1
|
Alberini R, Spagnoli A, Sadeghinia MJ, Skallerud B, Terzano M, Holzapfel GA. Second harmonic generation microscopy, biaxial mechanical tests and fiber dispersion models in human skin biomechanics. Acta Biomater 2024; 185:266-280. [PMID: 39048027 DOI: 10.1016/j.actbio.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Advanced numerical simulations of the mechanical behavior of human skin require thorough calibration of the material's constitutive models based on experimental ex vivo mechanical tests along with images of tissue microstructure for a variety of biomedical applications. In this work, a total of 14 human healthy skin samples and 4 additional scarred skin samples were experimentally analyzed to gain deep insights into the biomechanics of human skin. In particular, second harmonic generation (SHG) microscopy was used to extract detailed images of the distribution of collagen fibers, which were subsequently processed using a three-dimensional Fourier transform-based method recently proposed by the authors to quantify the distribution of fiber orientations. Mechanical tests under both biaxial and uniaxial loading were performed to calibrate the relevant mechanical parameters of two widely used constitutive models of soft fiber-reinforced biological tissues that account for non-symmetrical fiber dispersion. The calibration of the models allowed us to identify correlations between the mechanical parameters of the constitutive models considered. STATEMENT OF SIGNIFICANCE: Constitutive models for soft collagenous tissues can accurately reproduce the complex nonlinear and anisotropic mechanical behavior of skin. However, a comprehensive analysis of both microstructural and mechanical parameters is still missing for human skin. In this study, these parameters are determined by combining biaxial mechanical tests and SHG stacks of collagen fibers on ex vivo healthy human skin samples. The constitutive parameters are provided for two widely used hyperelastic models and enable accurate characterization of skin mechanical behavior for advanced numerical simulations.
Collapse
Affiliation(s)
- Riccardo Alberini
- Department of Engineering and Architecture, University of Parma, Parma, Italy
| | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parma, Italy.
| | - Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjorn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A Holzapfel
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Institute of Biomechanics, Graz University of Technology, Graz, Austria
| |
Collapse
|
2
|
Khaledian N, Villard PF, Hammer PE, Perrin DP, Berger MO. Image-based simulation of mitral valve dynamic closure including anisotropy. Med Image Anal 2024; 99:103323. [PMID: 39243597 DOI: 10.1016/j.media.2024.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
Simulation of the dynamic behavior of mitral valve closure could improve clinical treatment by predicting surgical procedures outcome. We propose here a method to achieve this goal by using the immersed boundary method. In order to go towards patient-based simulation, we tailor our method to be adapted to a valve extracted from medical image data. It includes investigating segmentation process, smoothness of geometry, case setup and the shape of the left ventricle. We also study the influence of leaflet tissue anisotropy on the quality of the valve closure by comparing with an isotropic model. As part of the anisotropy analysis, we study the influence of the principal material direction by comparing methods to obtain them without dissection. Results show that our method can be scaled to various image-based data. We evaluate the mitral valve closure quality based on measuring bulging area, contact map, and flow rate. The results show also that the anisotropic material model more precisely represents the physiological characteristics of the valve tissue. Furthermore, results indicate that the orientation of the principal material direction plays a role in the effectiveness of the valve seal.
Collapse
Affiliation(s)
| | | | - Peter E Hammer
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Douglas P Perrin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
3
|
Sadeghinia MJ, Persson RM, Ellensen VS, Haaverstad R, Holzapfel GA, Skallerud B, Prot V, Urheim S. Quantified planar collagen distribution in healthy and degenerative mitral valve: biomechanical and clinical implications. Sci Rep 2024; 14:15670. [PMID: 38977735 PMCID: PMC11231298 DOI: 10.1038/s41598-024-65598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Degenerative mitral valve disease is a common valvular disease with two arguably distinct phenotypes: fibroelastic deficiency and Barlow's disease. These phenotypes significantly alter the microstructures of the leaflets, particularly the collagen fibers, which are the main mechanical load carriers. The predominant method of investigation is histological sections. However, the sections are cut transmurally and provide a lateral view of the microstructure of the leaflet, while the mechanics and function are determined by the planar arrangement of the collagen fibers. This study, for the first time, quantitatively examined planar collagen distribution quantitatively in health and disease using second harmonic generation microscopy throughout the thickness of the mitral valve leaflets. Twenty diseased samples from eighteen patients and six control samples were included in this study. Healthy tissue had highly aligned collagen fibers. In fibroelastic deficiency they are less aligned and in Barlow's disease they are completely dispersed. In both diseases, collagen fibers have two preferred orientations, which, in contrast to the almost constant one orientation in healthy tissues, also vary across the thickness. The results indicate altered in vivo mechanical stresses and strains on the mitral valve leaflets as a result of disease-related collagen remodeling, which in turn triggers further remodeling.
Collapse
Affiliation(s)
- Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Richard Birkelands Vei 1A, 7034, Trondheim, Norway
| | - Robert Matongo Persson
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Science, Medical Faculty, University of Bergen, Bergen, Norway
| | | | - Rune Haaverstad
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Science, Medical Faculty, University of Bergen, Bergen, Norway
| | - Gerhard A Holzapfel
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Richard Birkelands Vei 1A, 7034, Trondheim, Norway
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Richard Birkelands Vei 1A, 7034, Trondheim, Norway
| | - Victorien Prot
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Richard Birkelands Vei 1A, 7034, Trondheim, Norway.
| | - Stig Urheim
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Science, Medical Faculty, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Ayyalasomayajula V, Moxness M, Skallerud B. Potential of computational models in personalized treatment of obstructive sleep apnea: a patient-specific partial 3D finite element study. Biomech Model Mechanobiol 2024; 23:507-524. [PMID: 37975969 PMCID: PMC10963546 DOI: 10.1007/s10237-023-01788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The upper airway experiences mechanical loads during breathing. Obstructive sleep apnea is a very common sleep disorder, in which the normal function of the airway is compromised, enabling its collapse. Its treatment remains unsatisfactory with variable efficacy in the case of many surgeries. Finite element models of the upper airway to simulate the effects of various anatomic and physiologic manipulations on its mechanics could be helpful in predicting surgical success. Partial 3D finite element models based on patient-specific CT-scans were undertaken in a pilot study of 5 OSA patients. Upper airway soft tissues including the soft palate, hard palate, tongue, and pharyngeal wall were segmented around the midsagittal plane up to a width of 2.5 cm in the lateral direction. Simulations of surgical interventions such as Uvulopalatopharyngoplasty (UPPP), maxillo-mandibular advancement (MMA), palatal implants, and tongue implants have been performed. Our results showed that maxillo-mandibular advancement (MMA) surgery of 1 cm improved the critical closing pressure by at least 212.2%. Following MMA, the best improvement was seen via uvulopalatopharyngoplasty (UPPP), with an improvement of at least 19.12%. Palatal and tongue implants also offered a certain degree of improvement. Further, we observed possible interacting mechanisms that suggested simultaneous implementation of UPPP and tongue stiffening; and palatal and tongue stiffening could be beneficial. Our results suggest that computational modeling is a useful tool for analyzing the influence of anatomic and physiological manipulations on upper airway mechanics. The goal of personalized treatment in the case of OSA could be achieved with the use of computational modeling.
Collapse
Affiliation(s)
- Venkat Ayyalasomayajula
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Mads Moxness
- Department of Otolaryngology, Aleris Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Alberini R, Spagnoli A, Sadeghinia MJ, Skallerud B, Terzano M, Holzapfel GA. Fourier transform-based method for quantifying the three-dimensional orientation distribution of fibrous units. Sci Rep 2024; 14:1999. [PMID: 38263352 PMCID: PMC11222475 DOI: 10.1038/s41598-024-51550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
Several materials and tissues are characterized by a microstructure composed of fibrous units embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based method for quantifying the distribution of fiber orientations is presented. The method allows for an accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and showed fast computation times. We validated the method using artificially generated 3D images, in terms of fiber dispersion by considering the error between the standard deviation of the reconstructed and the prescribed distributions of the artificial fibers. In addition, we considered the measured mean orientation angles of the fibers and validated the robustness using a measure of fiber density. Finally, the method is employed to reconstruct a full 3D view of the distribution of collagen fiber orientations based on in vitro second harmonic generation microscopy of collagen fibers in human and mouse skin. The dispersion parameters of the reconstructed fiber network can be used to inform mechanical models of soft fiber-reinforced materials and biological tissues that account for non-symmetrical fiber dispersion.
Collapse
Affiliation(s)
- Riccardo Alberini
- Department of Engineering and Architecture, University of Parma, Parma, Italy
| | - Andrea Spagnoli
- Department of Engineering and Architecture, University of Parma, Parma, Italy.
| | - Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A Holzapfel
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Schulz AK, Schneider N, Zhang M, Singal K. A Year at the Forefront of Hydrostat Motion. Biol Open 2023; 12:bio059834. [PMID: 37566395 PMCID: PMC10434360 DOI: 10.1242/bio.059834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Currently, in the field of interdisciplinary work in biology, there has been a significant push by the soft robotic community to understand the motion and maneuverability of hydrostats. This Review seeks to expand the muscular hydrostat hypothesis toward new structures, including plants, and introduce innovative techniques to the hydrostat community on new modeling, simulating, mimicking, and observing hydrostat motion methods. These methods range from ideas of kirigami, origami, and knitting for mimic creation to utilizing reinforcement learning for control of bio-inspired soft robotic systems. It is now being understood through modeling that different mechanisms can inhibit traditional hydrostat motion, such as skin, nostrils, or sheathed layered muscle walls. The impact of this Review will highlight these mechanisms, including asymmetries, and discuss the critical next steps toward understanding their motion and how species with hydrostat structures control such complex motions, highlighting work from January 2022 to December 2022.
Collapse
Affiliation(s)
- Andrew K. Schulz
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nikole Schneider
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Margaret Zhang
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishma Singal
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The effects of leaflet material properties on the simulated function of regurgitant mitral valves. J Mech Behav Biomed Mater 2023; 142:105858. [PMID: 37099920 PMCID: PMC10199327 DOI: 10.1016/j.jmbbm.2023.105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated (1) the influence of tissue extensibility and (2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, Canada
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.
| |
Collapse
|
8
|
Sadeghinia MJ, Aguilera HM, Holzapfel GA, Urheim S, Persson RM, Ellensen VS, Haaverstad R, Skallerud B, Prot V. Mechanical Behavior and Collagen Structure of Degenerative Mitral Valve Leaflets and a Finite Element Model of Primary Mitral Regurgitation. Acta Biomater 2023; 164:269-281. [PMID: 37003496 DOI: 10.1016/j.actbio.2023.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Degenerative mitral valve disease is the main cause of primary mitral regurgitation with two phenotypes: fibroelastic deficiency (FED) often with localized myxomatous degeneration and diffuse myxomatous degeneration or Barlow's disease. Myxomatous degeneration disrupts the microstructure of the mitral valve leaflets, particularly the collagen fibers, which affects the mechanical behavior of the leaflets. The present study uses biaxial mechanical tests and second harmonic generation microscopy to examine the mechanical behavior of Barlow and FED tissue. Three tissue samples were harvested from a FED patient and one sample is from a Barlow patient. Then we use an appropriate constitutive model by excluding the collagen fibers under compression. Finally, we built an FE model based on the echocardiography of patients diagnosed with FED and Barlow and the characterized material model and collagen fiber orientation. The Barlow sample and the FED sample from the most affected segment showed different mechanical behavior and collagen structure compared to the other two FED samples. The FE model showed very good agreement with echocardiography with 2.02±1.8 mm and 1.05±0.79 mm point-to-mesh distance errors for Barlow and FED patients, respectively. It has also been shown that the exclusion of collagen fibers under compression provides versatility for the material model; it behaves stiff in the belly region, preventing excessive bulging, while it behaves very softly in the commissures to facilitate folding. STATEMENT OF SIGNIFICANCE: None.
Collapse
Affiliation(s)
- Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Hans Martin Aguilera
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerhard A Holzapfel
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway; Institute of Biomechanics, Graz University of Technology, Austria
| | - Stig Urheim
- Haukeland University Hospital, Department of Heart Disease, Bergen, Norway; Institute of Clinical Science, University of Bergen, Bergen, Norway
| | - Robert Matongo Persson
- Haukeland University Hospital, Department of Heart Disease, Bergen, Norway; Institute of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Rune Haaverstad
- Haukeland University Hospital, Department of Heart Disease, Bergen, Norway; Institute of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Victorien Prot
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Jaiswal S, Hannineh R, Nadimpalli S, Lieber S, Chester SA. Characterization and modeling of the in-plane collagen fiber distribution in the porcine dermis. Med Eng Phys 2023; 115:103973. [PMID: 37120170 DOI: 10.1016/j.medengphy.2023.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The structural arrangement of collagen fibers in the plane of the dermis layer plays a critical role in accurately predicting the mechanical behavior of skin tissues. This paper combines a histological analysis with statistical modeling to characterize and model the in-plane collagen fiber distribution in the porcine dermis. The histology data reveals that the fiber distribution in the plane of the porcine dermis is non-symmetric. The histology data forms the basis of our model, which employs a combination of two π-periodic von-Mises distribution density functions to create a non-symmetric distribution. We demonstrate that a non-symmetric in-plane fiber distribution is a significant improvement over a symmetric distribution.
Collapse
|
10
|
Fitzpatrick DJ, Pham K, Ross CJ, Hudson LT, Laurence DW, Yu Y, Lee CH. Ex vivo experimental characterizations for understanding the interrelationship between tissue mechanics and collagen microstructure of porcine mitral valve leaflets. J Mech Behav Biomed Mater 2022; 134:105401. [DOI: 10.1016/j.jmbbm.2022.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
|
11
|
Microstructure and mechanics of the bovine trachea: Layer specific investigations through SHG imaging and biaxial testing. J Mech Behav Biomed Mater 2022; 134:105371. [PMID: 35868065 DOI: 10.1016/j.jmbbm.2022.105371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The trachea is a complex tissue made up of hyaline cartilage, fibrous tissue, and muscle fibers. Currently, the knowledge of microscopic structural organization of these components and their role in determining the tissue's mechanical response is very limited. The purpose of this study is to provide data on the microstructure of the tracheal components and its influence on tissue's mechanical response. Five bovine tracheae were used in this study. Adventitia, cartilage, mucosa/submucosa, and trachealis muscle layers were methodically cut out from the whole tissue. Second-harmonic generation(SHG) via multi-photon microscopy (MPM) enabled imaging of collagen fibers and muscle fibers. Simultaneously, a planar biaxial test rig was used to record the mechanical behavior of each layer. In total 60 samples were tested and analyzed. Fiber architecture in the adventitia and mucosa/submucosa layer showed high degree of anisotropy with the mean fiber angle varying from sample to sample. The trachealis muscle displayed neat layers of fibers organized in the longitudinal direction. The cartilage also displayed a structure of thick mesh-work of collagen type II organized predominantly towards the circumferential direction. Further, mechanical testing demonstrated the anisotropic nature of the tissue components. The cartilage was identified as the stiffest component for strain level < 20% and hence the primary load bearing component. The other three layers displayed a non-linear mechanical response which could be explained by the structure and organization of their fibers. This study is useful in enhancing the utilization of structurally motivated material models for predicting tracheal overall mechanical response.
Collapse
|
12
|
Nappi F. The role of the extracellular matrix in the development of heart valve disease: Underestimation or undercomprehension? J Card Surg 2022; 37:1623-1626. [PMID: 35352851 DOI: 10.1111/jocs.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
The function of metalloproteinases of the extracellular matrix and their inhibitors has emerged with a crucial role in valve diseases. Both the expression of matrix metalloproteinases and their inhibitors are susceptible to modification in patients with severe mitral insufficiency. This process is due to substantial changes in the collagen structure during mechanical stress on the mitral valve leaflets. Several studies have measured the level of deformation of the mitral leaflets with the use of the finite element analysis method by establishing the stiffness of the cellular and extracellular elements of the mitral valve leaflets. Evidence suggested the possible underestimation of the stiffness of the leaflets. This implies greater stress on the components of the extracellular matrix in the circumferential and radial strains that involve the mitral leaflets during chronic regurgitation. The remodeling process during mechanical stress phenomena involves both the cellular compartment and the extracellular matrix and can be adaptive or maladaptive as showed in patients who receive a pulmonary autograft to replace the diseased aortic valve. However, adaptive remodeling can be driven using resorbable polymers that interfere with the extracellular matrix. Further investigation is required for the understanding of the mechanisms that determine the structural changes of the extracellular matrix and to prevent them.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, Saint-Denis, France
| |
Collapse
|