1
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Li H, Shadrin I, Helfer A, Heman K, Rao L, Curtis C, Palmer GM, Bursac N. In vitro vascularization improves in vivo functionality of human engineered cardiac tissues. Acta Biomater 2024:S1742-7061(24)00667-6. [PMID: 39528062 DOI: 10.1016/j.actbio.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Engineered human cardiac tissues hold great promise for disease modeling, drug development, and regenerative therapy. For regenerative applications, successful engineered tissue engraftment in vivo requires rapid vascularization and blood perfusion post-implantation. In the present study, we engineered highly functional, vascularized cardiac tissues ("cardiopatches") by co-culturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) and endothelial cells (hiPSC-ECs) in optimized serum-free media. The vascularized cardiopatches displayed stable capillary networks over 4 weeks of culture, the longest reported in the field, while maintaining high contractile stress (>15 mN/mm2) and fast conduction velocity (>20 cm/s). Robustness of the method was confirmed using two distinct hiPSC-EC sources. Upon implantation into dorsal-skinfold chambers in immunocompromised mice, in vitro vascularized cardiopatches exhibited improved angiogenesis compared to avascular implants. Significant lumenization of the engineered human vasculature and anastomosis with host mouse vessels yielded the formation of hybrid human-mouse capillaries and robust cardiopatch perfusion by blood. Moreover, compared to avascular tissues, the implanted vascularized cardiopatches exhibited significantly higher conduction velocity and Ca2+ transient amplitude, longitudinally monitored in live mice for the first time. Overall, we demonstrate successful 4-week vascularization of engineered human cardiac tissues without loss of function in vitro, which promotes tissue functionality upon implantation in vivo. STATEMENT OF SIGNIFICANCE: Complex interactions between cardiac muscle fibers and surrounding capillaries are critical for everyday function of the heart. Tissue engineering is a powerful method to recreate functional cardiac muscle and its vascular network, which are both lost during a heart attack. Our study demonstrates in vitro engineering of dense capillary networks within highly functional engineered heart tissues that successfully maintain the structure, electrical, and mechanical function long-term. In mice, human capillaries from these engineered tissues integrate with host mouse capillaries to allow blood perfusion and support improved implant function. In the future, the developed vascularized engineered heart tissues will be used for in vitro studies of cardiac development and disease and as a potential regenerative therapy for heart attack.
Collapse
Affiliation(s)
- Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ilya Shadrin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Karen Heman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Caroline Curtis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory M Palmer
- Department of Radiation Oncology, Cancer Biology Division at Duke University Medical Center, Duke University, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Francescato R, Moretti M, Bersini S. Endothelial-mesenchymal transition in skeletal muscle: Opportunities and challenges from 3D microphysiological systems. Bioeng Transl Med 2024; 9:e10644. [PMID: 39553431 PMCID: PMC11561840 DOI: 10.1002/btm2.10644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 11/19/2024] Open
Abstract
Fibrosis is a pathological condition that in the muscular context is linked to primary diseases such as dystrophies, laminopathies, neuromuscular disorders, and volumetric muscle loss following traumas, accidents, and surgeries. Although some basic mechanisms regarding the role of myofibroblasts in the progression of muscle fibrosis have been discovered, our knowledge of the complex cell-cell, and cell-matrix interactions occurring in the fibrotic microenvironment is still rudimentary. Recently, vascular dysfunction has been emerging as a key hallmark of fibrosis through a process called endothelial-mesenchymal transition (EndoMT). Nevertheless, no effective therapeutic options are currently available for the treatment of muscle fibrosis. This lack is partially due to the absence of advanced in vitro models that can recapitulate the 3D architecture and functionality of a vascularized muscle microenvironment in a human context. These models could be employed for the identification of novel targets and for the screening of potential drugs blocking the progression of the disease. In this review, we explore the potential of 3D human muscle models in studying the role of endothelial cells and EndoMT in muscle fibrotic tissues and identify limitations and opportunities for optimizing the next generation of these microphysiological systems. Starting from the biology of muscle fibrosis and EndoMT, we highlight the synergistic links between different cell populations of the fibrotic microenvironment and how to recapitulate them through microphysiological systems.
Collapse
Affiliation(s)
- Riccardo Francescato
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Department of ElectronicsInformation and Bioengineering, Politecnico di MilanoMilanoItaly
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Cell and Tissue Engineering LaboratoryIRCCS Ospedale Galeazzi ‐ Sant'AmbrogioMilanoItaly
- Euler Institute, Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI)LuganoSwitzerland
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT)Ente Ospedaliero Cantonale (EOC)BellinzonaSwitzerland
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Euler Institute, Faculty of Biomedical SciencesUniversità della Svizzera italiana (USI)LuganoSwitzerland
| |
Collapse
|
4
|
Covert LT, Prinz JA, Swain-Lenz D, Dvergsten J, Truskey GA. Genetic changes from type I interferons and JAK inhibitors: clues to drivers of juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:SI240-SI248. [PMID: 38317053 PMCID: PMC11381683 DOI: 10.1093/rheumatology/keae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To better understand the pathogenesis of juvenile dermatomyositis (JDM), we examined the effect of the cytokines type I interferons (IFN I) and JAK inhibitor drugs (JAKi) on gene expression in bioengineered pediatric skeletal muscle. METHODS Myoblasts from three healthy pediatric donors were used to create three-dimensional skeletal muscle units termed myobundles. Myobundles were treated with IFN I, either IFNα or IFNβ. A subset of IFNβ-exposed myobundles was treated with JAKi tofacitinib or baricitinib. RNA sequencing analysis was performed on all myobundles. RESULTS Seventy-six myobundles were analysed. Principal component analysis showed donor-specific clusters of gene expression across IFNα and IFNβ-exposed myobundles in a dose-dependent manner. Both cytokines upregulated interferon response and proinflammatory genes; however, IFNβ led to more significant upregulation. Key downregulated pathways involved oxidative phosphorylation, fatty acid metabolism and myogenesis genes. Addition of tofacitinib or baricitinib moderated the gene expression induced by IFNβ, with partial reversal of upregulated inflammatory and downregulated myogenesis pathways. Baricitinib altered genetic profiles more than tofacitinib. CONCLUSION IFNβ leads to more pro-inflammatory gene upregulation than IFNα, correlating to greater decrease in contractile protein gene expression and reduced contractile force. JAK inhibitors, baricitinib more so than tofacitinib, partially reverse IFN I-induced genetic changes. Increased IFN I exposure in healthy bioengineered skeletal muscle leads to IFN-inducible gene expression, inflammatory pathway enrichment, and myogenesis gene downregulation, consistent with what is observed in JDM.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Joseph A Prinz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
| | - Devjanee Swain-Lenz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Chen S, Fu Z, Chen K, Zheng X, Fu Z. Decoding HiPSC-CM's Response to SARS-CoV-2: mapping the molecular landscape of cardiac injury. BMC Genomics 2024; 25:271. [PMID: 38475718 DOI: 10.1186/s12864-024-10194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute cardiac injury caused by coronavirus disease 2019 (COVID-19) increases mortality. Acute cardiac injury caused by COVID-19 requires understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects cardiomyocytes. This study provides a solid foundation for related studies by using a model of SARS-CoV-2 infection in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) at the transcriptome level, highlighting the relevance of this study to related studies. SARS-CoV-2 infection in hiPSC-CMs has previously been studied by bioinformatics without presenting the full molecular biological process. We present a unique bioinformatics view of the complete molecular biological process of SARS-CoV-2 infection in hiPSC-CMs. METHODS To validate the RNA-seq datasets, we used GSE184715 and GSE150392 for the analytical studies, GSE193722 for validation at the cellular level, and GSE169241 for validation in heart tissue samples. GeneCards and MsigDB databases were used to find genes associated with the phenotype. In addition to differential expression analysis and principal component analysis (PCA), we also performed protein-protein interaction (PPI) analysis, functional enrichment analysis, hub gene analysis, upstream transcription factor prediction, and drug prediction. RESULTS Differentially expressed genes (DEGs) were classified into four categories: cardiomyocyte cytoskeletal protein inhibition, proto-oncogene activation and inflammation, mitochondrial dysfunction, and intracellular cytoplasmic physiological function. Each of the hub genes showed good diagnostic prediction, which was well validated in other datasets. Inhibited biological functions included cardiomyocyte cytoskeletal proteins, adenosine triphosphate (ATP) synthesis and electron transport chain (ETC), glucose metabolism, amino acid metabolism, fatty acid metabolism, pyruvate metabolism, citric acid cycle, nucleic acid metabolism, replication, transcription, translation, ubiquitination, autophagy, and cellular transport. Proto-oncogenes, inflammation, nuclear factor-kappaB (NF-κB) pathways, and interferon signaling were activated, as well as inflammatory factors. Viral infection activates multiple pathways, including the interferon pathway, proto-oncogenes and mitochondrial oxidative stress, while inhibiting cardiomyocyte backbone proteins and energy metabolism. Infection limits intracellular synthesis and metabolism, as well as the raw materials for mitochondrial energy synthesis. Mitochondrial dysfunction and energy abnormalities are ultimately caused by proto-oncogene activation and SARS-CoV-2 infection. Activation of the interferon pathway, proto-oncogene up-regulation, and mitochondrial oxidative stress cause the inflammatory response and lead to diminished cardiomyocyte contraction. Replication, transcription, translation, ubiquitination, autophagy, and cellular transport are among the functions that decline physiologically. CONCLUSION SARS-CoV-2 infection in hiPSC-CMs is fundamentally mediated via mitochondrial dysfunction. Therapeutic interventions targeting mitochondrial dysfunction may alleviate the cardiovascular complications associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sicheng Chen
- Department of Cardiology, Shantou Central Hospital, Shantou, 515031, China
| | - Zhenquan Fu
- School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kaitong Chen
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Xinyao Zheng
- Shantou University Medical College, Shantou, 515041, China
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhenyang Fu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Strash N, DeLuca S, Janer Carattini GL, Chen Y, Wu T, Helfer A, Scherba J, Wang I, Jain M, Naseri R, Bursac N. Time-dependent effects of BRAF-V600E on cell cycling, metabolism, and function in engineered myocardium. SCIENCE ADVANCES 2024; 10:eadh2598. [PMID: 38266090 PMCID: PMC10807800 DOI: 10.1126/sciadv.adh2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.
Collapse
Affiliation(s)
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham NC, USA
| | | | - Yifan Chen
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Jacob Scherba
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Isabella Wang
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Mehul Jain
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Ramona Naseri
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Nenad Bursac
- Department of Cell Biology, Duke University, Durham NC, USA
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| |
Collapse
|
7
|
Covert LT, Patel H, Osman A, Duncan L, Dvergsten J, Truskey GA. Effect of type I interferon on engineered pediatric skeletal muscle: a promising model for juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:209-217. [PMID: 37094222 PMCID: PMC10765138 DOI: 10.1093/rheumatology/kead186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
OBJECTIVE To investigate pathogenic mechanisms underlying JDM, we defined the effect of type I IFN, IFN-α and IFN-β, on pediatric skeletal muscle function and expression of myositis-related proteins using an in vitro engineered human skeletal muscle model (myobundle). METHODS Primary myoblasts were isolated from three healthy pediatric donors and used to create myobundles that mimic functioning skeletal muscle in structural architecture and physiologic function. Myobundles were exposed to 0, 5, 10 or 20 ng/ml IFN-α or IFN-β for 7 days and then functionally tested under electrical stimulation and analyzed immunohistochemically for structural and myositis-related proteins. Additionally, IFN-β-exposed myobundles were treated with Janus kinase inhibitors (JAKis) tofacitinib and baricitinib. These myobundles were also analyzed for contractile force and immunohistochemistry. RESULTS IFN-β, but not IFN-α, was associated with decreased contractile tetanus force and slowed twitch kinetics. These effects were reversed by tofacitinib and baricitinib. Type I IFN paradoxically reduced myobundle fatigue, which did not reverse after JAKi. Additionally, type I IFN correlated with MHC I upregulation, which normalized after JAKi treatment, but expression of myositis-specific autoantigens Mi-2, melanocyte differentiation-associated protein 5 and the endoplasmic reticulum stress marker GRP78 were variable and donor specific after type I IFN exposure. CONCLUSION IFN-α and IFN-β have distinct effects on pediatric skeletal muscle and these effects can partially be reversed by JAKi treatment. This is the first study illustrating effective use of a three-dimensional human skeletal muscle model to investigate JDM pathogenesis and test novel therapeutics.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alaa Osman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lavonia Duncan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Fu L, Zou Y, Yu B, Hong D, Guan T, Hu J, Xu Y, Wu Y, Kou J, Lv Y. Background and roles: myosin in autoimmune diseases. Front Cell Dev Biol 2023; 11:1220672. [PMID: 37691828 PMCID: PMC10484797 DOI: 10.3389/fcell.2023.1220672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
The myosin superfamily is a group of molecular motors. Autoimmune diseases are characterized by dysregulation or deficiency of the immune tolerance mechanism, resulting in an immune response to the human body itself. The link between myosin and autoimmune diseases is much more complex than scientists had hoped. Myosin itself immunization can induce experimental autoimmune diseases of animals, and myosins were abnormally expressed in a number of autoimmune diseases. Additionally, myosin takes part in the pathological process of multiple sclerosis, Alzheimer's disease, Parkinson's disease, autoimmune myocarditis, myositis, hemopathy, inclusion body diseases, etc. However, research on myosin and its involvement in the occurrence and development of diseases is still in its infancy, and the underlying pathological mechanisms are not well understood. We can reasonably predict that myosin might play a role in new treatments of autoimmune diseases.
Collapse
Affiliation(s)
- Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangxi, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangxi, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Dehghani K, Stanek A, Bagherabadi A, Atashi F, Beygi M, Hooshmand A, Hamedi P, Farhang M, Bagheri S, Zolghadri S. CCND1 Overexpression in Idiopathic Dilated Cardiomyopathy: A Promising Biomarker? Genes (Basel) 2023; 14:1243. [PMID: 37372424 DOI: 10.3390/genes14061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated cardiomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus (GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differentially expressed genes were identified. The gene network was mapped on the STRING website, and the data were transferred to Cytoscape software to determine the top 100 genes. In the following, several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and 14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP, MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA genes were overexpressed in patients more than in controls. The highest expression was found for VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease progression in patients with IDCM. However, more patients and genes need to be analyzed in order to achieve more robust results.
Collapse
Affiliation(s)
- Khatereh Dehghani
- Department of Cardiology, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Fatemeh Atashi
- Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Amirreza Hooshmand
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Pezhman Hamedi
- Research Center, Department of Medical Laboratory Sciences, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohsen Farhang
- Molecular Study and Diagnostic Center, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| |
Collapse
|
10
|
Anatskaya OV, Runov AL, Ponomartsev SV, Vonsky MS, Elmuratov AU, Vinogradov AE. Long-Term Transcriptomic Changes and Cardiomyocyte Hyperpolyploidy after Lactose Intolerance in Neonatal Rats. Int J Mol Sci 2023; 24:7063. [PMID: 37108224 PMCID: PMC10138443 DOI: 10.3390/ijms24087063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., "negative regulation of chromosome organization", "transcription" and "ribosome biogenesis". These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.
Collapse
Affiliation(s)
| | - Andrey L. Runov
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | | | - Maxim S. Vonsky
- The D.I. Mendeleev All-Russian Institute for Metrology (VNIIM), Moskovsky ave 19, Saint Petersburg 190005, Russia
- Almazov Medical Research Centre, Akkuratova Street 2, Saint Petersburg 197341, Russia
| | - Artem U. Elmuratov
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, Moscow 105120, Russia
| | | |
Collapse
|
11
|
Wang K, Smith SH, Iijima H, Hettinger ZR, Mallepally A, Shroff SG, Ambrosio F. Bioengineered 3D Skeletal Muscle Model Reveals Complement 4b as a Cell-Autonomous Mechanism of Impaired Regeneration with Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207443. [PMID: 36650030 DOI: 10.1002/adma.202207443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of cell-autonomous skeletal muscle changes after injury can lead to novel interventions to improve functional recovery in an aged population. However, major knowledge gaps persist owing to limitations of traditional biological aging models. 2D cell culture represents an artificial environment, while aging mammalian models are contaminated by influences from non-muscle cells and other organs. Here, a 3D muscle aging system is created to overcome the limitations of these traditional platforms. It is shown that old muscle constructs (OMC) manifest a sarcopenic phenotype, as evidenced by hypotrophic myotubes, reduced contractile function, and decreased regenerative capacity compared to young muscle constructs. OMC also phenocopy the regenerative responses of aged muscle to two interventions, pharmacological and biological. Interrogation of muscle cell-specific mechanisms that contribute to impaired regeneration over time further reveals that an aging-induced increase of complement component 4b (C4b) delays muscle progenitor cell amplification and impairs functional recovery. However, administration of complement factor I, a C4b inactivator, improves muscle regeneration in vitro and in vivo, indicating that C4b inhibition may be a novel approach to enhance aged muscle repair. Collectively, the model herein exhibits capabilities to study cell-autonomous changes in skeletal muscle during aging, regeneration, and intervention.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen H Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Adarsh Mallepally
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
12
|
Venturini G, Alvim JM, Padilha K, Toepfer CN, Gorham JM, Wasson LK, Biagi D, Schenkman S, Carvalho VM, Salgueiro JS, Cardozo KHM, Krieger JE, Pereira AC, Seidman JG, Seidman CE. Cardiomyocyte infection by Trypanosoma cruzi promotes innate immune response and glycolysis activation. Front Cell Infect Microbiol 2023; 13:1098457. [PMID: 36814444 PMCID: PMC9940271 DOI: 10.3389/fcimb.2023.1098457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Chagas cardiomyopathy, a disease caused by Trypanosoma cruzi (T. cruzi) infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy. Methods To investigate the effects of T. cruzi on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses. Results Analyses of multiomic data revealed that cardiomyocyte infection caused a rapid increase in genes and proteins related to activation innate and adaptive immune systems and pathways, including alpha and gamma interferons, HIF-1α signaling, and glycolysis. These responses resemble prototypic responses observed in pathogen-activated immune cells. Infection also caused an activation of glycolysis that was dependent on HIF-1α signaling. Using gene editing and pharmacological inhibitors, we found that T. cruzi uptake was mediated in part by the glucose-facilitated transporter GLUT4 and that the attenuation of glycolysis, HIF-1α activation, or GLUT4 expression decreased T. cruzi infection. In contrast, pre-activation of pro-inflammatory immune responses with LPS resulted in increased infection rates. Conclusion These findings suggest that T. cruzi exploits a HIF-1α-dependent, cardiomyocyte-intrinsic stress-response activation of glycolysis to promote intracellular infection and replication. These chronic immuno-metabolic responses by cardiomyocytes promote dysfunction, cell death, and the emergence of cardiomyopathy.
Collapse
Affiliation(s)
- Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Juliana M. Alvim
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Lauren K. Wasson
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Howard Hughes Medical Institute, Chevy Chase, MD, United States,*Correspondence: Christine E. Seidman,
| |
Collapse
|
13
|
Scherba JC, Halushka MK, Andersen ND, Maleszewski JJ, Landstrom AP, Bursac N, Glass C. BRG1 is a biomarker of hypertrophic cardiomyopathy in human heart specimens. Sci Rep 2022; 12:7996. [PMID: 35581268 PMCID: PMC9114001 DOI: 10.1038/s41598-022-11829-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the sarcomere that causes otherwise unexplained cardiac hypertrophy and is associated with sudden death. While previous studies showed the role of the epigenetic modifier Brg1 in mouse models of HCM, additional work is needed to identify its role in humans. We tested the hypothesis that BRG1 expression is increased in periods of cardiac remodeling during fetal growth and in development of HCM. We employed immunohistochemical staining to evaluate protein expression of BRG1 in 796 human cardiac specimens (81 from patients with HCM) and describe elevated BRG1 expression in human fetal hearts in early development. In addition, we not only demonstrate increased expression of BRG1 in HCM, but we also show that other diseases that lead to heart failure have similar BRG1 expression to healthy controls. Inhibition of BRG1 in human induced pluripotent stem cell-derived cardiomyocytes significantly decreases MYH7 and increases MYH6, suggesting a regulatory role for BRG1 in the pathological imbalance of the two myosin heavy chain isoforms in human HCM. These data are the first demonstration of BRG1 as a specific biomarker for human HCM and provide foundation for future studies of epigenetics in human cardiac disease.
Collapse
Affiliation(s)
- Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Nicholas D Andersen
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrew P Landstrom
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Carolyn Glass
- Department of Pathology, Duke University Medical Center, 217AM Davison Bldg, 40 Duke Medicine Circle, Box 3712 DUHS, Durham, NC, 27710, USA.
| |
Collapse
|