1
|
Yang JP, Kulkarni NN, Yamaji M, Shiraishi T, Pham T, Do H, Aiello N, Shaw M, Nakamura T, Abiru A, Gavva NR, Horman SR. Unveiling immune cell response disparities in human primary cancer-associated fibroblasts between two- and three-dimensional cultures. PLoS One 2024; 19:e0314227. [PMID: 39700125 DOI: 10.1371/journal.pone.0314227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play pivotal roles in solid tumor initiation, growth, and immune evasion. However, the optimal biomimetic modeling conditions remain elusive. In this study, we investigated the effects of 2D and 3D culturing conditions on human primary CAFs integrated into a modular tumor microenvironment (TME). Using single-nucleus RNA sequencing (snRNAseq) and Proteomics' Proximity Extension Assays, we characterized CAF transcriptomic profiles and cytokine levels. Remarkably, when cultured in 2D, CAFs exhibited a myofibroblast (myCAF) subtype, whereas in 3D tumor spheroid cultures, CAFs displayed a more inflammatory (iCAF) pathological state. By integrating single-cell gene expression data with functional interrogations of critical TME-related processes [natural killer (NK)-mediated tumor killing, monocyte migration, and macrophage differentiation], we were able to reconcile form with function. In 3D TME spheroid models, CAFs enhance cancer cell growth and immunologically shield cells from NK cell-mediated cytotoxicity, in striking contrast with their 2D TME counterparts. Notably, 3D CAF-secreted proteins manifest a more immunosuppressive profile by enhancing monocyte transendothelial migration and differentiation into M2-like tumor-associated macrophages (TAMs). Our findings reveal a more immunosuppressive and clinically relevant desmoplastic TME model that can be employed in industrial drug discovery campaigns to expand the cellular target range of chemotherapeutics.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Nikhil Nitin Kulkarni
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Masashi Yamaji
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | | | - Thang Pham
- BioTuring, San Diego, California, United States of America
| | - Han Do
- BioTuring, San Diego, California, United States of America
| | - Nicole Aiello
- Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Shaw
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | | | - Akiko Abiru
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Narender R Gavva
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Shane R Horman
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| |
Collapse
|
2
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Ahmadipour M, Prado JC, Hakak-Zargar B, Mahmood MQ, Rogers IM. Using ex vivo bioengineered lungs to model pathologies and screening therapeutics: A proof-of-concept study. Biotechnol Bioeng 2024; 121:3020-3033. [PMID: 38837764 DOI: 10.1002/bit.28754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/19/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Respiratory diseases, claim over eight million lives annually. However, the transition from preclinical to clinical phases in research studies is often hindered, partly due to inadequate representation of preclinical models in clinical trials. To address this, we conducted a proof-of-concept study using an ex vivo model to identify lung pathologies and to screen therapeutics in a humanized rodent model. We extracted and decellularized mouse heart-lung tissues using a detergent-based technique. The lungs were then seeded and cultured with human cell lines (BEAS-2B, A549, and Calu3) for 6-10 days, representing healthy lungs, cancerous states, and congenital pathologies, respectively. By manipulating cultural conditions and leveraging the unique characteristics of the cell lines, we successfully modeled various pathologies, including advanced-stage solid tumors and the primary phase of SARS-CoV-2 infection. Validation was conducted through histology, immunofluorescence staining, and pathology analysis. Additionally, our study involved pathological screening of the efficacy and impact of key anti-neoplastic therapeutics (Cisplatin and Wogonin) in cancer models. The results highlight the versatility and strength of the ex vivo model in representing crucial lung pathologies and screening therapeutics during the preclinical phase. This approach holds promise for bridging the gap between preclinical and clinical research, aiding in the development of effective treatments for respiratory diseases, including lung cancer.
Collapse
Affiliation(s)
- Mohammadali Ahmadipour
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jorge Castilo Prado
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benyamin Hakak-Zargar
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Malik Quasir Mahmood
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Cui X, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Li M, Zhang H, Chao B, Wang Z, Wu M. Advanced tumor organoid bioprinting strategy for oncology research. Mater Today Bio 2024; 28:101198. [PMID: 39205873 PMCID: PMC11357813 DOI: 10.1016/j.mtbio.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Bioprinting is a groundbreaking technology that enables precise distribution of cell-containing bioinks to construct organoid models that accurately reflect the characteristics of tumors in vivo. By incorporating different types of tumor cells into the bioink, the heterogeneity of tumors can be replicated, enabling studies to simulate real-life situations closely. Precise reproduction of the arrangement and interactions of tumor cells using bioprinting methods provides a more realistic representation of the tumor microenvironment. By mimicking the complexity of the tumor microenvironment, the growth patterns and diffusion of tumors can be demonstrated. This approach can also be used to evaluate the response of tumors to drugs, including drug permeability and cytotoxicity, and other characteristics. Therefore, organoid models can provide a more accurate oncology research and treatment simulation platform. This review summarizes the latest advancements in bioprinting to construct tumor organoid models. First, we describe the bioink used for tumor organoid model construction, followed by an introduction to various bioprinting methods for tumor model formation. Subsequently, we provide an overview of existing bioprinted tumor organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| |
Collapse
|
5
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
6
|
Hao J, Yu X, Tang K, Ma X, Lu H, Wu C. 3D modular bioceramic scaffolds for the investigation of the interaction between osteosarcoma cells and MSCs. Acta Biomater 2024; 184:431-443. [PMID: 38897335 DOI: 10.1016/j.actbio.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Recent advances in bone tissue engineering have shown promise for bone repair post osteosarcoma excision. However, conflicting research on mesenchymal stem cells (MSCs) has raised concerns about their potential to either promote or inhibit tumor cell proliferation. It is necessary to thoroughly understand the interactions between MSCs and tumor cells. Most previous studies only focused on the interactions between cells within the tumor tissues. It has been challenging to develop an in vitro model of osteosarcoma excision sites replicating the complexity of the bone microenvironment and cell distribution. In this work, we designed and fabricated modular bioceramic scaffolds to assemble into a co-culture model. Because of the bone-like composition and mechanical property, tricalcium phosphate bioceramic could mimic the bone microenvironment and recapitulate the cell-extracellular matrix interaction. Moreover, the properties for easy assembly enabled the modular units to mimic the spatial distribution of cells in the osteosarcoma excision site. Under this co-culture model, MSCs showed a noticeable tumor-stimulating effect with a potential risk of tumor recurrence. In addition, tumor cells also could inhibit the osteogenic ability of MSCs. To undermine the stimulating effects of MSCs on tumor cells, we present the methods of pre-differentiated MSCs, which had lower expression of IL-8 and higher expression of osteogenic proteins. Both in vitro and in vivo studies confirm that pre-differentiated MSCs could maintain high osteogenic capacity without promoting tumor growth, offering a promising approach for MSCs' application in bone regeneration. Overall, 3D modular scaffolds provide a valuable tool for constructing hard tissue in vitro models. STATEMENT OF SIGNIFICANCE: Bone tissue engineering using mesenchymal stem cells (MSCs) and biomaterials has shown promise for bone repair post osteosarcoma excision. However, conflicting researches on MSCs have raised concerns about their potential to either promote or inhibit tumor cell proliferation. It remains challenges to develop in vitro models to investigate cell interactions, especially of osteosarcoma with high hardness and special composition of bone tissue. In this work, modular bioceramic scaffolds were fabricated and assembled to co-culture models. The interactions between MSCs and MG-63 were manifested as tumor-stimulating and osteogenesis-inhibiting, which means potential risk of tumor recurrence. To undermine the stimulating effect, pre-differentiation method was proposed to maintain high osteogenic capacity without tumor-stimulating, offering a promising approach for MSCs' application in bone regeneration.
Collapse
Affiliation(s)
- Jianxin Hao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xiaopeng Yu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Kai Tang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xueru Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Hongxu Lu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Chengtie Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China.
| |
Collapse
|
7
|
Katti PD, Jasuja H. Current Advances in the Use of Tissue Engineering for Cancer Metastasis Therapeutics. Polymers (Basel) 2024; 16:617. [PMID: 38475301 PMCID: PMC10934711 DOI: 10.3390/polym16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion. The spread of cancer to distant organs through metastasis is the leading cause of death due to cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies in developing tissue-engineered metastasis structures. This article reports recent developments in in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim to reduce the cancer burden.
Collapse
|
8
|
Sang S, Wang X, Duan J, Cao Y, Shen Z, Sun L, Duan Q, Liu Z. 3D printing to construct in vitro multicellular models of melanoma. Biotechnol Bioeng 2023; 120:2853-2864. [PMID: 37227037 DOI: 10.1002/bit.28429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Currently, there is a lack of suitable models for in-vitro studies of malignant melanoma and traditional single cell culture models no longer reproduce tumor structure and physiological complexity well. The tumor microenvironment is closely related to carcinogenesis and it is particularly important to understand how tumor cells interact and communicate with surrounding nonmalignant cells. Three-dimensional (3D) in vitro multicellular culture models can better simulate the tumor microenvironment due to their excellent physicochemical properties. In this study, 3D composite hydrogel scaffolds were prepared from gelatin methacrylate and polyethylene glycol diacrylate hydrogels by 3D printing and light curing techniques, and 3D multicellular in vitro tumor culture models were established by inoculating human melanoma cells (A375) and human fibroblasts cells on them. The cell proliferation, migration, invasion, and drug resistance of the 3D multicellular in vitro model was evaluated. Compared with the single-cell model, the cells in the multicellular model had higher proliferation activity and migration ability, and were easy to form dense structures. Several tumor cell markers, such as matrix metalloproteinase-9 (MMP-9), MMP-2, and vascular endothelial growth factor, were highly expressed in the multicellular culture model, which were more favorable for tumor development. In addition, higher cell survival rate was observed after exposure to luteolin. The anticancer drug resistance result of the malignant melanoma cells in the 3D bioprinted construct demonstrated physiological properties, suggesting the promising potential of current 3D printed tumor model in the development of personalized therapy, especially for discovery of more conducive targeted drugs.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Xiaoyuan Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Jiahui Duan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Qianqian Duan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
9
|
Cao R, Li NT, Latour S, Cadavid JL, Tan CM, Forman A, Jackson HW, McGuigan AP. An Automation Workflow for High-Throughput Manufacturing and Analysis of Scaffold-Supported 3D Tissue Arrays. Adv Healthc Mater 2023; 12:e2202422. [PMID: 37086259 PMCID: PMC11468893 DOI: 10.1002/adhm.202202422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Patient-derived organoids have emerged as a useful tool to model tumour heterogeneity. Scaling these complex culture models while enabling stratified analysis of different cellular sub-populations, however, remains a challenge. One strategy to enable higher throughput organoid cultures is the scaffold-supported platform for organoid-based tissues (SPOT). SPOT allows the generation of flat, thin, and dimensionally-defined microtissues in both 96- and 384-well plate footprints that are compatible with longitudinal image-based readouts. SPOT is currently manufactured manually, however, limiting scalability. In this study, an automation approach to engineer tumour-mimetic 3D microtissues in SPOT using a liquid handler is optimized and comparable within- and between-sample variation to standard manual manufacturing is shown. Further, a liquid handler-supported cell extraction protocol to support single-cell-based end-point analysis using high-throughput flow cytometry and multiplexed cytometry by time of flight is developed. As a proof-of-value demonstration, 3D complex tissues containing different proportions of tumour and stromal cells are generated to probe the reciprocal impact of co-culture. It is also demonstrated that primary patient-derived organoids can be incorporated into the pipeline to capture patient-level tumour heterogeneity. It is envisioned that this automated 96/384-SPOT workflow will provide opportunities for future applications in high-throughput screening for novel personalized therapeutic targets.
Collapse
Affiliation(s)
- Ruonan Cao
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Simon Latour
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
| | - Jose L. Cadavid
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Cassidy M. Tan
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| | - Ari Forman
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
- Department of Molecular GeneticsUniversity of Toronto1 King's College CirTorontoONM5S 1A8Canada
| | - Hartland W. Jackson
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital600 University AveTorontoONM5G 1X5Canada
- Department of Molecular GeneticsUniversity of Toronto1 King's College CirTorontoONM5S 1A8Canada
- Ontario Institute of Cancer Research661 University AveTorontoONM5G 0A3Canada
| | - Alison P. McGuigan
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5R 3S5Canada
| |
Collapse
|
10
|
Privar Y, Boroda A, Pestov A, Kazantsev D, Malyshev D, Skatova A, Bratskaya S. Chitosan Cryogels Cross-Linked with 1,1,3-Triglycidyloxypropane: Mechanical Properties and Cytotoxicity for Cancer Cell 3D Cultures. Biomimetics (Basel) 2023; 8:228. [PMID: 37366823 DOI: 10.3390/biomimetics8020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Here, we have presented a new method of 1,1,3-triglycidyloxypropane (TGP) synthesis and investigated how cross-linker branching affects mechanical properties and cytotoxicity of chitosan scaffolds in comparison with those cross-linked using diglycidyl ethers of 1,4-butandiol (BDDGE) and poly(ethylene glycol) (PEGDGE). We have demonstrated that TGP is an efficient cross-linker for chitosan at a subzero temperature at TGP:chitosan molar ratios from 1:1 to 1:20. Although the elasticity of chitosan scaffolds increased in the following order of the cross-linkers PEGDGE > TGP > BDDGE, TGP provided cryogels with the highest compressive strength. Chitosan-TGP cryogels have shown low cytotoxicity for colorectal cancer HCT 116 cell line and supported the formation of 3D multicellular structures of the spherical shape and size up to 200 µm, while in more brittle chitosan-BDDGE cryogel this cell culture formed epithelia-like sheets. Hence, the selection of the cross-linker type and concentration for chitosan scaffold fabrication can be used to mimic the solid tumor microenvironment of certain human tissue, control matrix-driven changes in the morphology of cancer cell aggregates, and facilitate long-term experiments with 3D tumor cell cultures.
Collapse
Affiliation(s)
- Yuliya Privar
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prospekt 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Andrey Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskogo Street, 690041 Vladivostok, Russia
| | - Alexandr Pestov
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, 22, S. Kovalevskoy Street, 620990 Ekaterinburg, Russia
| | - Daniil Kazantsev
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, 22, S. Kovalevskoy Street, 620990 Ekaterinburg, Russia
| | - Daniil Malyshev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskogo Street, 690041 Vladivostok, Russia
| | - Anna Skatova
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prospekt 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Svetlana Bratskaya
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prospekt 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| |
Collapse
|
11
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
12
|
Breast cancer cells interact with tumor-derived extracellular matrix in a molecular subtype-specific manner. BIOMATERIALS ADVANCES 2023; 146:213301. [PMID: 36709629 DOI: 10.1016/j.bioadv.2023.213301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Mimicking the native microenvironment is vital for tumor engineering. Breast cancer is a highly heterogeneous disease with various molecular subtypes exhibiting distinct biological behaviors and treatment responsiveness. The heterogeneity of extracellular matrix (ECM) of breast cancer has remained largely unexplored and underestimated. The present study addressed this issue by comparing the composition, architecture, and functional roles of ECMs derived from breast cancers of two molecular subtypes, which are luminal-A breast cancer (less aggressive, ERα+)-derived ECM (LA-ECM) and triple-negative breast cancer (high aggressive, ERα-)-derived ECM (TN-ECM). Compared with normal breast tissue-derived ECMs (B-ECM), tumor-derived ECMs showed higher contents of pro-collagen I, fibronectin, and laminin, in addition with a significantly altered architecture. Transcriptome sequencing revealed that, compared with those cultured with B-ECM, MCF7 cells (an estrogen receptor (ER)α + luminal-A breast cancer cell line) cultured with LA-ECM and TN-ECM showed approximately 9.65 % and 9.04 % changes in the expression of all detected genes, respectively. The TN-ECM induced proliferation, promoted epithelial-to-mesenchymal transition, downregulated ERα expression, and reduced endocrine treatment sensitivity of MCF7. Above results have elucidated the role of phenotype-specific tumor ECM in cell phenotype maintenance, treatment sensitivity, and cancer progression, which highlighted the importance of ECM heterogeneity as well as its role in tumor microenvironment engineering and drug screening.
Collapse
|
13
|
Dozzo A, Chullipalliyalil K, McAuliffe M, O’Driscoll CM, Ryan KB. Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone. Pharmaceutics 2023; 15:pharmaceutics15010242. [PMID: 36678871 PMCID: PMC9864166 DOI: 10.3390/pharmaceutics15010242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
(1) Background: Three-dimensional (3D) in vitro, biorelevant culture models that recapitulate cancer progression can help elucidate physio-pathological disease cues and enhance the screening of more effective therapies. Insufficient research has been conducted to generate in vitro 3D models to replicate the spread of prostate cancer to the bone, a key metastatic site of the disease, and to understand the interplay between the key cell players. In this study, we aim to investigate PLGA and nano-hydroxyapatite (nHA)/PLGA mixed scaffolds as a predictive preclinical tool to study metastatic prostate cancer (mPC) in the bone and reduce the gap that exists with traditional 2D cultures. (2) Methods: nHA/PLGA mixed scaffolds were produced by electrospraying, compacting, and foaming PLGA polymer microparticles, +/- nano-hydroxyapatite (nHA), and a salt porogen to produce 3D, porous scaffolds. Physicochemical scaffold characterisation together with an evaluation of osteoblastic (hFOB 1.19) and mPC (PC-3) cell behaviour (RT-qPCR, viability, and differentiation) in mono- and co-culture, was undertaken. (3) Results: The results show that the addition of nHA, particularly at the higher-level impacted scaffolds in terms of mechanical and degradation behaviour. The nHA 4 mg resulted in weaker scaffolds, but cell viability increased. Qualitatively, fluorescent imaging of cultures showed an increase in PC-3 cells compared to osteoblasts despite lower initial PC-3 seeding densities. Osteoblast monocultures, in general, caused an upregulation (or at least equivalent to controls) in gene production, which was highest in plain scaffolds and decreased with increases in nHA. Additionally, the genes were downregulated in PC3 and co-cultures. Further, drug toxicity tests demonstrated a significant effect in 2D and 3D co-cultures. (4) Conclusions: The results demonstrate that culture conditions and environment (2D versus 3D, monoculture versus co-culture) and scaffold composition all impact cell behaviour and model development.
Collapse
Affiliation(s)
- Annachiara Dozzo
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | | | - Michael McAuliffe
- Centre for Advanced Photonics & Process Analysis, Munster Technological University Cork, T12 P928 Cork, Ireland
| | - Caitriona M. O’Driscoll
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Katie B. Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| |
Collapse
|
14
|
Murphy C, Gallagher C, Piskareva O. Evaluation of miRNA Expression in 3D In Vitro Scaffold-Based Cancer Models. Methods Mol Biol 2023; 2595:211-224. [PMID: 36441465 DOI: 10.1007/978-1-0716-2823-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accumulating experimental evidence suggests that 3D in vitro cancer models strengthen our understanding of vital processes in the tumor microenvironment (TME) and accelerate the drug discovery pipeline. Previous studies examining the effects of specific miRNAs on cancer cells in vitro have involved ectopic expression of miRNA mimics in 2D in vitro culture. Assessment of cell viability and gene expression ensures that upregulation of the chosen miRNA and repression of its target genes have been achieved. However, this 2D culture is overly simplified and lacks the complex cell to extracellular matrix (ECM) interactions observed in the native TME, yielding results often not reproduced when progressed to in vivo studies. Hence, this chapter describes a novel method of overexpressing the miRNA mimic in cells cultured on 3D collagen-based scaffolds adapted from tissue engineering techniques. Cell growth on scaffolds is sequentially monitored via a DNA quantification assay, and overexpression of the miRNA mimic and repression of its target gene is assessed via reverse transcription quantitative PCR (RT-qPCR).
Collapse
Affiliation(s)
- Catherine Murphy
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ciara Gallagher
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland. .,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.
| |
Collapse
|
15
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. NANOMATERIALS 2022; 12:nano12132316. [PMID: 35808152 PMCID: PMC9268743 DOI: 10.3390/nano12132316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Nanomaterials (NMs) solve specific problems with remarkable results in several industrial and scientific areas. Among NMs, silver nanoparticles (AgNPs) have been extensively employed as drug carriers, medical diagnostics, energy harvesting devices, sensors, lubricants, and bioremediation. Notably, they have shown excellent antimicrobial, anticancer, and antiviral properties in the biomedical field. The literature analysis shows a selective cytotoxic effect on cancer cells compared to healthy cells, making its potential application in cancer treatment evident, increasing the need to study the potential risk of their use to environmental and human health. A large battery of toxicity models, both in vitro and in vivo, have been established to predict the harmful effects of incorporating AgNPs in these numerous areas or those produced due to involuntary exposure. However, these models often report contradictory results due to their lack of standardization, generating controversy and slowing the advances in nanotoxicology research, fundamentally by generalizing the biological response produced by the AgNP formulations. This review summarizes the last ten years’ reports concerning AgNPs’ toxicity in cellular respiratory system models (e.g., mono-culture models, co-cultures, 3D cultures, ex vivo and in vivo). In turn, more complex cellular models represent in a better way the physical and chemical barriers of the body; however, results should be used carefully so as not to be misleading. The main objective of this work is to highlight current models with the highest physiological relevance, identifying the opportunity areas of lung nanotoxicology and contributing to the establishment and strengthening of specific regulations regarding health and the environment.
Collapse
|
17
|
Dankó T, Petővári G, Raffay R, Sztankovics D, Moldvai D, Vetlényi E, Krencz I, Rókusz A, Sipos K, Visnovitz T, Pápay J, Sebestyén A. Characterisation of 3D Bioprinted Human Breast Cancer Model for In Vitro Drug and Metabolic Targeting. Int J Mol Sci 2022; 23:ijms23137444. [PMID: 35806452 PMCID: PMC9267600 DOI: 10.3390/ijms23137444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Monolayer cultures, the less standard three-dimensional (3D) culturing systems, and xenografts are the main tools used in current basic and drug development studies of cancer research. The aim of biofabrication is to design and construct a more representative in vivo 3D environment, replacing two-dimensional (2D) cell cultures. Here, we aim to provide a complex comparative analysis of 2D and 3D spheroid culturing, and 3D bioprinted and xenografted breast cancer models. We established a protocol to produce alginate-based hydrogel bioink for 3D bioprinting and the long-term culturing of tumour cells in vitro. Cell proliferation and tumourigenicity were assessed with various tests. Additionally, the results of rapamycin, doxycycline and doxorubicin monotreatments and combinations were also compared. The sensitivity and protein expression profile of 3D bioprinted tissue-mimetic scaffolds showed the highest similarity to the less drug-sensitive xenograft models. Several metabolic protein expressions were examined, and the in situ tissue heterogeneity representing the characteristics of human breast cancers was also verified in 3D bioprinted and cultured tissue-mimetic structures. Our results provide additional steps in the direction of representing in vivo 3D situations in in vitro studies. Future use of these models could help to reduce the number of animal experiments and increase the success rate of clinical phase trials.
Collapse
Affiliation(s)
- Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Regina Raffay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Krisztina Sipos
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
- Correspondence: or
| |
Collapse
|
18
|
Zhang K, Du Z, Yuan T, Huang J, Zhao X, Mi S. Long-term cultured microvascular networks on chip for tumor vascularization research and drug testing. BIOMICROFLUIDICS 2022; 16:044101. [PMID: 35845724 PMCID: PMC9282889 DOI: 10.1063/5.0090027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The vascular structure of the tumor microenvironment (TME) plays an essential role in the process of metastasis. In vitro microvascular structures that can be maintained for a long time will greatly promote metastasis research. In this study, we constructed a mimicking breast cancer invasion model based on a microfluidic chip platform, and the maintenance time of the self-assembled microvascular networks significantly improved by culturing with fibroblasts (up to 13 days). Using this model, we quantified the invasion ability of breast cancer cells and angiogenesis sprouts caused by cancer cells, and the intravasation behavior of cancer cells was also observed in sprouts. We found that cancer cells could significantly cause angiogenesis by promoting sprouting behaviors of the self-assembled human umbilical vein endothelial cells, which, in turn, promoted the invasion behavior of cancer cells. The drug test results showed that the drug resistance of the widely used anti-cancer drugs 5-Fluorouracil (5-FU) and Doxorubicin (DOX) in the 3D model was higher than that in the 2D model. Meanwhile, we also proved that 5-FU and DOX had the effect of destroying tumor blood vessels. The anti-angiogenic drug Apatinib (VEGFR inhibitor) enhanced the drug effect of DOX on MDA-MB-231 cells, further proving the promoting effect of angiogenesis on the invasion ability of cancer cells. These results indicate that our model is of great value in reconstructing TME and drug testing in vitro.
Collapse
Affiliation(s)
- Ke Zhang
- Open FIESTA Center, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhichang Du
- College of Mechanical and Energy Engineering, Jimei University, Xiamen, China
| | - Tianying Yuan
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoyu Zhao
- Open FIESTA Center, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Shengli Mi
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ 2022; 10:e13338. [PMID: 35582620 PMCID: PMC9107788 DOI: 10.7717/peerj.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
3D cell cultures are becoming the new standard for cell-based in vitro research, due to their higher transferrability toward in vivo biology. The lack of established techniques for the non-destructive quantification of relevant variables, however, constitutes a major barrier to the adoption of these technologies, as it increases the resources needed for the experimentation and reduces its accuracy. In this review, we aim at addressing this limitation by providing an overview of different non-destructive approaches for the evaluation of biological features commonly quantified in a number of studies and applications. In this regard, we will cover cell viability, gene expression, population distribution, cell morphology and interactions between the cells and the environment. This analysis is expected to promote the use of the showcased technologies, together with the further development of these and other monitoring methods for 3D cell cultures. Overall, an extensive technology shift is required, in order for monolayer cultures to be superseded, but the potential benefit derived from an increased accuracy of in vitro studies, justifies the effort and the investment.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Contessi Negrini N, Ricci C, Bongiorni F, Trombi L, D’Alessandro D, Danti S, Farè S. An Osteosarcoma Model by 3D Printed Polyurethane Scaffold and In Vitro Generated Bone Extracellular Matrix. Cancers (Basel) 2022; 14:cancers14082003. [PMID: 35454909 PMCID: PMC9025808 DOI: 10.3390/cancers14082003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Development of new therapeutics to treat osteosarcoma is fundamental to decreasing its current health impact. 3D in vitro models are gaining tremendous momentum as, compared to traditional 2D in vitro models and in vivo models, can speed up new treatment discovery and provide clarification of the pathology development, by ultimately offering a reproducible and biomimetic tool. However, engineering a 3D osteosarcoma in vitro model is challenging, since the reliability of the models strictly depends on their ability to correctly mimic the physical, mechanical, and biological properties of the pathological tissue to be replicated. Here, we designed 3D printed polyurethane scaffolds enriched by in vitro pre-generated bone extracellular matrix, synthesized by osteo-differentiated human mesenchymal stromal cells, to replicate in vitro an osteosarcoma model, which can be potentially used to study tumor progression and to assess new treatments. Abstract Osteosarcoma is a primary bone tumor characterized by a dismal prognosis, especially in the case of recurrent disease or metastases. Therefore, tools to understand in-depth osteosarcoma progression and ultimately develop new therapeutics are urgently required. 3D in vitro models can provide an optimal option, as they are highly reproducible, yet sufficiently complex, thus reliable alternatives to 2D in vitro and in vivo models. Here, we describe 3D in vitro osteosarcoma models prepared by printing polyurethane (PU) by fused deposition modeling, further enriched with human mesenchymal stromal cell (hMSC)-secreted biomolecules. We printed scaffolds with different morphologies by changing their design (i.e., the distance between printed filaments and printed patterns) to obtain different pore geometry, size, and distribution. The printed PU scaffolds were stable during in vitro cultures, showed adequate porosity (55–67%) and tunable mechanical properties (Young’s modulus ranging in 0.5–4.0 MPa), and resulted in cytocompatible. We developed the in vitro model by seeding SAOS-2 cells on the optimal PU scaffold (i.e., 0.7 mm inter-filament distance, 60° pattern), by testing different pre-conditioning factors: none, undifferentiated hMSC-secreted, and osteo-differentiated hMSC-secreted extracellular matrix (ECM), which were obtained by cell lysis before SAOS-2 seeding. Scaffolds pre-cultured with osteo-differentiated hMSCs, subsequently lysed, and seeded with SAOS-2 cells showed optimal colonization, thus disclosing a suitable biomimetic microenvironment for osteosarcoma cells, which can be useful both in tumor biology study and, possibly, treatment.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20131 Milan, Italy; (F.B.); (S.F.)
- Correspondence: (N.C.N.); (S.D.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Federica Bongiorni
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20131 Milan, Italy; (F.B.); (S.F.)
| | - Luisa Trombi
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56126 Pisa, Italy; (L.T.); (D.D.)
| | - Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56126 Pisa, Italy; (L.T.); (D.D.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Correspondence: (N.C.N.); (S.D.)
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20131 Milan, Italy; (F.B.); (S.F.)
| |
Collapse
|
21
|
Yuan Y, Shi C, Wu X, Li W, Huang C, Liang L, Chen J, Wang Y, Liu Y. Synthesis and anticancer activity in vitro and in vivo evaluation of iridium(III) complexes on mouse melanoma B16 cells. J Inorg Biochem 2022; 232:111820. [DOI: 10.1016/j.jinorgbio.2022.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
22
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022; 23:ijms23042261. [PMID: 35216378 PMCID: PMC8876687 DOI: 10.3390/ijms23042261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the enormous progress and development of modern therapies, lung cancer remains one of the most common causes of death among men and women. The key element in the development of new anti-cancer drugs is proper planning of the preclinical research phase. The most adequate basic research exemplary for cancer study are 3D tumor microenvironment in vitro models, which allow us to avoid the use of animal models and ensure replicable culture condition. However, the question tormenting the scientist is how to choose the best tool for tumor microenvironment research, especially for extremely heterogenous lung cancer cases. In the presented review we are focused to explain the key factors of lung cancer biology, its microenvironment, and clinical gaps related to different therapies. The review summarized the most important strategies for in vitro culture models mimicking the tumor–tumor microenvironmental interaction, as well as all advantages and disadvantages were depicted. This knowledge could facilitate the right decision to designate proper pre-clinical in vitro study, based on available analytical tools and technical capabilities, to obtain more reliable and personalized results for faster introduction them into the future clinical trials.
Collapse
|
23
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
24
|
Polonio-Alcalá E, Rabionet M, Ruiz-Martínez S, Palomeras S, Porta R, Vásquez-Dongo C, Bosch-Barrera J, Puig T, Ciurana J. Polycaprolactone Electrospun Scaffolds Produce an Enrichment of Lung Cancer Stem Cells in Sensitive and Resistant EGFRm Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13215320. [PMID: 34771484 PMCID: PMC8582538 DOI: 10.3390/cancers13215320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The culture of lung cancer stem cells (LCSCs) is not possible using traditional flat polystyrene surfaces. The study of these tumor-initiating cells is fundamental due to their key role in the resistance to anticancer therapies, tumor recurrence, and metastasis. Hence, we evaluated the use of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSC population in sensitive and resistant EGFR-mutated lung adenocarcinoma models. Our findings revealed that both cell models seeded on PCL-ES structures showed a higher drug resistance, enhanced levels of several genes and proteins related to epithelial-to-mesenchymal process, stemness, and surface markers, and the activation of the Hedgehog pathway. We also determined that the non-expression of CD133 was associated with a low degree of histological differentiation, disease progression, distant metastasis, and worse overall survival in EGFR-mutated non-small cell lung cancer patients. Therefore, we confirmed PCL-ES scaffolds as a suitable three-dimensional cell culture model for the study of LCSC niche. Abstract The establishment of a three-dimensional (3D) cell culture model for lung cancer stem cells (LCSCs) is needed because the study of these stem cells is unable to be done using flat surfaces. The study of LCSCs is fundamental due to their key role in drug resistance, tumor recurrence, and metastasis. Hence, the purpose of this work is the evaluation of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSCs in sensitive and resistant EGFR-mutated (EGFRm) lung adenocarcinoma cell models. We performed a thermal, physical, and biological characterization of 10% and 15%-PCL-ES structures. Several genes and proteins associated with LCSC features were analyzed by RT-qPCR and Western blot. Vimentin and CD133 tumor expression were evaluated in samples from 36 patients with EGFRm non-small cell lung cancer through immunohistochemistry. Our findings revealed that PC9 and PC9-GR3 models cultured on PCL-ES scaffolds showed higher resistance to osimertinib, upregulation of ABCB1, Vimentin, Snail, Twist, Sox2, Oct-4, and CD166, downregulation of E-cadherin and CD133, and the activation of Hedgehog pathway. Additionally, we determined that the non-expression of CD133 was significantly associated with a low degree of histological differentiation, disease progression, and distant metastasis. To sum up, we confirmed PCL-ES scaffolds as a suitable 3D cell culture model for the study of the LCSC niche.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Marc Rabionet
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Rut Porta
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Medical Oncology Department, Catalan Institute of Oncology, 17007 Girona, Spain;
| | - Carmen Vásquez-Dongo
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Department of Pathology, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | | | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| |
Collapse
|
25
|
Seidlits SK, Kilian KA. Biomaterials for Personalized Disease Models. Acta Biomater 2021; 132:1-3. [PMID: 34503734 DOI: 10.1016/j.actbio.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Stern-Tal D, Ittah S, Sklan E. A new cell-sized support for 3D cell cultures based on recombinant spider silk fibers. J Biomater Appl 2021; 36:1748-1757. [PMID: 34472404 PMCID: PMC8984929 DOI: 10.1177/08853282211037781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is now generally accepted that 2D cultures cannot accurately replicate the rich
environment and complex tissue architecture that exists in vivo, and that classically
cultured cells tend to lose their original function. Growth of spheroids as opposed to 2D
cultures on plastic has now been hailed as an efficient method to produce quantities of
high-quality cells for cancer research, drug discovery, neuroscience, and regenerative
medicine. We have developed a new recombinant protein that mimics dragline spidersilk and
that self-assembles into cell-sized coils. These have high thermal and shelf-life
stability and can be readily sterilized and stored for an extended period of time. The
fibers are flexible, elastic, and biocompatible and can serve as cell-sized scaffold for
the formation of 3D cell spheroids. As a proof of concept, recombinant spidersilk was
integrated as a scaffold in spheroids of three cell types: primary rat hepatocytes, human
mesenchymal stem cells, and mouse L929 cells. The scaffolds significantly reduced spheroid
shrinkage and unlike scaffold-free spheroids, spheroids did not disintegrate over the
course of long-term culture. Cells in recombinant spidersilk spheroids showed increased
viability, and the cell lines continued to proliferate for longer than control cultures
without spidersilk. The spidersilk also supported biological functions. Recombinant
spidersilk primary hepatocyte spheroids exhibited 2.7-fold higher levels of adenosine
triphosphate (ATP) continued to express and secrete albumin and exhibited significantly
higher basal and induced CYP3A activity for at least 6 weeks in culture, while control
spheroids without fibers stopped producing albumin after 27 days and CPY3A activity was
barely detectable after 44 days. These results indicate that recombinant spidersilk can
serve as a useful tool for long-term cell culture of 3D cell spheroids and specifically
that primary hepatocytes can remain active in culture for an extended period of time which
could be of great use in toxicology testing.
Collapse
Affiliation(s)
| | - Shmulik Ittah
- 26742The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ella Sklan
- Seevix Material Sciences LTD, Jerusalem, Israel
| |
Collapse
|
27
|
Tiwari AP, Thorat ND, Pricl S, Patil RM, Rohiwal S, Townley H. Bioink: a 3D-bioprinting tool for anticancer drug discovery and cancer management. Drug Discov Today 2021; 26:1574-1590. [PMID: 33741496 DOI: 10.1016/j.drudis.2021.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
'Bioinks' are important tools for the fabrication of artificial living-tissue constructs that are able to mimic all properties of native tissues via 3D bioprinting technologies. Bioinks are most commonly made by incorporating live cells of interest within a natural or synthetic biocompatible polymeric matrix. In oncology research, the ability to recreate a tumor microenvironment (TME) using by 3D bioprinting constitutes a promising approach for drug development, screening, and in vitro cancer modeling. Here, we review the different types of bioink used for 3D bioprinting, with a focus on its application in cancer management. In addition, we consider the fabrication of bioink using customized materials/cells and their properties in the field of cancer drug discovery.
Collapse
Affiliation(s)
- Arpita P Tiwari
- Department of stem cell and Regenerative Medicine, Center for Interdisciplinary Research, D.Y. Patil University, Kolhapur, India
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, UK.
| | - Sabrina Pricl
- MolBNL@UniTS-DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Rakesh M Patil
- Regional Forensic Science Laboratory Maharashtra State, Kolhapur, Maharashtra, India
| | - Sonali Rohiwal
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, AS CR, vvi., Libechov, Czech Republic
| | - Helen Townley
- Nuffield Department of Women's & Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Sigdel I, Gupta N, Faizee F, Khare VM, Tiwari AK, Tang Y. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis. Front Bioeng Biotechnol 2021; 9:633671. [PMID: 33777909 PMCID: PMC7992012 DOI: 10.3389/fbioe.2021.633671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Of around half a million women dying of breast cancer each year, more than 90% die due to metastasis. Models necessary to understand the metastatic process, particularly breast cancer cell extravasation and colonization, are currently limited and urgently needed to develop therapeutic interventions necessary to prevent breast cancer metastasis. Microfluidic approaches aim to reconstitute functional units of organs that cannot be modeled easily in traditional cell culture or animal studies by reproducing vascular networks and parenchyma on a chip in a three-dimensional, physiologically relevant in vitro system. In recent years, microfluidics models utilizing innovative biomaterials and micro-engineering technologies have shown great potential in our effort of mechanistic understanding of the breast cancer metastasis cascade by providing 3D constructs that can mimic in vivo cellular microenvironment and the ability to visualize and monitor cellular interactions in real-time. In this review, we will provide readers with a detailed discussion on the application of the most up-to-date, state-of-the-art microfluidics-based breast cancer models, with a special focus on their application in the engineering approaches to recapitulate the metastasis process, including invasion, intravasation, extravasation, breast cancer metastasis organotropism, and metastasis niche formation.
Collapse
Affiliation(s)
- Indira Sigdel
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Niraj Gupta
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Fairuz Faizee
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Vishwa M Khare
- Eurofins Lancaster Laboratories, Philadelphia, PA, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yuan Tang
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| |
Collapse
|