1
|
Liang J, Ling J, Sun D, Wu G, Ouyang XK, Wang N, Yang G. Dextran-Based Antibacterial Hydrogel Dressings for Accelerating Infected Wound Healing by Reducing Inflammation Levels. Adv Healthc Mater 2024; 13:e2400494. [PMID: 38801122 DOI: 10.1002/adhm.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Infected wounds pose challenges such as exudate management, bacterial infections, and persistent inflammation, making them a significant challenge for modern dressings. To address these issues in infected wounds more effectively, aerogel-hydrogel biphase gels based on dextran are developed. The gel introduced in this study exhibits antibacterial and anti-inflammatory properties in the process of wound therapy, contributing to accelerated wound healing. The aerogel phase exhibits exceptional water-absorption capabilities, rapidly soaking up exudate from infected wound, thereby fostering a clean and hygienic wound healing microenvironment. Concurrently, the aerogel phase is enriched with hydrogen sulfide donors. Following water absorption and the formation of the hydrogel phase, it enables the sustained release of hydrogen sulfide around the wound sites. The experiments confirm that hydrogen sulfide, by promoting M2 macrophage differentiation and reducing the levels of inflammatory factors, effectively diminishes local inflammation levels at the wound site. Furthermore, the sodium copper chlorophyllin component within the hydrogel phase demonstrates effective antibacterial properties through photodynamic antimicrobial therapy, providing a viable solution to wound infection challenges.
Collapse
Affiliation(s)
- Jianhao Liang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Deguan Sun
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, P. R. China
| | - Guanhuai Wu
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, P. R. China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 310622, P. R. China
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316000, P. R. China
| |
Collapse
|
2
|
Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial Peptides and Their Biomedical Applications: A Review. Antibiotics (Basel) 2024; 13:794. [PMID: 39334969 PMCID: PMC11429172 DOI: 10.3390/antibiotics13090794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of drug resistance genes and the detrimental health effects caused by the overuse of antibiotics are increasingly prominent problems. There is an urgent need for effective strategies to antibiotics or antimicrobial resistance in the fields of biomedicine and therapeutics. The pathogen-killing ability of antimicrobial peptides (AMPs) is linked to their structure and physicochemical properties, including their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs are a form of innate immune protection found in all life forms. A key aspect of the application of AMPs involves their potential to combat emerging antibiotic resistance; certain AMPs are effective against resistant microbial strains and can be modified through peptide engineering. This review summarizes the various strategies used to tackle antibiotic resistance, with a particular focus on the role of AMPs as effective antibiotic agents that enhance the host's immunological functions. Most of the recent studies on the properties and impregnation methods of AMPs, along with their biomedical applications, are discussed. This review provides researchers with insights into the latest advancements in AMP research, highlighting compelling evidence for the effectiveness of AMPs as antimicrobial agents.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Berglin M, Cavanagh JP, Caous JS, Thakkar BS, Vasquez JM, Stensen W, Lyvén B, Svendsen JS, Svenson J. Flexible and Biocompatible Antifouling Polyurethane Surfaces Incorporating Tethered Antimicrobial Peptides through Click Reactions. Macromol Biosci 2024; 24:e2300425. [PMID: 38009664 DOI: 10.1002/mabi.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for "click on demand" attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms.
Collapse
Affiliation(s)
- Mattias Berglin
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, 413 90, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Josefin Seth Caous
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | | | - Jeddah Marie Vasquez
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Benny Lyvén
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - John-Sigurd Svendsen
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Johan Svenson
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| |
Collapse
|
4
|
Meng S, Meng M, Wang S, Zheng W. Analysis of surgical site infection and tumour-specific survival rate in patients with renal cell carcinoma after laparoscopic radical nephrectomy. Int Wound J 2024; 21:e14711. [PMID: 38387886 PMCID: PMC10834101 DOI: 10.1111/iwj.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Surgical site infections (SSIs) may pose a significant risk to patients undergoing surgery. This study aims to explore the risk factors for SSIs in patients undergoing laparoscopic radical nephrectomy for renal cell carcinoma and the impact of infection on tumour-specific survival (CSS) after nephrectomy for renal cell carcinoma. To explore the risk factors for SSIs in patients undergoing laparoscopic radical nephrectomy for renal cell carcinoma and the impact of infection on tumour-specific survival (CSS) after nephrectomy for renal cell carcinoma. A retrospective analysis was conducted on 400 patients in our hospital from June 2021 to June 2023. This study divided patients into two groups: those with SSI and those without SSI. Collect general data and information related to the operating room. Clearly defined inclusion and exclusion criteria. Select surgical time, laminar mobile operating room use, and intraoperative hypothermia as observation indicators. Perform statistical analysis using SPSS 25.0 software, including univariate, multivariate, and survival analyses of wound-infected and uninfected patients. Out of 400 patients, 328 had no SSIs, 166 died during follow-up, 72 had SSIs, and 30 died during follow-up. There was no statistically significant difference (p > 0.05) in comparing primary data between individuals without SSIs and those with SSIs. There were statistically significant differences (p < 0.05) in surgical time, nonlaminar flow operating room use, and intraoperative hypothermia. The postoperative survival time of SSI patients with a tumour diameter of 7.0-9.9 cm was significantly longer than that of SSI patients, and the difference was statistically significant (p < 0.05). The occurrence of severe infection in patients with other tumour diameters did not affect postoperative survival, and the difference was not statistically significant (p > 0.05). After multiple factor analysis, it was found that severe infection can prolong the postoperative survival of patients with tumour diameter exceeding 7 cm (HR = 0.749, p < 0.05). This study identified nonlaminar flow operating rooms, prolonged surgical time, and intraoperative hypothermia as significant risk factors for SSIs. After nephrectomy for renal cell carcinoma patients with a tumour diameter of 7-9.9 μ m, perioperative infection can prolong their survival. However, it has no significant effect on patients with other tumour diameters.
Collapse
Affiliation(s)
- Shuai Meng
- Department of UrologyFirst Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Meng Meng
- Department of PharmacyJinan Zhangqiu District Hospital of TCMJinanChina
| | - Shouwu Wang
- Department of PharmacyJinan Zhangqiu District Hospital of TCMJinanChina
| | - Wei Zheng
- Urology & Nephrology Center, Department of UrologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
5
|
Shen W, Wang Y, Li Y, Cui Z, Yang Y, Shi H, Xu C, Yin T. 3-Diethylaminopropyl isothiocyanate modified glycol chitosan for constructing mild-acid sensitive electrospinning antibacterial nanofiber membrane. Carbohydr Polym 2024; 324:121468. [PMID: 37985078 DOI: 10.1016/j.carbpol.2023.121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Bacterial infections would cause pathological inflammation and even generate chronic wound. Herein, a ciprofloxacin (Cip)-loaded mild acid-responsive electrospinning nanofiber membrane (NFM) containing 3-diethylaminopropyl isothiocyanate material grafted glycol chitosan (GC-DEAP) was fabricated to prevent bacterial infection against hemostatic and inflammatory phases of wounds. The presence of Cip and GC-DEAP in the objective NFM (PCL/GC-DEAP/Cip) was confirmed through XRD and FTIR. Meanwhile, PCL/GC-DEAP/Cip NFM exhibited high mechanical profiles, suitable water absorption and water vapour transmission ratio. The non-protonated amphiphilic GC-DEAP under pH 7.4 facilitated the formation of uniform and smooth nanofibers with polycaprolactone (PCL) and Cip. However, the GC-DEAP was demonstrated to sharply respond to the mild-acid environment of the wound and effectively be protonated, and thus improved the swelling ability of NFM and triggered burst release of Cip. Due to the combination between protonated GC-DEAP and Cip, PCL/GC-DEAP/Cip NFM achieved attractive antibacterial activity in the mild-acid environment in vitro, and induced more efficient prevention of wound infection and faster wound healing compared with the commercial chitosan dressing. The designed NFM is expected to be a potential smart wound dressing against hemostatic and inflammatory phases with mild-acid specifically strengthened antibacterial features and satisfactory biocompatibility.
Collapse
Affiliation(s)
- Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yongxin Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yali Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zongyao Cui
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yitong Yang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Honglu Shi
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chenfeng Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
6
|
Shen J, Xie X, Meng Y, Mu Y. Predictive value of preoperative neutrophil to lymphocyte ratio and platelet to lymphocyte ratio combined with operating room factors for surgical site infection after laparoscopic radical nephrectomy in renal cell carcinoma patients. Int Wound J 2024; 21:e14400. [PMID: 37718121 PMCID: PMC10788578 DOI: 10.1111/iwj.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Surgical site infections (SSIs) can pose significant risks to patients undergoing surgical procedures. This study aimed to investigate the risk factors and diagnostic value of neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) for SSIs in patients undergoing laparoscopic radical nephrectomy for renal cell carcinoma. METHODS A retrospective analysis of 866 patients at our hospital was conducted between June 2016 and June 2022. The study divided patients into two groups: those with SSIs and those without. General data and operative room-related information were collected. Inclusion and exclusion criteria were clearly defined. Peripheral blood indicators were analysed, and observation indicators were meticulously selected, including surgery time, usage of a laminar flow operating room and intraoperative hypothermia. Statistical analysis was performed using SPSS 25.0 software, including univariate, multivariate analysis and receiver operating characteristic (ROC) curve analysis. RESULTS Thirty-six out of 866 patients developed SSIs. Statistically significant differences were found for surgery time, usage of non-laminar flow operating rooms and intraoperative hypothermia (p < 0.05). ROC curve analysis showed an AUC of 0.765 (95% CI: 0.636-0.868) for serum NLR and PLR, with optimal cut-off values at NLR 4.8 and PLR 196, indicating moderate to strong discriminative ability for SSIs. CONCLUSIONS The study identified non-laminar flow operating rooms, extended surgery time, and intraoperative hypothermia as significant risk factors for SSIs. Serum NLR and PLR were found valuable as biomarkers for SSIs diagnosis, holding potential for preoperative risk assessment and improved patient safety in renal cell carcinoma care.
Collapse
Affiliation(s)
- Jun Shen
- Department of Urology SurgeryThe Frist Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Xun Xie
- Department of NephrologyThe Frist Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yonghui Meng
- Department of Urology SurgeryThe Frist Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Youyou Mu
- Department of Urology SurgeryThe Frist Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
7
|
Puthia M, Petrlova J, Petruk G, Butrym M, Samsudin F, Andersson MÅ, Strömdahl A, Wasserstrom S, Hartman E, Kjellström S, Caselli L, Klementieva O, Bond PJ, Malmsten M, Raina DB, Schmidtchen A. Bioactive Suture with Added Innate Defense Functionality for the Reduction of Bacterial Infection and Inflammation. Adv Healthc Mater 2023; 12:e2300987. [PMID: 37689972 PMCID: PMC11468473 DOI: 10.1002/adhm.202300987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Surgical site infections (SSI) are a clinical and economic burden. Suture-associated SSI may develop when bacteria colonize the suture surface and form biofilms that are resistant to antibiotics. Thrombin-derived C-terminal peptide (TCP)-25 is a host defense peptide with a unique dual mode of action that can target both bacteria and the excessive inflammation induced by bacterial products. The peptide demonstrates therapeutic potential in preclinical in vivo wound infection models. In this study, the authors set out to explore whether TCP-25 can provide a new bioactive innate immune feature to hydrophilic polyglactin sutures (Vicryl). Using a combination of biochemical, biophysical, antibacterial, biofilm, and anti-inflammatory assays in vitro, in silico molecular modeling studies, along with experimental infection and inflammation models in mice, a proof-of-concept that TCP-25 can provide Vicryl sutures with a previously undisclosed host defense capacity, that enables targeting of bacteria, biofilms, and the accompanying inflammatory response, is shown.
Collapse
Affiliation(s)
- Manoj Puthia
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Jitka Petrlova
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Ganna Petruk
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Marta Butrym
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII)Agency for ScienceTechnology and Research (A*STAR)Singapore138671Singapore
| | - Madelene Å Andersson
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Ann‐Charlotte Strömdahl
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | | | - Erik Hartman
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | - Sven Kjellström
- Division of Mass SpectrometryDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
| | | | - Oxana Klementieva
- Medical Microspectroscopy LabDepartment of Experimental Medical SciencesFaculty of MedicineLund UniversityLundSE‐221 84Sweden
| | - Peter J. Bond
- Bioinformatics Institute (BII)Agency for ScienceTechnology and Research (A*STAR)Singapore138671Singapore
- Department of Biological SciencesNational University of SingaporeSingapore117543Singapore
| | - Martin Malmsten
- Physical Chemistry 1Lund UniversityLundS‐221 00Sweden
- Department of PharmacyUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Deepak Bushan Raina
- Department of Clinical Sciences LundOrthopedicsFaculty of MedicineLund UniversityLundSE‐221 84Sweden
| | - Artur Schmidtchen
- Division of Dermatology and VenereologyDepartment of Clinical SciencesLund UniversityLundSE‐22184Sweden
- DermatologySkane University HospitalLundSE‐22185Sweden
| |
Collapse
|
8
|
Petrlova J, Hartman E, Petruk G, Lim JCH, Adav SS, Kjellström S, Puthia M, Schmidtchen A. Selective protein aggregation confines and inhibits endotoxins in wounds: Linking host defense to amyloid formation. iScience 2023; 26:107951. [PMID: 37817942 PMCID: PMC10561040 DOI: 10.1016/j.isci.2023.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces rapid protein aggregation in human wound fluid. We aimed to characterize these LPS-induced aggregates and their functional implications using a combination of mass spectrometry analyses, biochemical assays, biological imaging, cell experiments, and animal models. The wound-fluid aggregates encompass diverse protein classes, including sequences from coagulation factors, annexins, histones, antimicrobial proteins/peptides, and apolipoproteins. We identified proteins and peptides with a high aggregation propensity and verified selected components through Western blot analysis. Thioflavin T and Amytracker staining revealed amyloid-like aggregates formed after exposure to LPS in vitro in human wound fluid and in vivo in porcine wound models. Using NF-κB-reporter mice and IVIS bioimaging, we demonstrate that such wound-fluid LPS aggregates induce a significant reduction in local inflammation compared with LPS in plasma. The results show that protein/peptide aggregation is a mechanism for confining LPS and reducing inflammation, further emphasizing the connection between host defense and amyloidogenesis.
Collapse
Affiliation(s)
- Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Erik Hartman
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Jeremy Chun Hwee Lim
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Sunil Shankar Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Dermatology, Skane University Hospital, 22185 Lund, Sweden
| |
Collapse
|
9
|
Petruk G, Puthia M, Samsudin F, Petrlova J, Olm F, Mittendorfer M, Hyllén S, Edström D, Strömdahl AC, Diehl C, Ekström S, Walse B, Kjellström S, Bond PJ, Lindstedt S, Schmidtchen A. Targeting Toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs. Nat Commun 2023; 14:6097. [PMID: 37773180 PMCID: PMC10541425 DOI: 10.1038/s41467-023-41702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden.
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | | | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Dag Edström
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Ann-Charlotte Strömdahl
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Simon Ekström
- BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, SE-22184, Lund, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-22381, Lund, Sweden
| | - Sven Kjellström
- Division of Mass Spectrometry, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Department of Cardiothoracic Surgery, Anesthesia and Intensive Care, Skåne University Hospital, SE-22185, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184, Lund, Sweden
- Dermatology, Skane University Hospital, SE-22185, Lund, Sweden
| |
Collapse
|
10
|
Li G, Lai Z, Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206602. [PMID: 36722732 PMCID: PMC10104676 DOI: 10.1002/advs.202206602] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Indexed: 05/10/2023]
Abstract
Owing to the increase in multidrug-resistant bacterial isolates in hospitals globally and the lack of truly effective antimicrobial agents, antibiotic resistant bacterial infections have increased substantially. There is thus an urgent need to develop new antimicrobial drugs and their related formulations. In recent years, natural antimicrobial peptides (AMPs), AMP optimization, self-assembled AMPs, AMP hydrogels, and biomaterial-assisted delivery of AMPs have shown great potential in the treatment of bacterial infections. In this review, it is focused on the development prospects and shortcomings of various AMP-based biomaterials for treating animal model infections, such as abdominal, skin, and eye infections. It is hoped that this review will inspire further innovations in the design of AMP-based biomaterials for the treatment of bacterial infections and accelerate their commercialization.
Collapse
Affiliation(s)
- Guoyu Li
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhenheng Lai
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Anshan Shan
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
11
|
Cheng S, Pan M, Hu D, Han R, Li L, Bei Z, Li Y, Sun A, Qian Z. Adhesive chitosan-based hydrogel assisted with photothermal antibacterial property to prompt mice infected skin wound healing. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Liu Y, Puthia M, Sheehy EJ, Ambite I, Petrlova J, Prithviraj S, Oxborg MW, Sebastian S, Vater C, Zwingenberger S, Struglics A, Bourgine PE, O'Brien FJ, Raina DB. Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing. Acta Biomater 2023; 162:164-181. [PMID: 36967054 DOI: 10.1016/j.actbio.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Despite the glimmer of hope provided by the discovery and commercialization of bone morphogenetic protein-2 (BMP-2) as a bone graft substitute, side effects related to the use of supraphysiological doses have hindered its clinical usage. In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving efficient BMP sequestration and controlled release. Using an ectopic implantation model, we then showed that the CHA+BMP-2/7 was more osteoinductive than CHA+BMP-2. Further evaluation of the molecular mechanisms responsible for this increased osteoinductivity at an early stage in the regeneration process indicated that the CHA+BMP-2/7 enhanced progenitor cell homing at the implantation site, upregulated the key transcriptomic determinants of bone formation, and increased the production of bone extracellular matrix components. Using fluorescently labelled BMP-2/7 and BMP-2, we demonstrated that the CHA scaffold provided a long-term delivery of both molecules for at least 20 days. Finally, using a rat femoral defect model, we showed that an ultra-low dose (0.5 µg) of BMP-2/7 accelerated fracture healing and performed at a level comparable to 20-times higher BMP-2 dose. Our results indicate that the sustained delivery of BMP-2/7 via a CHA scaffold could bring us a step closer in the quest for the use of physiological growth factor doses in fracture healing. STATEMENT OF SIGNIFICANCE: • Incorporation of hydroxyapatite (HA) in a collagen scaffold dramatically improves bone morphogenic protein (BMP) sequestration via biophysical interactions with BMP, thereby providing more controlled BMP release compared with pristine collagen. • We then investigate the molecular mechanisms responsible for increased osteoinductive potential of a heterodimer BMP-2/7 with is clinically used counterpart, the BMP-2 homodimer. • The superior osteoinductive properties of BMP-2/7 are a consequence of its direct positive effect on progenitor cell homing at the implantation site, which consequently leads to upregulation of cartilage and bone related genes and biochemical markers. • An ultra-low dose of BMP-2/7 delivered via a collagen-HA (CHA) scaffold leads to accelerated healing of a critical femoral defect in rats while a 20-times higher BMP-2 dose was required to achieve comparable results.
Collapse
|
13
|
Lundgren S, Wallblom K, Fisher J, Erdmann S, Schmidtchen A, Saleh K. Study protocol for a phase 1, randomised, double-blind, placebo-controlled study to investigate the safety, tolerability and pharmacokinetics of ascending topical doses of TCP-25 applied to epidermal suction blister wounds in healthy male and female volunteers. BMJ Open 2023; 13:e064866. [PMID: 36813496 PMCID: PMC9950920 DOI: 10.1136/bmjopen-2022-064866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION TCP-25 gel is intended for use in treatment of wound infection and inflammation. Current local therapies for wounds have limited efficacy to prevent infections and there are no wound treatments available today that target the excessive inflammation that often hampers wound healing in both acute and chronic wounds. There is therefore a high medical need for new therapeutic alternatives. METHODS AND ANALYSIS A randomised, double-blinded, first-in-human study was designed to evaluate the safety, tolerability and potential systemic exposure of three increasing doses of the TCP-25 gel applied topically on suction blister wounds in healthy adults. The dose-escalation will be divided into three sequential dose groups with eight subjects in each group (24 patients in total). Within each dose group, the subjects will receive four wounds, with two wounds on each thigh. Each subject will receive TCP-25 on one wound per thigh and placebo on one wound per thigh in a randomised double-blinded manner, with a reverse reciprocal position on each respective thigh, to a total of five doses over 8 days. An internal safety review committee will monitor emerging safety and plasma concentration data over the course of the study and must give a favourable recommendation prior to initiating the next dose group, which will receive placebo gel or a higher concentration of TCP-25 in exactly the same manner described above. ETHICS AND DISSEMINATION The study will be performed in accordance with ethical principles consistent with the Declaration of Helsinki, ICH/GCPE6 (R2), European Union Clinical Trials Directive and applicable local regulatory requirements.This study is approved by the Swedish Medical Products Agency and the Swedish ethics committee under the registration number 2022-00527-01. The results of this study will be disseminated via publication to a peer-reviewed journal at the discretion of the Sponsor. TRIAL REGISTRATION NUMBER NCT05378997.
Collapse
Affiliation(s)
- Sigrid Lundgren
- Section for Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Dermatology, Skåne University Hospital Lund, Lund, Sweden
| | - Karl Wallblom
- Section for Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Dermatology, Skåne University Hospital Lund, Lund, Sweden
| | - Jane Fisher
- Section for Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Susanne Erdmann
- Department of Dermatology, Skåne University Hospital Lund, Lund, Sweden
| | - Artur Schmidtchen
- Section for Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Dermatology, Skåne University Hospital Lund, Lund, Sweden
- Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denamark
| | - Karim Saleh
- Section for Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Dermatology, Skåne University Hospital Lund, Lund, Sweden
| |
Collapse
|
14
|
Hydrophobic modification improves the delivery of cell-penetrating peptides to eliminate intracellular pathogens in animals. Acta Biomater 2023; 157:210-224. [PMID: 36503077 DOI: 10.1016/j.actbio.2022.11.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Infections induced by intracellular pathogens are difficult to eradicate due to poor penetration of antimicrobials into cell membranes. It is of great importance to develop a new generation of antibacterial agents with dual functions of efficient cell penetration and bacterial inhibition. In this study, the association between hydrophobicity and cell-penetrating peptide delivery efficiency was investigated by fragment interception and hydrophobicity modification of natural porcine antimicrobial peptide PR-39 and the combination of cationic cell-penetrating peptide (R6) with antimicrobial peptide fragments modified with hydrophobic residues. The chimeric peptides P3I7 and P3L7, obtained through biofunctional screening, exhibited potent broad-spectrum antibacterial activity and low cytotoxicity. Moreover, P3I7 and P3L7 can effectively penetrate cells to eliminate intracellular pathogens mainly through endocytosis. The membrane destruction mechanism makes the peptides fast sterilizers and less prone to developing drug resistance. Finally, their good biocompatibility and antibacterial infection effects were verified in mice and piglets. To conclude, the chimeric peptides P3I7 and P3L7 show great potential as affordable and effective antimicrobial agents and may serve as ideal candidates for the treatment of intracellular bacterial infections. STATEMENT OF SIGNIFICANCE: The low permeability of antibacterial drugs makes infections induced by intracellular bacteria extremely difficult to treat. To address this issue, we designed chimeric peptides with dual cell-penetrating and antibacterial functions. The active peptides P3I7 and P3L7, acquired through functional screening have strong broad-spectrum antibacterial activity and powerful bactericidal effects against intracellular Staphylococcus aureus. The membrane permeation mechanism of P3I7 and P3L7 against bacteria endows fast bactericidal activity with low drug resistance. The biosafety and antibacterial activity of P3I7 and P3L7 were also validated by in vivo trials. This study provides an ideal drug candidate against intracellular bacterial infections.
Collapse
|
15
|
Zapata-Catzin GA, Zumbardo-Bacelis GA, Vargas-Coronado R, Xool-Tamayo J, Arana-Argáez VE, Cauich-Rodríguez JV. Novel copper complexes-polyurethane composites that mimics anti-inflammatory response. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1067-1089. [DOI: 10.1080/09205063.2022.2155783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guido Antonio Zapata-Catzin
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, México. Calle 43 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | | | - Rossana Vargas-Coronado
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, México. Calle 43 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Jorge Xool-Tamayo
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Victor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán México
| | - Juan Valerio Cauich-Rodríguez
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, México. Calle 43 130 x 32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| |
Collapse
|
16
|
Husmark J, Morgner B, Susilo YB, Wiegand C. Antimicrobial effects of bacterial binding to a dialkylcarbamoyl chloride-coated wound dressing: an in vitro study. J Wound Care 2022; 31:560-570. [PMID: 35797260 DOI: 10.12968/jowc.2022.31.7.560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Wound dressings that inactivate or sequestrate microorganisms, such as those with a hydrophobic, bacteria-binding dialkylcarbamoyl chloride (DACC) surface, can reduce the risk of clinical infections. This 'passive' bioburden control, avoiding bacterial cell wall disruption with associated release of bacterial endotoxins aggravating inflammation, is advantageous in hard-to-heal wounds. Hence, the full scope of DACC dressings, including the potential impact of higher inoculum densities, increased protein load and different pH on antibacterial activity, needs to be evaluated. METHOD The Japanese Industrial Standard (JIS) L 1902 challenge test was used to evaluate the antimicrobial activity of the DACC-coated dressing against several World Health Organization (WHO)-prioritised wound pathogens (e.g., meticillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, microorganisms with extended-spectrum beta-lactamases and Acinetobacter baumannii), the effect of repeated bacterial challenge in an adverse wound environment, and antimicrobial performance at wound-related pH. RESULTS High antibacterial activity of the DACC-coated dressing against the WHO-prioritised bacteria strains by its irreversible binding and inhibition of growth of bound bacteria was confirmed using JIS L 1902. At increased inoculation densities, compared to standard conditions, the DACC-coated dressing still achieved strong-to-significant antibacterial effects. Augmenting the media protein content also affected antibacterial performance; a 0.5-1 log reduction in antibacterial activity was observed upon addition of 10% fetal calf serum. The pH did not influence antibacterial performance. The DACC-coated dressing also sustained antibacterial activity over subsequent reinfection steps. CONCLUSION It can be assumed that the DACC-coated dressing exerts beneficial effects in controlling the wound bioburden, reducing the overall demand placed on antibiotics, without using antimicrobial substances.
Collapse
Affiliation(s)
| | - Bianka Morgner
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | | | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| |
Collapse
|
17
|
Leng T, Wang Y, Cheng W, Wang W, Qu X, Lei B. Bioactive anti-inflammatory antibacterial metformin-contained hydrogel dressing accelerating wound healing. BIOMATERIALS ADVANCES 2022; 135:212737. [PMID: 35929210 DOI: 10.1016/j.bioadv.2022.212737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Highly efficient wound healing and skin regeneration remain a challenge. Long-term inflammation and bacterial infection can inhibit the healing process and lead to the scar formation. Here, we report a hydrogel (FEM) formed by self-assembly of ε-poly-l-lysine-F127-ε-poly-l-lysine (EPL-F127-EPL) and metformin for wound repair. Especially, the role of metformin-based antibacterial hydrogel in wound healing and repair was investigated for the first time. FEM has inherent multifunctional properties, including controlled metformin release, anti-inflammatory and antibacterial activity, temperature responsiveness, injectable and self-healing capabilities. The in vivo results showed that FEM dressings accelerated the wound healing by stimulating the angiogenesis process of the wound tissue and anti-inflammation. This study shows that the multifunctional metformin-contained hydrogel scaffolds could enhance the wound repair through the anti-inflammation and accelerated angiogenesis, which could also expand the biomedical applications of metformin-based biomaterials.
Collapse
Affiliation(s)
- Tongtong Leng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yidan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Wei Cheng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Wensi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Xiaoyan Qu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Mechanical Behavior of Materials, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
18
|
Li S, Zhang Y, Ma X, Qiu S, Chen J, Lu G, Jia Z, Zhu J, Yang Q, Chen J, Wei Y. Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing. Biomacromolecules 2022; 23:1622-1632. [PMID: 35104104 DOI: 10.1021/acs.biomac.1c01465] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial materials are an urgent need for modern wound care in the clinic. Although traditional polyurethane foams have proven to be clinically valuable for wound treatment, their petroleum-originated preparation and bioinert nature have restricted their efficacy in biomedical applications. Here, we propose a simple one-step foaming method to prepare lignin-based polyurethane foams (LPUFs) in which fully biobased polyether polyols partially replace traditional petroleum-based raw materials. The trace amount of phenolic hydroxyl groups (about 4 mmol) in liquefied lignin acts as a direct reducing agent and capping agent to silver ions (less than 0.3 mmol), in situ forming silver nanoparticles (Ag NPs) within the LPUF skeleton. This newly proposed lignin polyurethane/Ag composite foam (named as Ag NP-LPUF) shows improved mechanical, thermal, and antibacterial properties. It is worth mentioning that the Ag NP-LPUF exhibits more than 99% antibacterial rate against Escherichia coli within 1 h and Staphylococcus aureus within 4 h. Evaluations in mice indicate that the antimicrobial composite foams can effectively promote wound healing of full-thickness skin defects. As a proof of concept, this antibacterial and biodegradable foam exhibits significant potential for clinical translation in wound care dressings.
Collapse
Affiliation(s)
- Shuqi Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Yansheng Zhang
- University of Chinese Academy of Sciences, Beijing, Beijing 100039, China.,Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing, Beijing 100039, China
| | - Shihui Qiu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Guangming Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhen Jia
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd., Ningbo 315201, China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Puthia M, Tanner L, Petruk G, Schmidtchen A. Experimental Model of Pulmonary Inflammation Induced by SARS-CoV-2 Spike Protein and Endotoxin. ACS Pharmacol Transl Sci 2022; 5:141-148. [PMID: 35774232 PMCID: PMC9239546 DOI: 10.1021/acsptsci.1c00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Indexed: 01/27/2023]
Abstract
COVID-19 is characterized by a dysregulated and excessive inflammatory response and, in severe cases, acute respiratory distress syndrome. We have recently demonstrated a previously unknown high-affinity interaction between the SARS-CoV-2 spike (S) protein and bacterial lipopolysaccharide (LPS), leading to the boosting of inflammation. Here we present a mouse inflammation model employing the coadministration of aerosolized S protein together with LPS to the lungs. Using NF-κB-RE-Luc reporter and C57BL/6 mice followed by combinations of bioimaging, cytokine, chemokine, fluorescence-activated cell sorting, and histochemistry analyses, we show that the model yields severe pulmonary inflammation and a cytokine profile similar to that observed in COVID-19. Therefore, the model offers utility for analyses of the pathophysiological features of COVID-19 and the development of new treatments.
Collapse
Affiliation(s)
- Manoj Puthia
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden,
| | - Lloyd Tanner
- Division
of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Ganna Petruk
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Artur Schmidtchen
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden,Bispebjerg
Hospital, Department of Biomedical Sciences, University of Copenhagen, DK-2400 Copenhagen, Denmark
| |
Collapse
|
20
|
Schmidtchen A, Puthia M. Rapid in vitro and in vivo Evaluation of Antimicrobial Formulations Using Bioluminescent Pathogenic Bacteria. Bio Protoc 2022; 12:e4302. [DOI: 10.21769/bioprotoc.4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022] Open
|
21
|
Tao B, Lin C, Qin X, Yu Y, Guo A, Li K, Tian H, Yi W, Lei D, Chen Y, Chen L. Fabrication of gelatin-based and Zn 2+-incorporated composite hydrogel for accelerated infected wound healing. Mater Today Bio 2022; 13:100216. [PMID: 35243291 PMCID: PMC8857474 DOI: 10.1016/j.mtbio.2022.100216] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Gelatin-based hydrogels have a broad range of biomedical fields due to their biocompatibility, convenience for chemical modifications, and degradability. However, gelatin-based hydrogels present poor antibacterial ability that hinders their applications in treating infected wound healing. Herein, a series of multifunctional hydrogels (Gel@Zn) were fabricated through free-radical polymerization interaction based on gelatin methacrylate (GelMA) and dopamine methacrylate (DMA), and then immersed them into zinc nitrate solutions based on the metal coordination and ionic bonding interaction. These designed hydrogels wound dressings show strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by increasing intracellular reactive oxygen species (ROS) level and changing bacterial membrane permeability. Meanwhile, the hydrogels exhibit good cytocompatibility, enhance the adhesion, proliferation, and migration of NIH-3T3 cells. Furthermore, Gel@Zn-0.08 (0.08 M Zn2+ immersed with Gel sample) presents a good balance between antibacterial effect, cell viability, and hemolytic property. Compared with 3 M commercial dressings, Gel@Zn-0.04, and Gel@Zn-0.16, the Gel@Zn-0.08 could significantly improve the healing process of S. aureus-infected full-thickness wounds via restrained the inflammatory responses, enhanced epidermis and granulation tissue information, and stimulated angiogenesis. Our study indicates that the Zn-incorporated hydrogels are promising bioactive materials as wound dressings for infected full-thickness wound healing and skin regeneration.
Collapse
Affiliation(s)
- Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xian Qin
- Department of Reproductive Endocrinology, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Ai Guo
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kai Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongchuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| | - Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
22
|
Liang W, Lu Q, Yu F, Zhang J, Xiao C, Dou X, Zhou Y, Mo X, Li J, Lang M. A multifunctional green antibacterial rapid hemostasis composite wound dressing for wound healing. Biomater Sci 2021; 9:7124-7133. [PMID: 34581318 DOI: 10.1039/d1bm01185e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid hemostasis and antibacterial properties are essential for novel wound dressings to promote wound healing. In particular, timely and rapid hemostasis could be of benefit to reduce the mortality caused by excessive bleeding loss. Herein, we present a novel strategy of combining electrospinning technology with post-modification technology to prepare a multifunctional wound dressing, cellulose diacetate-based composite wound dressing (CDCE), with rapid hemostasis and antibacterial activity. It is interesting that the CDCE wound dressing had superhydrophilicity, high water absorption, and strong absorbing capacity, which could eliminate the exudate around the wound in a timely manner and further promote rapid hemostasis. Additionally, its excellent antibacterial properties could inhibit severe infection in the wound and accelerate wound healing. Based on these advantages, the novel CDCE wound dressing could promote wound contraction and further accelerate wound healing compared with the common traditional wound dressing gauze. Taken together, the multifunctional CDCE wound dressing has high potential for clinical application in the future.
Collapse
Affiliation(s)
- Wencheng Liang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China. .,Center of Photonics & Bio-Medical Diagnosis, School of science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, School of biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Junyong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Chuang Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Xiaoming Dou
- Center of Photonics & Bio-Medical Diagnosis, School of science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital Affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
23
|
Thrombin-Derived C-Terminal Peptide Reduces Candida-Induced Inflammation and Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:e0103221. [PMID: 34424043 PMCID: PMC8522777 DOI: 10.1128/aac.01032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infections due to the opportunistic fungus Candida have been on the rise in the last decades, especially in immunocompromised individuals and hospital settings. Unfortunately, the treatments available today are limited. Thrombin-derived C-terminal peptide (TCP-25) is an antimicrobial peptide (AMP) with antibacterial and immunomodulatory effects. In this work, we, for the first time, demonstrate the ability of TCP-25 ability to counteract Candidain vitro and in vivo. Using a combination of viable count assay (VCA), radial diffusion assay (RDA), and fluorescence and transmission electron microscopy analyses, TCP-25 was found to exert a direct fungicidal activity. An inhibitory activity of TCP-25 on NF-κB activation induced by both zymosan alone and heat-killed C. albicans was demonstrated in vitro using THP-1 cells, and in vivo using NF-κB reporter mice. Moreover, the immunomodulatory property of TCP-25 was further substantiated in vitro by analyzing cytokine responses in human blood stimulated with zymosan, and in vivo employing a zymosan-induced peritonitis model in C57BL/6 mice. The therapeutic potential of TCP-25 was demonstrated in mice infected with luminescent C. albicans. Finally, the binding between TCP-25 and zymosan was investigated using circular dichroism spectroscopy and intrinsic fluorescence analysis. Taken together, our results show that TCP-25 has a dual function by inhibiting Candida as well as the associated zymosan-induced inflammation. The latter function is accompanied by a change in secondary structure upon binding to zymosan. TCP-25, therefore, shows promise as a novel drug candidate against Candida infections.
Collapse
|