic brain slices of postnatal day 8-10 mice. Using collagen hydrogels, we applied different Aβ peptides onto brain slices and analyzed spreading as well as glial reactions after eight weeks of incubation. Our data showed that from all tested Aβ peptides, human Aβ42 had the most potent activity to spread over into adjacent "target" areas. This effect was potentiated when brain slices from transgenic AD mice (APP_SweDI) were cultured. When different brain areas were connected to the "target slice" the spreading activity was more intense, originating from ventral striatum and brain stem. Reactive glial-fibrillary acidic protein (GFAP) astrogliosis increased over time, but Aβ depositions co-localized only with Iba1+ microglia but not with astrocytes. Application of human Aβ42 did not cause a degeneration of cholinergic neurons. We concluded that human Aβ42 spreads over into other "target areas", causing activation of glial cells. Most of the spread Aβ42 was taken up by microglia, and thus toxic free Aβ could not damage cholinergic neurons.
Collapse
Affiliation(s)
| | | | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Department Psychiatry I, Medical University of Innsbruck, Anichstr 35, A-6020 Innsbruck, Austria; (K.M.); (F.J.)
| |
Collapse
|